
Designer-Driven Intention Recognition in an Action-Adventure Game
Using Fast Forward Bayesian Models

Kevin Gold
Wellesley College

Abstract

A method is described for quickly inferring a player’s
goals from low-level inputs in an action-adventure
game. Fast Forward Bayesian Models (FFBMs) use
the very efficient forward algorithm normally used in
the Forward-Backward algorithm, but they use transi-
tion matrices and observation functions specific to the
game’s current state. In experiments with both a vet-
eran player and novice players using a Flash action ad-
venture game, the algorithm is faster to correctly infer
whether the player is attempting to kill monsters repeat-
edly, explore, or return to town than a finite state ma-
chine (FSM) that must wait for less ambiguous infor-
mation, yet is also more robust against momentary de-
viations from goal-relevant behavior. Using a constant
transition matrix that does not increase the probability
of out-of-state transitions on finishing a goal erases the
advantage over the FSM.

Introduction

Two facts about AI in the game industry must inform any
choice of algorithm. First, the algorithm must be fast, be-
cause the graphics team will take the lion’s share of the cy-
cles. Second, the algorithm must allow game designers, who
do not necessarily know AI, strong control over its opera-
tion. The rationality of the AI should always be secondary
to the player’s experience of the game, and this means game
designers must ultimately have veto power over the AI pro-
grammer in terms of which algorithms get used. This means
game designers are likely to reject any algorithm that results
in a “black box” AI, in favor of a more predictable system.

These two factors have historically made finite state ma-
chines (FSMs) or “behavior trees” (Isla 2005) the algorithms
of choice in industry-created AIs. These algorithms are fast
because they require no lookahead and no memory beyond
simple state information, sometimes augmented by a stack
of previous goals. They also make it easy for game designers
to state the behaviors of the agents in natural language. This
kind of strong control over the AI’s operation is commonly
overlooked by academic AI researchers, though there has
been some research into making subsumption or behavior-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based control equally accessible (Heckel, Youngblood, and
Hale 2009).

But FSMs and behavior trees deal poorly with chaotic in-
puts over time. A single action, no matter how inadvertent,
can trigger the same string of behaviors as a more consistent
pattern over time. This makes picking up on subtle patterns
of player actions over time more difficult; an FSM must have
some arbitrary threshold – step here, keep acting for X sec-
onds – that players can easily circumvent once they discover
the rule. This predictability may sometimes be desirable for
gameplay reasons, but not always.

This paper will argue that the game industry should add
another fast, designer-tunable AI methodology to its tool-
box: probabilistic reasoning over time. Probabilistic rea-
soning is fast: the “forward algorithm” (Russell and Norvig
2003) has the advantage of incorporating all the evidence
observed by the AI since it began operation, yet requires
only a constant time update relative to the time it has been
observing. It essentially only requires a single matrix opera-
tion, a vector multiplication, and a scaling operation; every-
thing else is optional “perception” that is faced by the FSM
designer as well. Moreover, it is designer tunable: the de-
signer can state in natural language what states the system
should be detecting, how they will appear to the system, and
how they transition between one another, and leave them to
the AI designer to implement. For example, the designer
may state, “The player tends to head back to town when the
player’s inventory is full,” and this translates naturally into a
transition matrix that takes this heuristic into account.

The application that will be presented in this particular pa-
per is player intention recognition, specifically for an action-
adventure setting which includes both exploration and in-
centives to kill enemies. A common phenomenon in these
settings is that the player is trying to gain levels or treasure in
a repetitive fashion by killing monsters in the same area over
and over – a behavior known as “leveling” or “grinding.”
Grinding is undesirable from the designer’s point of view
because the player is engaging in a task that the player prob-
ably finds tedious, yet the player believes that the game’s
rewards have been structured to make it the most effective
way to succeed. If a game could detect “grinding,” it could
shift the reward structure slightly so that the player is more
likely to have a varied, fun experience. On the other end
of the spectrum, the game designer may wish to reward the

447

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

player for attempting to “explore,” or trying to encounter
new content, even if the player is not certain how to reach
new areas.

