
A Model for Content Sequencing in Intelligent Tutoring Systems Based on the
Ecological Approach and Its Validation Through Simulated Students

John Champaign and Robin Cohen
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1

jchampai@cs.uwaterloo.ca,rcohen@ai.uwaterloo.ca

Abstract

In this paper, we present an algorithm for reasoning
about the sequencing of content for students in an in-
telligent tutoring system. Our motivating influence is
McCalla’s ecological approach which advocates attach-
ing models of learners to the learning objects they in-
teract with, and then mining these models for patterns
that are useful for various purposes. In particular, we
record with each learning object those students who ex-
perienced the object, together with their initial and final
states of knowledge, and then use these interactions to
reason about the most effective lesson to show future
students based on their similarity to previous students.
We validate our approach in a context of simulated stu-
dents, providing details of the model of learning used
in the simulation and the results obtained in order to
demonstrate the value of our model. As a result we of-
fer a novel approach for peer-to-peer intelligent tutoring
from repositories of learning objects.

Introduction

One direction for designing intelligent tutoring systems is
to make use of peer-to-peer assistance. Several researchers
have developed models that enable a student to learn on the
basis of feedback from peers (Read et al. 2006) or on the ba-
sis of the experiences that peers have had in learning similar
material (Vassileva 2008). Recently, McCalla has proposed
an ecological approach for the design of intelligent tutoring
systems (McCalla 2004) in which he advocates that student
learning be achieved on the basis of the experiences of pre-
vious students but in a way that evolves over time, as the
students themselves adjust with their learning.

Two central challenges in the design of intelligent tutor-
ing systems are compiling the material for the lessons and
determining the best methods to use, for the actual teaching
of those lessons. We observe in particular that it is desir-
able to provide a framework for determining the material to
be taught that does not rely on experts hand-coding all the
lessons. Indeed, that particular approach presents consider-
able challenges in time and effort.

We are therefore interested in making use of existing
repositories of information (books, webpages, etc.) towards
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the design of lessons for students. But we are also interested
in facilitating the learning of those lessons through peer in-
teractions. As such, we focus on the subtask of content se-
quencing and propose an algorithm for selecting appropriate
content (learning objects) to present to a student, based on
previous learning experiences of like-minded students. We
discuss how this model honours McCalla’s proposed ecolog-
ical approach for the design of intelligent tutoring systems.
Next, we introduce the methodology of simulating students
in order to illustrate the effectiveness of our particular ap-
proach. We then discuss the value of this particular method-
ology for validating intelligent tutoring systems in general.
We conclude with a comparison to existing research, includ-
ing existing peer-to-peer approaches, to demonstrate impor-
tant differences in our aims and our results.

Background
McCalla’s ecological approach to e-learning systems (Mc-
Calla 2004) is described as “attaching models of learners
to the learning objects they interact with, and then mining
these models for patterns that are useful for various pur-
poses.” Using techniques inspired by collaborative filtering,
the basis of this approach is to identify which users in a sys-
tem are similar to each other, to then preferentially recom-
mend learning objects that similar students have found use-
ful. Learning objects are used in the ecological sense, which
differs from the traditional usage of the term in that instead
of attaching static ontologies to objects as metadata, mod-
els of previous interactions (i.e. presenting learning objects
to students) are used in their place. These models are then
actively interpreted, with the meaning derived by real-time
processes, as information about the object is needed.

Since McCalla’s ecological approach is intended to pri-
marily be a general philosophy for designing intelligent sys-
tems, individual researchers need to then create their own al-
gorithms and systems to embody this approach. This paper
is an effort to do so for the problem of content sequencing,
explored through a framework of simulated students.

