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Abstract 
This paper describes a class project to introduce machine 
learning topics to an introductory artificial intelligence 
course as part of the MLExAI Project.  The project’s topic 
was taken from the area of computer vision, specifically the 
use of principal component analysis for image 
classification.  As a project within their AI class, students 
developed programs in the GNU Octave programming 
environment that successfully classified images of hands 
signing letters from American Sign Language according to 
the letter being signed.  Based on surveys and analysis of 
course examinations, we found that students enjoyed and 
were motivated by the project, and the project seemed to 
enhance their learning of machine learning concepts. 

Introduction   

Today’s students are visual and media-oriented, accounting 
for the success of the media computing approach to 
introductory computer science (Rich, Perry and Guzdial, 
2004; Sloan and Troy, 2008). Students in upper-division 
courses continue to find working with images and other 
media quite motivating. For example, graphics and gaming 
courses are among the most popular computer science 
electives at many colleges and universities, including our 
own. Since many approaches to computer vision now use 
machine learning techniques (Sebe et. al., 2005), adapting 
a computer vision problem for a machine learning project 
in Artificial Intelligence (AI) is a natural fit.  This paper 
describes a group term project in which students in an 
undergraduate, introductory artificial intelligence course 
developed programs that applied the technique of Principal 
Component Analysis (PCA) to the problem of recognizing 
sign language letters in images.  
 The sign language recognition project was developed 
within Project MLExAI:  Machine Learning Experiences 
in Artificial Intelligence (Russell and Markov, 2009).  
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Project MLExAI is a framework for teaching core AI 
topics within introductory artificial intelligence courses 
through a unifying theme of Machine Learning. Each 
project involves the development of a machine learning 
system in a specific application. The applications span a 
large area including network security, recommender 
systems, game playing, intelligent agents, computational 
chemistry, robotics, conversational systems, cryptography, 
web document classification, vision, data integration in 
databases, bioinformatics, pattern recognition, and data 
mining. A pilot project (Markov et. al. 2005; Russell et. al, 
2007) showed that students were more motivated in their 
AI classes when topics were tied to a concrete, hands-on 
project.  

Background 

The course, Introduction to Artificial Intelligence at our 
college is an undergraduate course open to all students who 
have completed at least one programming course and a 
short course in Lisp.  Although Data Structures is not a 
formal requirement for entry into the course, we strongly 
recommend it, and all of the students who took Artificial 
Intelligence in Spring 2009 had taken Data Structures. 
before These students range from sophomores to seniors; 
in Spring 2009, there were 2 sophomores, 5 juniors and 5 
seniors.  Students’ mathematical background varied 
widely, but most had not taken a course with the necessary 
prerequisite mathematics; only two had taken a college-
level statistics course, and only one student had a prior 
course in linear algebra.  Therefore, mathematical topics 
including aspects of linear algebra and statistics, were 
introduced in class as needed for the project.  
 In the past, the course had been taught using an agent 
theme, fairly closely following the outline of the textbook 
by Russell and Norvig (2003).  We began with an 
overview of agents, then covered search, logic and 
inference, planning, and reasoning under uncertainty 
before covering learning almost at the end of the course.  
Students were often disappointed by the fact that machine 
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learning was one of the topics that attracted them into the 
course, but it was delayed so long that there was not 
enough time to really get into it. 
 To incorporate the project, we moved learning much 
earlier in the course, between search and logic.  Except for 
the difference in ordering and the additional emphasis on 
learning, roughly the same topics were covered.  The 
project was carried out in five phases (labeled Phase 0 to 
Phase 4), listed in Table 1.  While students were working 
on one phase of the project, the class moved on to new 
material.  Project phases 3 and 4 were carried out while 
topics after learning were covered during the lecture 
portion of the course. 
 Typically, there had been four programming 
assignments in the course, each taking roughly 25% of the 
semester, along with smaller problem sets, no more than a 
week in duration. The first of these projects, implementing 
a heuristic search in Lisp, was retained in the revised 
course.  This project took advantage of the students’ prior 
experience with the language and environment. The 
remaining three projects were replaced by the multi-phase 
sign language recognition project and a short assignment 
that required students to represent a simple world in both 
Prolog and CLIPS. 