Grinding and exploring are examples of behaviors that
are defined by the player’s actions over time, and not eas-
ily amenable to FSM or behavior tree descriptions. Killing
a monster does not necessarily signal an intention to grind,
since the monster may simply be in the way of exploration.
A player going over old ground may actually be exploring,
but confused about how to reach a new area. These kinds of
issues can be handled in an ad hoc way by adding timers to
FSM conditions, but the decision between behaviors is best
done by comparing the likelihoods of each known behavior.
In this way, even behaviors that do not particularly fit the de-
signer’s preconceptions can still be classified, yet the proba-
bilities produced will indicate the system’s uncertainty. Very
obvious grinding could thereby get a very obvious penalty,
but if the system is uncertain, it could reduce or dispense
with the penalty.

This paper is the first to suggest the forward algorithm
as a useful tool for game industry AI, though player model-
ing, plan recognition, and Bayesian networks in general have
precedents in the literature. Typically, player plan recog-
nition has been applied to planning-like domains in which
the actions are discrete, “large” actions that are semanti-
cally meaningful, such as pushing levers or sitting down to
eat. These have included probabilistic context-free gram-
mars that use game context to disambiguate speech, and
thereby infer the player’s plan (Gorniak and Roy 2005); a
game that used a large corpus of person-to-person interac-
tions in a restaurant scenario to generate a plan network that
could be used to guess or produce next behaviors (Orkin and
Roy 2007), and a dynamic Bayesian network trained on a
corpus of actions in a multi-user dungeon (MUD) game to
predict the player’s current quest, next location, and next
action (Albrecht, Zukerman, and Nicholson 1998). The
present work differs from all of these in that it is intended
for an action-heavy game. This means the player actions are
likely to be low-level and highly ambiguous (moving left or
swinging a sword), the player must often deviate from the
plan briefly in order to avoid danger (moving away from the
goal to get away from the monster), memorizing chains of
these small actions is likely to be unreasonable, and process-
ing speed must be very fast. Of these, the MUD dynamic
Bayesian network of (Albrecht, Zukerman, and Nicholson
1998) was most similar to the present work, but did not ad-
dress the issue of changing goals, assuming that the quest
was fixed over the length of the network; the experiment be-
low shall demonstrate that there is some subtlety involved in
designing the network so that it can rapidly adapt to a new
plan. The Forward-Backward algorithm from which the for-
ward part is lifted here is more common in speech recogni-
tion (Rabiner 1989) and gesture or action recognition (Lee
and Kim 1999), two other domains with a high degree of
noise and ambiguity that must nevertheless often function in
real time.

The next section will describe the theoretical principles
behind the forward algorithm and how it can actually operate
on much more complex information than a typical Hidden

Markov Model (HMM) when performing player intention
recognition in a game, because all the information is known
besides what the player will do next. In short, this allows
very sophisticated Bayesian models to act as HMMs for the
purpose of the forward algorithm, because all the transitions
and emissions are conditioned on known information. (It
will also be explained why only the “forward” part of the
more widely used Forward-Backward algorithm is actually
necessary for our purposes here.) An experiment will then
be presented in which a simple action-adventure Flash game
decides between three behaviors – “leveling,” “exploring,”
and “going to town” – and its performance is compared to
a finite state machine designed to detect the same things.
In the discussion section, further applications of dynamic
Bayesian models for games will be discussed, including en-
emy AI that deals intelligently with missing information,
trainable player models, and adjusting to play style.

Fast Forward Bayesian Models

The goal of a “dynamic Bayesian model” for player behavior
is to provide at every moment, for each possible high-level
description of player behavior, a probability that the player
is currently engaging in that kind of behavior. At each stage,
the model used in the experiment will be used as an example.

The required input from the designer

To design a probabilistic model for player behavior over
time, the AI programmer must know four things: What
are the different states we think the player might be in?
What kinds of actions do we expect in each of these states?
How often does the player naturally switch between these
states? And, what events might make switching between
states more likely?

For our example Flash game, the designer may state
that we are interested in deciding between three behaviors:
“grinding” (running around killing monsters), “exploring”
(moving to new areas of the map), and “heading back to
town.” When killing monsters, the player is likely to either
approach monsters and attack, or wait for monsters to ap-
proach and then attack; if there are no monsters nearby, the
player will move to find some or wait for some to appear.
When exploring, the player is likely to move in the direction
of unexplored map squares. When returning to town, the
player is likely to move in a known path back to town.