Our Approach
Our proposed algorithm for determining which learning

objects to present to students is presented in Algorithm 1.
We assume that we are tracking a set of values, v[j,l], repre-
senting the benefit of the interaction for user j with learning
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Algorithm 1 Pseudocode For Collaborative Learning Algorithm
Input the current-student-assessment
for each learning object: do

Initialize currentBenefit to zero
Initialize sumOfBenefits to zero
Input all previous interactions between students and this learning object
for each previous interaction on learning object: do

similarity = calculateSimilarity(current-student-assessment, interaction-initial-assessment)
benefit = calculateBenefit(interaction-initial-assessment, interaction-final-assessment)
sumOfBenefits = sumOfBenefits + similarity * benefit

end for
currentBenefit = sumOfBenefits / numberOfPreviousInteraction
if bestObject.benefit < currentBenefit then bestObject = currentObject

end for
if bestObject.benefit < 0 then bestObject = randomObject

object l. v[j,l] is determined by assessing the student before
and after the interaction, and the difference in knowledge is
the benefit. We also record for each learning object the pre-
vious interactions of students with that object, in terms of
their initial and final assessments.1 We assume that a stu-
dent’s knowledge is assessed by mapping it to 18 concrete
levels: A+, A, A-, ... F+, F, F-, each representing 1

18 th of the
range of knowledge.

The anticipated benefit of a specific learning object l, for
the active user, a, under consideration would be: 2

p[a, l] = κ
n∑

j=1

w(a, j)v(j, l) (1)

where w(a,j) reflects the similarity ∈ (0,1] between each
user j and the active user, a, and κ is a normalizing factor.
1
|n| was used as the value for κ in this work where n is the
number of previous users who have interacted with learning
object l. w(a,j) was set as 1

1+difference where difference is
calculated by comparing the initial assessment of j and the
current-student-assessment, and assigning an absolute value
on the difference of the letter grades assigned. So the dif-
ference of A+ and B- would be 5 and the difference of D+
and C- would be 1. This is shown as the calculateSimilarity
function in Algorithm 1.

v(j,l) is also computed using a difference, not an absolute
difference but an actual difference (between the initial and
final assessments). For example, v(j,l) where j is initially
assessed as A+ and finally assessed at B- would be -5, while
where j is initially assessed at B- and finally assessed at A+
would be 5. This is shown as the calculateBenefit function
in Algorithm 1.

In the absence of other criteria, a user a will be assigned
the learning object l that maximizes p[a,l]. In the case that
the maximum p[a,l] is a negative anticipated benefit, a ran-
dom learning object will be assigned to the user.

1The algorithm would be run after an initial phase where stu-
dents are learning through the use of a set of learning objects.
These students’ experiences would then form the basis for instruct-
ing the subsequent students.

2Adapted from (Breese, Heckerman, and Kadie 1998)

Example

Here we provide a simplified example for illustration. Sup-
pose we track each learning object, LO with [index, [Studen-
tID, initial assessment], [final assessment]]. After multiple
interactions with 3 students, S1, S2 and S3:

LO[1; S1(B,C), S3(B,A+)] LO[4; S1(C,A-), S2(B,B)]
LO[2; S1(A,A), S3(C,A-)] LO[5; S3(C+,B)]
LO[3; S2(B-,A)]

At this point the system is slightly positive on the benefit
of LO[1] for B students (because one time it raised a stu-
dent to A+, and another time it lowered a student to C). It
is neutral on LO[2] for A students (the lesson didn’t change
the student’s assessment), and very positive for C students
(since it raised a C student to an A-). Similarly LO[3] is
good for B- students, LO[4] is very good for C students and
neutral for B students, and LO[5] is good for C+ students.

