
Recognizing American Sign Language Letters: A Machine Learning

Experience in an Introductory AI Course

Ellen L. Walker

Department of Computer Science
Hiram College

Hiram, OH, 44240

walkerel@hiram.edu

Abstract
This paper describes a class project to introduce machine
learning topics to an introductory artificial intelligence
course as part of the MLExAI Project. The project’s topic
was taken from the area of computer vision, specifically the
use of principal component analysis for image
classification. As a project within their AI class, students
developed programs in the GNU Octave programming
environment that successfully classified images of hands
signing letters from American Sign Language according to
the letter being signed. Based on surveys and analysis of
course examinations, we found that students enjoyed and
were motivated by the project, and the project seemed to
enhance their learning of machine learning concepts.

Introduction

Today’s students are visual and media-oriented, accounting
for the success of the media computing approach to
introductory computer science (Rich, Perry and Guzdial,
2004; Sloan and Troy, 2008). Students in upper-division
courses continue to find working with images and other
media quite motivating. For example, graphics and gaming
courses are among the most popular computer science
electives at many colleges and universities, including our
own. Since many approaches to computer vision now use
machine learning techniques (Sebe et. al., 2005), adapting
a computer vision problem for a machine learning project
in Artificial Intelligence (AI) is a natural fit. This paper
describes a group term project in which students in an
undergraduate, introductory artificial intelligence course
developed programs that applied the technique of Principal
Component Analysis (PCA) to the problem of recognizing
sign language letters in images.
 The sign language recognition project was developed
within Project MLExAI: Machine Learning Experiences
in Artificial Intelligence (Russell and Markov, 2009).

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Project MLExAI is a framework for teaching core AI
topics within introductory artificial intelligence courses
through a unifying theme of Machine Learning. Each
project involves the development of a machine learning
system in a specific application. The applications span a
large area including network security, recommender
systems, game playing, intelligent agents, computational
chemistry, robotics, conversational systems, cryptography,
web document classification, vision, data integration in
databases, bioinformatics, pattern recognition, and data
mining. A pilot project (Markov et. al. 2005; Russell et. al,
2007) showed that students were more motivated in their
AI classes when topics were tied to a concrete, hands-on
project.

Background

The course, Introduction to Artificial Intelligence at our
college is an undergraduate course open to all students who
have completed at least one programming course and a
short course in Lisp. Although Data Structures is not a
formal requirement for entry into the course, we strongly
recommend it, and all of the students who took Artificial
Intelligence in Spring 2009 had taken Data Structures.
before These students range from sophomores to seniors;
in Spring 2009, there were 2 sophomores, 5 juniors and 5
seniors. Students’ mathematical background varied
widely, but most had not taken a course with the necessary
prerequisite mathematics; only two had taken a college-
level statistics course, and only one student had a prior
course in linear algebra. Therefore, mathematical topics
including aspects of linear algebra and statistics, were
introduced in class as needed for the project.
 In the past, the course had been taught using an agent
theme, fairly closely following the outline of the textbook
by Russell and Norvig (2003). We began with an
overview of agents, then covered search, logic and
inference, planning, and reasoning under uncertainty
before covering learning almost at the end of the course.
Students were often disappointed by the fact that machine

317

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

learning was one of the topics that attracted them into the
course, but it was delayed so long that there was not
enough time to really get into it.
 To incorporate the project, we moved learning much
earlier in the course, between search and logic. Except for
the difference in ordering and the additional emphasis on
learning, roughly the same topics were covered. The
project was carried out in five phases (labeled Phase 0 to
Phase 4), listed in Table 1. While students were working
on one phase of the project, the class moved on to new
material. Project phases 3 and 4 were carried out while
topics after learning were covered during the lecture
portion of the course.
 Typically, there had been four programming
assignments in the course, each taking roughly 25% of the
semester, along with smaller problem sets, no more than a
week in duration. The first of these projects, implementing
a heuristic search in Lisp, was retained in the revised
course. This project took advantage of the students’ prior
experience with the language and environment. The
remaining three projects were replaced by the multi-phase
sign language recognition project and a short assignment
that required students to represent a simple world in both
Prolog and CLIPS.