This specification can then be handed to the AI program-
mer for implementation, freeing the designer to create rules
about how to react to the probabilities of behavior that will
be produced by the system.

Translating designer-specified rules into a fast
dynamic Bayesian model

The forward algorithm is designed to function on a Hidden
Markov Model (HMM), so it is useful to start with the HMM
as a base model from which our more complex (but still fast)
model can be derived. Informally, an HMM consists of a
hidden state at each time step that must be inferred, an ob-
servation caused by that state at each time step that gives a

448

hint as to the underlying state, and rules for how states tran-
sition between each other and produce observations. The
states here will be player intentions, and the observations
will be player inputs.

Formally, a Hidden Markov Model consists of a transi-
tion matrix T and an observation matrix O, both containing
probabilities for each entry. The matrix T specifies the prob-
ability at each moment in time t that if the state is i, the next
state will be j: Tij = P (st+1 = j|st = i). This matrix
will typically have large values along the diagonal entries
Tii, indicating a high probability of remaining in the same
state, and low probabilities elsewhere. Given no other input
from the designer, it is reasonable to assume that the total
probability of transitioning from state i to another state is
(1/timeInStatei), where timeInStatei is an estimate of
how long the player tends to stay in state i. This makes the
diagonal entries Tii = 1− (1/timeInStatei) and the other
entries set to values that cause the rows to sum to 1.

A variation from the Hidden Markov Model that is still
fast for player intention recognition is to have different ma-
trices T for different conditions: one matrix for the case of
the player being low on health that gives a high probability
of transitioning to “return to town,” another that gives high
probability of ceasing to explore when the player’s map is
complete, and so on. As long as the relevant information
is known to the system at each time step, it will still be
fast and efficient to update the system’s beliefs about the
player’s intentions. At the very least, the probability of tran-
sition to other states should increase when the player ac-
complishes a goal, to account for the fact that the player is
more likely to switch modes of play once the current goal
has been achieved. In the current example, on obtaining a
treasure chest, the transition probabilities from “explore” to
all 3 states were set to be equal (= 0.33), and while in town,
the chance of the goal being “return to town” was set to 0 and
transitions to the other two goals were equally likely (=0.5).

A Hidden Markov Model normally also possesses an ob-
servation matrix O, giving the probability of each behavior
given the underlying hidden state: Oij = P(system observes
behavior j | player is in state i). However, the behaviors
need not form a discrete set for the Bayesian model’s update
to be fast; any function O(i, j, �x) that gives a probability of
behavior j in state i will work fine, as long as the vector of
other relevant variables �x is known. In general, however,
the observation probabilities for a given state must sum to 1,
and the number of states among which the probability is be-
ing divided should be the same for each hidden state. Failure
to obey either of these principles can result in a model that
unfairly favors one state.

For the example game, it was assumed that the player
would stay in each state for roughly 100 updates on aver-
age, giving Tii = 0.99 and Tij = 0.005 for i �= j. The
observation probability under “grinding” was 0.8 for swing-
ing a sword while still, with the remaining probability mass
divided equally among other actions, unless there were no
monsters in the room. In the case of exploration, returning
to town, and grinding with no monsters present, the obser-
vation probabilities were calculated by assigning weights to
the 8 directions of movement based on which map edges

were acceptable based on the state, with a stronger weight
given to the closest acceptable map edge. A map edge was
acceptable for “explore” if it led to an unvisited map square,
was acceptable to “town” if it moved closer to town, and was
always acceptable to “grinding.” Weights for all directions
began at 1, were increased by 4 for the closest acceptable
direction, were increased by 2 for diagonals adjacent to the
acceptable direction or other acceptable directions, and were
increased by 1 for diagonals adjacent to non-preferred ac-
ceptable directions. These were then normalized to produce
estimated probabilities.

It is important for these models that the states from time t
to time t + 1 are relatively independent. If the calculations
to be described below are performed every frame, or every
few frames, it can make the system jump to conclusions too
quickly; if a player is still headed east 200 ms after the last
poll, it is unlikely that this event is independent from the
last check for the player’s action, and so these should not
be treated as two separate pieces of evidence in favor of a
particular interpretation. Therefore, the discrete times here
where measurements are made are either when the player’s
input changes, or when the situation for the player signifi-
cantly changes (in this example, on an area change). A flag
can be set in the event handler for keyboard or mouse input
that detects whether the player’s direction of movement or
action has changed, or when the player enters a new area,
and these are the times ti that are being discussed here.