Suppose the system were now considering which les-
son to recommend for a student, S4, with current-student-
assessment of B+. Per Eq. (1), it would consider LO[1] to
have a currentBenefit of ( 1

1+1 × -3 + 1
1+1 ×4) ÷ 2 = 0.25,

LO[2] a currentBenefit of ( 1
1+2 × 0 + 1

1+4 ×5)÷ 2 = 0.67,
LO[3] a currentBenefit of 1

1+2 × 4 = 1.33, LO[4] a current-
Benefit of ( 1

1+4 × 5 + 1
1+1 ×0)÷ 2 = 0.5 and LO[5] a cur-

rentBenefit of 1
1+3 × 2 = 0.5. In this situation, LO[3] would

be recommended. After the system’s interaction between S4
and LO[3] there will be more information to reason about
with future students. The next B+ student will be assigned
to LO[3] if S4 has a positive experience, but will instead be
assigned to LO[2] if S4 has a neutral or negative experience
with LO[3]. This assumes that no additional students use
these learning objects in between S4’s interactions.

Validation of Approach

Experimental Setup

In order to simulate the learning achieved by students, we
used the following approach. Let UK[j,k] represent user j’s
knowledge of k ∈ K, such that UK[j,k] ∈ [0,1]. In the con-
text of this work what “knowledge” means will be abstract.
As most readers will be familiar with a typical computer sci-
ence undergraduate curriculum, a concrete example from a
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computer science 101 course would be a knowledge of re-
cursion currently recorded to be at 0.67. This would be in-
terpreted as the student has an understanding of 67% of the
course content dealing with recursion.

Let LOK[l,k] represent some learning object l’s target in-
struction level of knowledge k, such that LOK[l,k] ∈ [0,1].
Viewing this more concretely, say a specific learning object
is a 90 minute lab where students work at a computer on
a set of exercises designed to broaden their understanding
of recursion. The students have used recursion on lists and
lists of structures; however in this lab they are required to
apply recursion to solve mathematical problems, such as de-
termining whether a number is prime. The target instruction
level might be 0.68 since the students have a fairly detailed
understanding of recursion, reinforced by 2 previous labs on
the subject, but are still gaining an understanding of the nu-
ances of the subject, and how to apply it to real world and
mathematical problems.

Learning objects also have an impact, which can be pos-
itive or negative. The negative impact was introduced to
simulate the possibility of misinformation from a poor qual-
ity learning object or a learning object that does a good job
teaching one concept, while undermining the understanding
of another concept.

Let I[l,k] ∈ R , represent the impact of learning from
learning object l on the knowledge k, that is, in the optimal
case how much the learning object can adjust a student’s
knowledge k. The impact can be thought of as, for a student
at the target level, what is the expected learning benefit of the
object. This is information used by our approach to simulate
the learning that is occurring. For the example of the lab that
targets students with an understanding of 0.68 in recursion,
perhaps the 90 minute lab is expected to improve this under-
standing by 0.11 to a 0.79 understanding of recursion and
subsequent labs, lectures and assigned readings over the rest
of the term are intended to bring the students to a knowledge
level of 1.0.

After an interaction with an object l, a user j’s knowledge
of k

ΔUK[j,k] =
I[l, k]

1 + (UK[j, k] − LOK[l, k])2
(2)

This has the implication that the impact of a lesson is at a
maximum when the student’s knowledge level matches the
target level of the learning object3. As the two values differ,
the impact of the lesson exponentially decreases. Two con-
crete examples might be a student who didn’t understand the
previous lab and skipped the recommended readings, and
therefore doesn’t have the necessary background to benefit
fully from the current lab on recursion, or a student who is
a self-taught programmer and had a deep understanding of
recursion before beginning the course. Since these two stu-
dents aren’t the target audience of the lab, it seems reason-

3This does not imply a desire to maximize performance as early
as possible. A high impact learning object may succeed in convey-
ing knowledge to a student by confusing them (for example). The
end result of this process will be an increase in understanding, i.e.
the increase in knowledge level represents.

able to expect that they won’t benefit as fully as the target
audience.