Object Recognition using Principal 
Component Analysis 

The main techniques in the project were inspired by the 
seminal work on Eigenfaces by Kirby and Sirovich (1990).  
In this work, a system was trained to recognize faces using 
Principal Component Analysis (PCA).  In our project, 
images of a hand signing a letter from American Sign 
Language were used instead.   The image is cropped to a 
standard size, with the hand taking up the large majority of 
the image.  Images have a uniformly black background.  
(See Figure 1).   
 Initially, each pixel of the image is considered to be a 
single feature, so an image with M rows and N columns 
image would have MN numerical features.  These features 
form a high-dimensional feature space.  PCA chooses a 
new set of axes to span the space, creating a new set of 
features that better describe the training images.  Each of 
the new features is a linear combination of image pixel 
values.  
 The features chosen by PCA are actually the 
eigenvectors of the covariance matrix of the original 
image. These features can be sorted by their associated 
eigenvalues, in that the eigenvector with the highest 

eigenvalue explains the most variation in the image.  A 
relatively small subset of these eigenvectors is a sufficient 
set of features for classification.   
 To determine the feature’s value for an image, the image 
is normalized and then multiplied (as a vector dot product) 
with the eigenvector representing the feature. The features 
for each of the training examples are stored, and features 
for a test image are computed.  Various techniques can 
then be used to select the best label for the test image.  We 
use a simple nearest-neighbor classifier, i.e. the test image 
is classified with the same label as the training image 
whose feature vector is nearest (using a Euclidean distance 
measure) to the test image.  An appropriate extension of 
the project would be to ask  
 A key advantage of using an image processing problem 
as a machine learning example is that the intermediate 
results can easily be visualized.  Each element of an 
eigenvector represents a coefficient on a single image 
pixel.  Displaying the eigenvector as an image (so that the 
first row is the first M values, the second row is the second 
M values, etc.) provides a clear indication of the relative 
importance of the pixels (and whether they are expected to 
be positive or negative) in the feature.  In fact, each feature 
can be intuitively considered as a template image to be 
matched.   
 Images that are generated from high-eigenvalue features 
tend to highlight features that humans find useful in these 
very structured images, while images that are generated 
from low-eigenvalue features look like noise to humans.  
This is illustrated in Figure 2.  Image (a) is the second-

    
 (a) letter A (b) letter E 

Figure 1:  Sample Training Images 
 

  
 (a) 2nd eigenvalue (b) 1000th eigenvalue 

Figure 2:  PCA Features 

Phase Topic 
0 Introduction to Classification 
1 Image Representation & GNU Octave 
2 PCA Feature Extraction (Training) 
3 Letter Recognition (Testing) 
4 Evaluation and Reporting 

Table 1: Overview of the Sign Language Assignment 
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highest eigenvalue for one set of training data.  It looks like 
a bright E with a shadowy A behind it.  When this is 
multiplied by an image, it will distinguish E-like images 
from A-like images.  Image (b) is the thousandth-highest 
eigenvalue from the same data set.  It appears to be making 
distinctions on a pixel-by-pixel basis, and it is not at all 
intuitive what these pixels mean.  Therefore, students 
working with these images can clearly see the relationship 
between eigenvalues and features, and can also gain 
intuition about the meanings and effects of these numerical 
vector features.  
 For images that are structured as these are (similar size 
and shape object against contrasting background), a subset 
of the high-eigenvalue features is generally sufficient 
information to perform classification on.  Another use for 
these features is for a form of lossy image compression, 
though we did not investigate this in the assignment. 

The Class Project 

The overall goal of the project was for students to classify 
images such as those in Figure 1 according to the letter 
being signed in each image.  To do this, students extracted 
appropriate PCA features from a training set of images, 
and then used nearest-neighbor classification to select a 
letter for each test image.  Such a system might be used 
within a larger system for automatically captioning sign 
language videos, for example.  As a result of this 
experience, we expected the students to satisfy the 
following learning objectives: 

• Learning basic concepts of object recognition in 
computer vision 

• Becoming familiar with the concepts of feature 
spaces and classification 

• Becoming familiar with the techniques of PCA  

• Gaining experience analyzing experimental results 
 Each of the phases of the project had its own 
deliverables.  A detailed project assignment document and 
a set of images for the five vowels can be found at web-
sites http://cs.hiram.edu/~walkerel/RASLUPCA.pdf and 
http://cs.hiram.edu/~walkerel/cs386/letter images.zip, 
respectively. Phases 0 and 1 were individual assignments, 
and the remainder of the assignment was done in groups. 

Phase 0: Introduction to Classification 
The first introduction to project-related ideas was a lecture 
on classification in general, training and testing methods, 
and the importance of finding good features.  This was 
followed up by a paper-and-pencil classification activity, 
which was phase 0 of the project.  The activity required 
students to experiment with a simple set of features for 
classifying hand-drawn letters of the alphabet, and to 
evaluate the feature set and suggest improvements. 