The resulting model, with varying transition matrices T
and an observation function O that both depend on the cir-
cumstances, is not technically a Hidden Markov Model but
a dynamic Bayesian model; but it will still function with
the very efficient forward algorithm for HMMs as long as
all the relevant information is known. For lack of a better
term, we can call models that obey this property “fast for-
ward Bayesian models” (FFBMs).

Updating beliefs in constant time

It is a very large advantage in video games over other real
time systems that essentially all information is known be-
sides what the player is going to do next. This allows the
system to condition a very complex model on many vari-
ables, yet retain the constant time update speed of the for-
ward algorithm.

Figure 1 shows the current model as a graphical model.
Both the observation probabilities and transition probabili-
ties can depend on an arbitrarily complex “game conditions”
vector �x; so long as all of the information in this state is
known, the algorithm is as fast as the standard forward algo-
rithm.

Let the current vector of probabilities for the hidden states

be �St, and �x be a state vector representing the current game
state. Then on receiving a new input from the player ot+1,

the algorithm for updating �S is:

�St+1 = T (�x)T �St

for each hidden state i do
si,t+1 ← si,t+1 ∗ P (ot+1|�si,t+1, �x)

end for
�St+1 ← normalize(�St+1)

449

Action Action

Game

State

Intention
State

Intention
State

Player Player

S

ot

S

ot

t t+1

+1

xt

Figure 1: A slice of the graphical model for a fast forward
Bayesian model. Even though the transitions and observa-
tions are conditionally dependent on the game state, when
this information is known, conditioning on it reduces the
model to the same calculations as a Hidden Markov Model.

A single matrix multiplication by the current transition
matrix T (�x) (dictated by the game state �x) prepares the state
probability for the new information in the absence of new
input. When a new observation is received, Bayes’ rule dic-

tates that P (�St+1|ot+1, �x) ∝ P (ot+1|�St+1, �x) ∗ P (�St+1).
The hidden state probabilities then are normalized to sum
to 1. Because �x is known, the observations and transitions
can simply be conditioned on �x (i.e., T and O are chosen
appropriately) without further probabilistic computations.

If it matters what the player’s intention was at some point
in the past h, where 1 < h < t, the Forward-Backward
algorithm (Rabiner 1989; Russell and Norvig 2003) should
be used to calculate the state probabilities instead, because
the observations at times h . . . t can and should influence
the current belief about what the state was at that point in
the past. However, the Forward-Backward algorithm is not
necessary to calculate the player’s most likely current state,
because the backward part of the Forward-Backward algo-
rithm only affects the inferred hidden state probabilities in
the past.

Just as with Hidden Markov Models, the forward algo-
rithm here is calculating the probability of each current state

given all the evidence seen so far, P (�St+1|o1...t+1, �x1...t+1).
Even though the model is making only constant time up-
dates, given the Markov assumption of conditional indepen-
dence, the current beliefs fully take into account all evidence
seen so far. This is very different from a finite state machine,
which has a state that depends only on the current inputs
(ot+1, �xt+1).

Experiment

Methods

The method was implemented in a Flash game borrowing
sprites from The Legend of Zelda, running at 30 fps. A
screenshot of the game in “debug mode” is shown in Fig-
ure 2. The main character could walk in 8 directions, swing
a sword to attack, or walk to a map edge without a wall to
travel to the next area. The areas were arranged in a 4x5

Figure 2: A screenshot of the experiment in “debug” mode,
where the FFBM probabilities and FSM prediction are
shown. The avatar and town are in the lower left, and a wall
blocks progress to the south.

map grid, with the player’s starting location, the town, at
(2,2). Only 13 of the 20 areas were reachable given the
walls, making a small maze. A treasure chest was randomly
located at one of (1,4), (4,4), (4,1), or (5,3). Each area con-
tained 5 monsters (for the experienced player) or 3 monsters
(for the new players), randomly placed, that would move in
non-diagonal lines to approach the player at half the player’s
speed. These respawned on entering an area, or after a 150
frame (5s) timer.