Based on this change, the user’s knowledge in that area is
updated as:

UK ′[j, k] = UK[j, k] + ΔUK[j, k] (3)
The user’s average knowledge can then be calculated as:

UK[j] =
1
|K|

∑

k∈K

UK[j, k] (4)

Testing Our Approach

For our experiment, variable numbers of simulated students
and a static set of learning objects were allowed to interact
over a set number of trials, arbitrarily chosen as 100. Each
simulated student was randomly assigned values for each of
6 knowledges, each evenly distributed in the range [0,1]. A
multi-dimensional structure for knowledge was used to en-
sure randomly generated students were distinct from one an-
other, and to provide a rich model for simulated learning.
In a real world context, this can be thought of as students
with a better understanding of one part of a course of study
compared to another part of the same course. Each learn-
ing object was randomly assigned a value for the target level
of instruction for each knowledge, evenly distributed in the
range [0,1]. Impact values were assigned to learning object
knowledges, randomly and evenly distributed in the range
[-0.05, 0.05]. The values of -0.05 and 0.05 were chosen such
that no single learning object could radically change a user’s
knowledge level (at most it can adjust it by 5%).

Each experimental condition was repeated for 20 itera-
tions, and the mean of the average knowledges of all stu-
dents after each trial was graphed (see Results). In this con-
text, the average knowledge might be thought of as, if a final
mark for the CS 101 course was to be assigned to a student
based on their current understanding of the course content,
what would it be? A student’s final mark will be based on
their knowledge of a number of areas, such as introductory
data structures, recursion, sorting, introductory proofs, and
programming in a specific language.4 In order to explore the
value of our approach, we graph the performance of several
algorithms to select a learning object for each student, over
a number of trials. After each trial, the average knowledge
under each condition is compared.

Random Association: Two reference points were created
to compare our approaches against. One reference was cre-
ated by associating each student with a randomly assigned
learning object each trial. Given that any intelligent ap-
proach to matching students with objects should outperform
blind chance, this was viewed as the lower limit.

Greedy God: The other reference point, the greedy god
reference point, was created by giving the algorithm full ac-
cess to the fine-grained knowledge levels of the students and
learning object, testing what the outcome would be for ev-
ery possible interaction, then choosing the best interaction

4We make the simplifying assumption that all knowledges con-
tribute equally to this progress assessment and calculate it as the
average knowledge.
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for each student for each trial. The results, based on an om-
niscience not typically available in real world learning envi-
ronments, was viewed as a ceiling on the possible learning
benefit of any approach.

The impact values and target levels of objects are used for
the reasoning of the greedy god algorithm. In contrast, for
the following three algorithms, our ecological approach is
used to select the learning objects to be presented to users
(so based on their similarity to previous students who have
experienced these objects and on the benefit that these stu-
dents derived). We assume that as each simulated student
is assigned a learning object, that student’s interaction with
the object can be used as the “previous experience” to which
subsequent students are matched. Using our ecological ap-
proach, learning objects presented to students should end
up being ones that have an effective combination of impact
value and target level (i.e. beneficial to those previous users
and at a somewhat similar level of knowledge).

Raw Ecological: For the raw ecological approach, 3 tri-
als were run where each student was randomly assigned to
a learning object. For the remaining 97 trials, each student
was matched with the learning object best predicted to ben-
efit her knowledge, as detailed in Algorithm 15. The initial
three trials with random associations were used to provide
rough information about the learning objects and students,
which was used and refined over the course of the remaining
trials.

Pilot Group: For the pilot group ecological approach, a
subset of the students (10%) were assigned as a pilot group,
and for their 100 trials were systematically assigned to learn-
ing objects to explore their impact. These interactions, along
with the accumulation of their own interactions, were used
by the remaining 90% of the students to reason about the
best sequence using Algorithm 1.

Simulated Annealing: Our third ecological approach
was inspired by simulated annealing, which in turn was in-
spired by the metallurgical approach of heating and cooling
to induce change in a material. For this approach, we had a
“cooling” period, which was the first 1/2 of the trials. During
this period, for every student, there was an inverse chance,
based on the progress of the trials, that they would be ran-
domly associated with a lesson; otherwise, the ecological
approach detailed in Algorithm 1 would be applied. For ex-
ample, in the first trial, every student would be randomly
associated with a learning object, but by the 25th trial, each
lesson would have a 50% chance of being randomly asso-
ciated. After the cooling period was over (the 50th trial),
every student was repeatedly assigned to a learning object
by ecological reasoning.