Phase 1: Image Representation and GNU Octave 
Phase 1 of the project introduced images, their 
representation, and the programming environment that 
would be used for all image and matrix manipulation.  For 
this phase, each student had to perform some simple image 
manipulations, such as reading, averaging and displaying 
images using GNU Octave (Eaton 2006), a free tool that is 
compatible with Matlab. This phase was done individually 
to ensure that all students were familiar with the Octave 
tool.  Figure 3 shows a function that a student might write 
during this phase. 
 Most engineering schools use Matlab throughout their 
curriculum, and it becomes a tool that students use 
throughout their careers.  Computer science programs 
housed in liberal arts schools are less likely to have this 
tool available, due to its cost.  The GNU Octave tool 
allows students to perform numerical computations 
through a command-line interface, as well as to write 
functions of their own.  These functions are compatible 
with Matlab. Along with another piece of software, 
ImageMagick (ImageMagick Studio, 2009), GNU Octave 
allows students to read and write images, converting them 
into 2D matrices.  GNU Octave also provides linear 
algebra functionality; most importantly for our purposes, it 
includes functions for the extraction of eigenvectors and 
eigenvalues from 2D matrices.   
 While students were working on phase 1, class time was 
spent introducing the necessary mathematical background 
for the next phase (matrix multiplication, statistical 
variance and co-variance, and an intuitive explanation of 
eigenvectors and eigenvalues). Additionally, students read 
and discussed two web tutorials on PCA (Smith, 2002;  
Shlens, 2005).  By the time students had completed phase 
1, they had the information that they needed to begin on 
phase 2. 
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Figure 3: Reading and Averaging Images 
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Phase 2: Feature Extraction 
In phase 2, students worked in small groups of 2 or 3 to 
implement the PCA method described by Kirby and 
Sirovich (1990) for feature extraction for face recognition 
as a sequence of Octave functions.  This included finding 
the average image and normalizing all data, computing the 
covariance matrix and its eigenvectors, sorting the 
eigenvectors by eigenvalue, and choosing a subset of 
eigenvectors for their features.   
 Phase 2 was very challenging for students, since it 
required them to use unfamiliar techniques and an 
unfamiliar tool. Students were strongly encouraged to 
display and verify their results at each step of the process, 
and these visualizations helped them understand the 
project, as well as debug their functions.  At the end of this 
phase, each team had a set of features to carry forward into 
phase 3. 

Phase 3: Letter Recognition 
The letter recognition phase required each team to develop 
a database of features from the training examples and write 
functions to extract features from a new image and find the 
nearest training example in the feature space.  The result is 
correct if the training example and the test example are 
images of the same letter. 
 Figure 3 shows a screenshot of a portion of one team’s 
results.  The first example shows that test image I27 was 
closest to training image I16, and that test image I28 was 
closest to training image I24. Because each training and 
test sample was named with its letter e.g. A2, I27), a 
successful recognition retrieves an image with the same 
initial letter in its name. In both cases in the example 
screenshot, the unknown sign was correctly classified as 
the letter I. 
 Due to time pressure, the feature vectors were stored in 
an array and all teams used a simple sequential search to 
find the closest image in feature space.  Given more time, 
this phase could involve developing more efficient search 
structures, or possibly doing some feature clustering to 
limit the number of comparisons.  

Phase 4: Evaluation and Reporting 
In the final phase of the project, student teams trained their 
systems on data subsets of different sizes, then tested on 
the remaining data.  Each group produced a report 
describing all the functions that they had written, the 
decisions that they made in choosing features (e.g. how 

many features to choose based on the sequence of 
eigenvalues), and the results of their testing.  Students 
chose from three to ten eigenvalues, and all teams achieved 
greater than 80% success on test data. 
 The rigor of reporting was somewhat disappointing, 
mainly due to insufficient instruction, but also because of 
time limitations.  In the future, n-fold cross-validation 
(Devroye, et. al., 1996) will be taught and required.  Using 
the same measure of success, teams can easily see how 
their results compare to their classmates’.  This comparison 
will be enhanced by requiring in-class oral presentations 
for all students, for which time was not allotted this year. 