Each run consisted of 3 phases in which the player was
given a specific goal: “Find the treasure chest,” “Return to
town,” or “Kill 10 monsters.” This was to establish “ground
truth” for the goals – none of the algorithms received infor-
mation about what the current goal was. The goal became
“return to town” on picking up the treasure chest, and “kill
10 monsters” on reaching town after having retrieved the
chest. Running into a monster resulted in the player’s avatar
being returned to town during the first and third phases, and
resulted in being returned to the treasure chest location dur-
ing the “Return to town” phase. Swinging a sword killed a
monster in one hit. The player could move fast enough that
monsters could usually, but not always, be avoided entirely
in moving from one area to the next if the player took a cir-
cuitous route. The 10 monster goal was chosen so that the
player would need to change map areas at least once to finish
the goal quickly, or wait for the monsters to respawn.

The FFBM algorithm described above was compared to
two alternatives, which calculated predictions simultane-
ously with the algorithm. The finite state machine was a
simple predictor that obeyed the following rules: start with
a random goal prediction; transition to “grinding” when the
player attacks a monster; transition to “explore” when mov-
ing to a map area that has not previously been explored;
transition to “town” when moving to an area that is closer
to town than the current square. The unconditional Bayesian
predictor was identical to the algorithm described above, but
the transition matrix T always used the default probabilities,

450

Figure 3: Percent of time slices in which each method cor-
rectly inferred the player’s current goal for an experienced
player over 10 trials (black) and for 10 different first-time
players (white).

and did not increase the probability of changing state on re-
turning to town or picking up the treasure, making it more
similar to a standard HMM.

The three algorithms’ predictions were compared to the
ground truth at every update of the FFBM, and accuracy was
calculated at the end. The experiment was repeated under 2
conditions: 10 runs with the same experienced player (the
experimenter), and 10 times with a different subject for each
run who had no experience with the game. No parameters
were changed in response to the data and no training took
place; the hand-chosen parameters were kept for both con-
ditions and all runs.

Results

Figure 3 shows the performance of the three algorithms. For
the experienced player, at 90% accuracy, the FFBM model
performed significantly better than either the finite state ma-
chine or the non-conditional Bayesian model (p < 0.0003
in each case, two-tailed paired t-test), both of which showed
70% accuracy. The performance of the HMM-like model
that used the same transition matrix T across all time was
not significantly different from that of the finite state ma-
chine (p = 0.88). The algorithm was worse overall at pre-
dicting the behavior of new players (59% accuracy), but was
still significantly better than either the FSM (46%, p < 0.03)
or the version with constant transition matrix (44%, p <
0.0002), which were not significantly different from each
other (p = 0.66).

Figure 4 helps to explain the importance of using a transi-
tion matrix conditioned on the game state by showing the
probabilities for the FFBM model and the same-T model
over the 20 time steps surrounding the transition from “re-
turn to town” to “leveling.” Though the Bayesian model
with a constant transition matrix has a smoother transition of

probabilities, this results in a slower inference of the player’s
state, where the state is only clear once the player starts at-
tacking. The FFBM, on the other hand, can quickly transi-
tion because the transition probabilities no longer favor the
current state on reaching town, and thus the “momentum”
does not keep the state in “return to town” after the town has
been reached. (Recall that the new transition probabilities
were not chosen to favor the goal that was next in the exper-
iment; they merely ceased to favor the current state.) On the
other hand, both Bayesian models resisted the quick FSM
state changes produced by an attacking player who was still
exploring – without a signal that the state might change, the
bump in P(leveling) caused by an exploring player attacking
one or two monsters in the way was usually not enough to
overcome the momentum achieved by the previous observa-
tions.

Conclusions

Bayesian models are an underutilized method in modern
game AI. They are very fast to update and can incorpo-
rate more subtle cues than finite state machines, and in a
principled way. Very complex reasoning over time can take
place very quickly because all of the relevant information
is known to the game besides the player’s state, allowing the
probabilistic calculations to condition on many different fac-
tors without slowing down the forward algorithm that makes
HMMs so fast. Notice, however, that the models here are
slightly more sophisticated than HMMs in that neither the
transition matrix T nor the observation model O are con-
stant over time, but can vary depending on the situation. In
fact, the experiment above shows that a finite state machine
produces comparable performance to a Bayesian model that
does not increase the transition probabilities when goals are
met, because by the time the HMM-like model overcomes
its earlier momentum, the player has probably already pro-
duced some unambiguous behavior that renders more com-
plex inference moot.