Results

As seen in Figure 1, the random associations of students
with learning objects is clearly and consistently shown to

5Since each student’s knowledge is now multi-dimensional the
difference calculated to determine benefit is now a sum of the dif-
ferences of each knowledge dimension. The numeric values for
knowledge are converted to one of the concrete letter grade levels
before performing the computation.

be an inferior approach to improving the average knowledge
of a group of students, as expected. Similarly, an omniscient
sequencer using perfect knowledge of students, learning ob-
jects and the outcome of a potential interaction (greedy god)
can consistently produce the greatest learning benefit.

Contrasting our ecological techniques (which would each
be feasible in a real educational setting) with these reference
points, provides illumination on the usefulness of the eco-
logical approach in this setting. Reasoning intelligently, in
this manner, has produced greater knowledge in a shorter
number of trials for the group of students as a whole com-
pared to a random association.

As asserted by (McCalla 2004), we see his predicted im-
pact that with more learners the ecological approach’s per-
formance improves. A correlation of improved performance
with an increase in number of learning objects was also seen.
This makes intuitive sense: if an intelligent tutoring system
(ITS) is given a larger repository of learning object to assign,
we would expect it to be able to find objects better suited to
a particular student.

While Figure 1 seems to show superior performance of
the ecological approach with a pilot group, it is important to
remember that 10% of the class was used as a pilot group for
this experimental condition. These were not included in the
average assessed knowledge. Their increased knowledge,
which would be roughly equivalent to the lack of increase
shown by random associations, is omitted and the improved
performance of the remaining students can be viewed as at
the expense of the pilot group.

The “Simulated Annealing” technique was interesting as
it underperformed the other two techniques during its “cool-
ing period” but quickly gained ground after the cooling pe-
riod was complete. This is due to the randomness added to
the during the cooling period leading to a greater exploration
of the possible interactions between learning objects and stu-
dents. This improved understanding of the two groups could
then be used when reasoning about which students to match
with which learning objects in later trials. In the largest con-
dition (50 students and 100 learning objects), simulated an-
nealing matched the performance of the pilot group condi-
tion, without sacrificing 10% of the class. With the correct
choice of cooling periods, this technique shows promise for
delivering comparable long term performance at the expense
of early progress for the entire group instead of no progress
for a pilot group.

Discussion

In this paper, we have proposed an algorithm to select learn-
ing objects to present to students, based on the previous
experiences of other, similar students. As such, the tu-
toring of each new student can be viewed as peer-based,
to the extent that student learning is enabled by previous
peer interactions. Other researchers have explored a peer-
based approach to intelligent tutoring. For example, the
COMTELLA project at the University of Saskatchewan in-
vestigated recommendation of academic papers and similar
resources. In the early phases of the work (Vassileva 2008)
there was difficulty in getting users to accurately provide
metadata when entering papers in the system. Subsequent
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Figure 1: Comparison of 5 Approaches to Sequencing Learning Objects

work (Cheng and Vassileva 2006) has focused on providing
incentives to encourage users to interact positively with the
system. In contrast, our work avoids soliciting explicit feed-
back, and reasons based on typical usage.

Another example of peer-based learning is that of
(Labeke, Poulovassilis, and Magoulas 2008), which uses
collaborative filtering to match students based on their “life-
long learning”. Matching to similar users occurs based on
life events, such as a specific degree at a certain university
or working at a specific company. Their results are presented
transparently in a user centric approach where users can in-
vestigate the “trails” of similar users. Matching was done
by using string metrics where life events are encoded into
a token based string which is used to reason about similar-
ities between users. Our work is distinct from the above
approach, however, in a number of ways. Obtaining a his-
tory, and accurately categorizing a user’s life events, will be
a time consuming process that may be difficult to convince
users to undertake. In contrast, our approach uses typical
ITS interactions and doesn’t elicit anything specific from the
user. In their system user histories must be continually up-
dated, with the ongoing issue of out-of-date user profiles.
The data used by our system can be easily gathered in real-
time by usage of the system and will be as up-to-date as their
last usage of a learning object.