Evaluation 

In Spring 2009, twelve students, comprising six teams, 
completed the project.  Every student filled out a post-
project survey asking about their attitudes regarding the 
project, artificial intelligence, and machine learning as a 
result of the project.  In addition, we analyzed specific 
questions from the midterm and final exams to gauge 
student learning related to the objectives of this project. 
 Generally, the survey results were very positive.  In 
reporting details of the survey results, the number listed in 
parentheses is the total number of students who selected 
“Agree” or “Strongly Agree” for each statements.  There 
were 12 total surveys, and all questions were answered on 
each.  
 Students seemed to generally like the project.  They felt 
the student project was interesting to work on (10), that the 
level of difficulty was appropriate (10) and (surprisingly, 
considering the grumbling) that it took a reasonable 
amount of time to complete (10).  They also self-reported 
that the project contributed to their understanding of course 
material (9), and that it was an effective way to introduce 
machine learning concepts (11).  Finally, students reported 
that they had a positive experience in the course (10). 
 With regard to content, the students said that after the 
course, they had a good understanding of the fundamental 
concepts of Artificial Intelligence (12) and of Machine 
Learning (10).  They believed that the problem solving 
techniques that were covered in the course were valuable 
(11) and that they had a firm grip of these techniques (10).  
They are confident that they can identify opportunities to 
apply the techniques (9) and that they could apply them to 
different problems (9). 
 To determine how well students learned the portion of 
the course about machine learning, we examined their 

 
Figure 4:  Classification Result 
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second midterm exam, of which 50 points were from 
questions directly related to learning.  One question (15 
points) specifically required students to apply what they 
had learned in the project  giving them a set of data, and 
asking qualitative questions about variance, covariance, 
and nearest neighbor classification.  The median score of 
the 12 students on this problem was 12 / 15, and 4 of the 
12 students received a perfect score of 15.   
 The other three machine learning questions asked about 
decision trees, neural networks, and version space learning. 
Considering all four questions together (50 total points), 
the median machine-learning subscore was 39.5 / 50, or 
79%.  This compares to an overall test median of 65.5%.  
Although our sample is too small to make any statistical 
claims, this result is suggestive that the project was 
successful in helping students learn the machine learning 
topics, even those that were not directly utilized in the 
project.   
 We also looked at the final exam of the last Artificial 
Intelligence course taught before the machine learning 
project was added.  In this class, machine learning topics 
(decision trees and neural networks) were covered in a 20-
point question on the final exam, taken by 14 students.  
The median score on this question was 8 / 20, or only 40%. 
Again, we cannot draw any statistically significant 
conclusions, as the question itself was different and the 
student populations were not matched, but our result is 
suggestive that the class with the machine learning project 
retained more knowledge about machine learning than the 
class where no machine learning project was given.   
 Finally, we can report an anecdotal experience that 
shows the value of the project for one student who was in 
the class.  This student participated in an undergraduate 
summer research experience at an engineering school.  Part 
of his project was to adapt and modify Matlab code.  He 
was able to hit the ground running, because “Matlab is just 
like Octave.”  Writing in more detail about his project, he 
indicated that he understood what he had done in class, and 
how it could be applied in the future:  “Anyway, this 
project reminded me of the image recognition project we 
did in AI and I was thinking of using the same approach 
for our needs. … Taking into consideration that we identify 
the most important features of say, [sound X vs. sound Y], 
by finding those with higher eigenvalues, would it be 
possible to identify the source of those features in the 
sound rather than evaluating and sorting ALL of the 
features present, thus speeding up the process?”  
 The student went on to comment about the need to 
isolate the relevant part of the sound (similar to cropping 
the image), and offered relevant considerations about the 
processing time.  The student’s ability to jump into a new 
task, recognize the general pattern of classification, and his 
appropriate consideration of adaptations of the method he 
had learned in his project, indicates that the project has 
succeeded in one of its primary goals  to prepare students 
to appropriately use machine learning techniques for novel 
problems.  

 Conclusion 

We have developed a student project for the introductory 
artificial intelligence course where students apply Principal 
Component Analysis (PCA) to the problem of recognizing 
American Sign Language letters from images.  Using the 
GNU Octave tool, students normalize the images, compute 
the covariance matrix, extract eigenvectors and rank them 
by their eigenvalues, choose a subset of the eigenvectors as 
features, and then use these features to classify novel 
images. 
 The project was piloted in a class of 12 students in 
Spring 2009.  Surveys indicated that students were 
engaged in the activity, and that they felt the project was an 
effective introduction to machine learning concepts.  
Students also self-reported that they had a good grasp of 
the concepts of machine learning, and this was borne out in 
their exam results.  
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