This paper did not explore training the model based on
player actions; the models here were hand-designed, but
it should be possible to use data where there exists some
ground truth as to player intention in order to tailor the prob-
abilities to the player’s actions. It would be worthwhile to
run additional experiments to see how sensitive these kinds
of models are to their parameters. It is reasonable to hy-
pothesize that such models should be relatively insensitive
to their parameters as long as the player goals are relatively
distinguishable. The observation probabilities do not partic-
ularly have to fit the truth; they merely have to ensure that
the player’s behavior fits the correct inference better than the
incorrect inference.

The use of Bayesian models over time to infer player
goals could possibly be extended to decision-making for en-
emy AI’s with limited information, since Bayesian models
deal well with inference when variables are missing. The
main obstacle would be ensuring that inference remained
fast, since the forward algorithm could no longer be used.
Inference over polytrees (Pearl 1988) with missing informa-
tion is therefore one potential future direction for this work.

451

Figure 4: The change in inferred goal probabilities surrounding the goal change on reaching town in a sample run. The time
axis is measured in player button presses and releases. Left: The FFBM model quickly realigns itself to the new evidence before
the player has even taken the first swing. Right: With constant T , the model is smoother but slower to adapt to the player’s new
behavior, and only barely manages to infer the new state before the FSM switches at the player’s first attack.

Another possible extension is creating multiple FFBMs
that use rules describing different play styles. Updating
the likelihood of each FFBM requires nothing more com-
plicated than the forward model, and therefore beliefs about
the player’s overall play style could also be updated in con-
stant time. Though others have addressed systems based
on assigning points to different play styles based on the
player’s actions (Thue, Bulitko, and Spetch 2008), dynamic
Bayesian models offer both a principled way of choosing
these constants – namely, by estimating the probabilities that
the player will perform them – and has a much better chance
of being moved into continuous, action-oriented domains,
since AI designers could choose parameters for continuous
probability distributions rather than dealing with a mess of
hand-chosen constants.

In short, FFBMs are an exciting potential avenue for
growth in game AI. The graphics team should be able to
spare the single matrix multiplication and dot product nec-
essary for the update, and game designers should welcome
them because describing play styles and strategies based on
the current situation is something that they can both easily
describe and take an interest in. Moreover, game designers
often have a fairly good intuitive grasp of probability from
experience with tabletop games, and so the transition and
observation models are concepts that should be a relatively
easy sell, even if the underlying Bayesian forward model
that makes use of the models is unfamiliar. This paper is a
first step in what is a potentially very powerful tool for fast,
designer-specified game AI.

Acknowledgments

The author would like to thank Norma Wilentz Hess and
Wellesley College for supporting this work.

References

Albrecht, D.; Zukerman, I.; and Nicholson, A. E. 1998.
Bayesian models for keyhole plan recognition in an adven-

ture game. User Modeling and User-Adapted Interaction
8(1–2):5–47.

Gorniak, P., and Roy, D. 2005. Probabilistic grounding of
situated speech using plan recognition and reference resolu-
tion. In Proceedings of the Seventh International Conference
on Multimodal Interfaces. New York, NY: ACM.

Heckel, F. W. P.; Youngblood, G. M.; and Hale, D. H. 2009.
Behaviorshop: An intuitive interface for interactive charac-
ter design. In Proceedings of the Fifth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
AAAI Press.

Isla, D. 2005. Handling complexity in the Halo 2 AI. In
Proceedings of the Game Developers Conference. Gamasu-
tra.

Lee, H.-K., and Kim, J. H. 1999. An HMM-based threshold
model approach for gesture recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 21(10):961–
973.

Orkin, J., and Roy, D. 2007. The restaurant game: Learn-
ing social behavior and language from thousands of players
online. Journal of Game Development 3(1):39–60.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufmann.

Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceedings
of the IEEE 77(2):257–296.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Upper Saddle River, New Jersey: Pren-
tice Hall, 2nd edition.

Thue, D.; Bulitko, V.; and Spetch, M. 2008. Player mod-
eling for interactive storytelling: a practical approach. In
Rabin, S., ed., AI Game Programming Wisdom 4. Boston,
MA: Course Technology. 633–646.

452