A different style of peer-based learning, called COPPER
(Read et al. 2006), approaches the problem of ICALL. It
intelligently matches students, and assigning them specific
roles for their interaction, through a Bayesian approach, and
allows them to help one another learn. Their approach could
easily be integrated with ours, where an interaction between
students is a learning object. While their approach is useful
in real-time, it doesn’t allow students to independently learn
from the experience of previous student interactions with the
system. Our system, in contrast, reasons using the entire
experiences of all previous students, not just the current, on-
line students.

In this paper, we have introduced experiments that simu-
late student learning, in order to validate our proposed model
for content sequencing in intelligent tutoring systems. Other
intelligent tutoring systems researchers have explored the
value of simulating students.

(VanLehn, Ohlsson, and Nason 1996) discusses the au-
thors’ experiences with simulated students and the methods
that can be used to assist in education. The authors claim that

this is useful not only for providing a collaborative learn-
ing partner for a student but also for instructional developers
to test systems that they develop, including early develop-
ment where trials with human students may not be feasible.
The authors highlight grain-size as an important spectrum
for considering simulated students. For example, an exam-
ple of fine-grained knowledge in physics is knowing the ex-
istence of tension in a string, when a string is tied to a body;
an example of large-grained knowledge in physics would be
simply knowing the law of conservation of energy.

Our system uses a granularity outside of this range, which
we would term coarse-grained. As an example, a student
might be modeled as having a 0.67, which could mean, for
instance, that the student has enough knowledge to receive
a 67% mark in Physics 101 or that they understand enough
knowledge to complete 67% of the projects.

(VanLehn, Ohlsson, and Nason 1996) also specifically
track and formally represent, for each student, their knowl-
edge before learning, the behaviour during the learning, the
instruction and the student’s knowledge after learning. In
contrast, we are interested in tracking behaviour with re-
spect to learning objects, and focus on modeling the stu-
dent’s knowledge before and after interactions with those
learning objects.

Another research group used what they call learning curve
analysis to analyze how their simulated student performed
(Matsuda et al. 2007). They measured the accuracy of pro-
duction rules, in terms of successfully matching a step in
solving the problem, compared to number of training prob-
lems or frequency of learning opportunities. We follow a
similar approach in the evaluation of our work, where we
use the resulting learning curves to contrast educational en-
vironments.

Conclusion and Future Work

In this paper, we have presented a concrete approach for se-
lecting content for students in environments that make use
of McCalla’s ecological approach to intelligent tutoring –
selecting learning objects based on other students’ previous
interactions. We make use of simulated students to verify
the value of our proposed approach.

Since a study based on simulated learning is not con-
firmed to reflect real world learning, we note that extrap-
olations of results beyond the context of our current work
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should be made carefully. However, in addition to being ex-
pensive to develop, ITS are expensive to evaluate (VanLehn,
Ohlsson, and Nason 1996). Our work should be viewed as
a benchmark of a concrete implementation of an ecologi-
cal approach to curriculum sequencing, as an overview for
an approach to perform an inexpensive first evaluation of an
ITS using a simulation, and as a suggestion for techniques
that may be useful for systems working with human stu-
dents. As such, our work serves to demonstrate the feasi-
bility and the value of using simulated students in the design
of an ITS.

There are obvious limits to how closely simulated stu-
dents can correspond to real learners. We have by neces-
sity been forced to omit issues such as learner motivation,
affect and other emotional considerations which occupy the
ITS research community. Yet, the abstractness of our model
allows us to take a broad perspective on interpreting interac-
tions, and the small impact derived from student interactions
with inappropriate objects can be viewed as the student re-
fusing to work with the object or quickly giving up on the in-
teraction. For future work, we would explore experimenting
with real students, to contrast those results with the results
obtained in this work. Other worthwhile future work would
include comparing and contrasting the impact of variations
on the algorithm used to model learning, within our simula-
tions. Several of these variations are discussed below.

Learning Models: Consider different models for learn-
ing, such as (Ohlsson 1993; VanLehn 1990), when simu-
lating the interaction between learning objects and students.
This would allow both our simulation approach to be consid-
ered from the perspective of various learning theories, and
to provide an initial assessment of the impact of an ecologi-
cal approach to systems built based on these descriptions of
learning.

The Cold Start Problem: Investigate various initial con-
ditions and the impact on system calibration. E.g. Expose all
students to the entire system vs. some students to the entire
system, vs. some students to part of the system, vs. all stu-
dents to part of the system vs. known students to the entire
system. Perhaps if exposing students to part of the system,
investigate different “growth rates” of incorporating the rest
of the system into the “active lessons”.

Repository: Connected to the cold start problem, inves-
tigate techniques for using a repository of information, such
as a collection of instructional videos or multiple recom-
mended texts on a subject as a basis for automatically gen-
erating the core of an ITS.

Annotations: Model the impact of simulating students
while allowing annotation of learning objects. These
student-made modifications to the lesson will be intelli-
gently shown (or not shown) to future students to adjust
their learning. This will be validated using the simulation
approach presented in this paper.

Curriculum Sequencing: Look at the raw ecological, pi-
lot group and simulated annealing techniques and their im-
pact on curriculum sequencing. After a group of students
have used the system extensively, it should be possible to
extract “stereotypes”. By looking at the recommended se-
quence, it should be possible to take a student from the be-

ginning of the course to the end with an automatically gener-
ating curriculum for future students who fit that stereotype.

Scaling: Look at how the system (and its growth) changes
as more students and/or learning objects are added.

Another thread for future research is to expand our al-
gorithm to include other modeling of learners and learning
objects to determine characteristics of both that can be used
to influence which object to present.

Acknowledgements

Thanks to Simina Brânzei and Lachlan Dufton for help-
ful advice and to NSERC’s Strategic Networks of Research
hSITE project for funding.

References

Breese, J. S.; Heckerman, D.; and Kadie, C. 1998. Empirical
analysis of predictive algorithms for collaborative filtering.
43–52. Morgan Kaufmann.
Cheng, R., and Vassileva, J. 2006. Design and evalua-
tion of an adaptive incentive mechanism for sustained ed-
ucational online communities. User Model. User-Adapt. In-
teract. 16(3-4):321–348.
Labeke, N.; Poulovassilis, A.; and Magoulas, G. 2008. Us-
ing similarity metrics for matching lifelong learners. In ITS
’08: Proceedings of the 9th international conference on In-
telligent Tutoring Systems, 142–151. Berlin, Heidelberg:
Springer-Verlag.
Matsuda, N.; Cohen, W. W.; Sewall, J.; Lacerda, G.; and
Koedinger, K. R. 2007. Evaluating a simulated student us-
ing real students data for training and testing. In Conati, C.;
McCoy, K. F.; and Paliouras, G., eds., User Modeling, vol-
ume 4511 of Lecture Notes in Computer Science, 107–116.
Springer.
McCalla, G. 2004. The ecological approach to the design of
e-learning environments: Purpose-based capture and use of
information about learners. Journal of Interactive Media in
Education: Special Issue on the Educational Semantic Web
7:1–23.
Ohlsson, S. 1993. The interaction between knowledge and
practice in the acquisition of cognitive skills. In Meyrowitz,
A., and Chipman, S., eds., Foundations of knowledge ac-
quisition: Cognitive models of complex learning. Norwell,
Massachusetts, USA: Kluwer Academic Publishers. 147–
208.
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