Object Recognition using Principal
Component Analysis

The main techniques in the project were inspired by the
seminal work on Eigenfaces by Kirby and Sirovich (1990).
In this work, a system was trained to recognize faces using
Principal Component Analysis (PCA). In our project,
images of a hand signing a letter from American Sign
Language were used instead. The image is cropped to a
standard size, with the hand taking up the large majority of
the image. Images have a uniformly black background.
(See Figure 1).
 Initially, each pixel of the image is considered to be a
single feature, so an image with M rows and N columns
image would have MN numerical features. These features
form a high-dimensional feature space. PCA chooses a
new set of axes to span the space, creating a new set of
features that better describe the training images. Each of
the new features is a linear combination of image pixel
values.
 The features chosen by PCA are actually the
eigenvectors of the covariance matrix of the original
image. These features can be sorted by their associated
eigenvalues, in that the eigenvector with the highest

eigenvalue explains the most variation in the image. A
relatively small subset of these eigenvectors is a sufficient
set of features for classification.
 To determine the feature’s value for an image, the image
is normalized and then multiplied (as a vector dot product)
with the eigenvector representing the feature. The features
for each of the training examples are stored, and features
for a test image are computed. Various techniques can
then be used to select the best label for the test image. We
use a simple nearest-neighbor classifier, i.e. the test image
is classified with the same label as the training image
whose feature vector is nearest (using a Euclidean distance
measure) to the test image. An appropriate extension of
the project would be to ask
 A key advantage of using an image processing problem
as a machine learning example is that the intermediate
results can easily be visualized. Each element of an
eigenvector represents a coefficient on a single image
pixel. Displaying the eigenvector as an image (so that the
first row is the first M values, the second row is the second
M values, etc.) provides a clear indication of the relative
importance of the pixels (and whether they are expected to
be positive or negative) in the feature. In fact, each feature
can be intuitively considered as a template image to be
matched.
 Images that are generated from high-eigenvalue features
tend to highlight features that humans find useful in these
very structured images, while images that are generated
from low-eigenvalue features look like noise to humans.
This is illustrated in Figure 2. Image (a) is the second-

 (a) letter A (b) letter E

Figure 1: Sample Training Images

 (a) 2nd eigenvalue (b) 1000th eigenvalue

Figure 2: PCA Features

Phase Topic
0 Introduction to Classification
1 Image Representation & GNU Octave
2 PCA Feature Extraction (Training)
3 Letter Recognition (Testing)
4 Evaluation and Reporting

Table 1: Overview of the Sign Language Assignment

318

highest eigenvalue for one set of training data. It looks like
a bright E with a shadowy A behind it. When this is
multiplied by an image, it will distinguish E-like images
from A-like images. Image (b) is the thousandth-highest
eigenvalue from the same data set. It appears to be making
distinctions on a pixel-by-pixel basis, and it is not at all
intuitive what these pixels mean. Therefore, students
working with these images can clearly see the relationship
between eigenvalues and features, and can also gain
intuition about the meanings and effects of these numerical
vector features.
 For images that are structured as these are (similar size
and shape object against contrasting background), a subset
of the high-eigenvalue features is generally sufficient
information to perform classification on. Another use for
these features is for a form of lossy image compression,
though we did not investigate this in the assignment.

The Class Project

The overall goal of the project was for students to classify
images such as those in Figure 1 according to the letter
being signed in each image. To do this, students extracted
appropriate PCA features from a training set of images,
and then used nearest-neighbor classification to select a
letter for each test image. Such a system might be used
within a larger system for automatically captioning sign
language videos, for example. As a result of this
experience, we expected the students to satisfy the
following learning objectives:

• Learning basic concepts of object recognition in
computer vision

• Becoming familiar with the concepts of feature
spaces and classification

• Becoming familiar with the techniques of PCA

• Gaining experience analyzing experimental results
 Each of the phases of the project had its own
deliverables. A detailed project assignment document and
a set of images for the five vowels can be found at web-
sites http://cs.hiram.edu/~walkerel/RASLUPCA.pdf and
http://cs.hiram.edu/~walkerel/cs386/letter images.zip,
respectively. Phases 0 and 1 were individual assignments,
and the remainder of the assignment was done in groups.

Phase 0: Introduction to Classification
The first introduction to project-related ideas was a lecture
on classification in general, training and testing methods,
and the importance of finding good features. This was
followed up by a paper-and-pencil classification activity,
which was phase 0 of the project. The activity required
students to experiment with a simple set of features for
classifying hand-drawn letters of the alphabet, and to
evaluate the feature set and suggest improvements.

Phase 1: Image Representation and GNU Octave
Phase 1 of the project introduced images, their
representation, and the programming environment that
would be used for all image and matrix manipulation. For
this phase, each student had to perform some simple image
manipulations, such as reading, averaging and displaying
images using GNU Octave (Eaton 2006), a free tool that is
compatible with Matlab. This phase was done individually
to ensure that all students were familiar with the Octave
tool. Figure 3 shows a function that a student might write
during this phase.
 Most engineering schools use Matlab throughout their
curriculum, and it becomes a tool that students use
throughout their careers. Computer science programs
housed in liberal arts schools are less likely to have this
tool available, due to its cost. The GNU Octave tool
allows students to perform numerical computations
through a command-line interface, as well as to write
functions of their own. These functions are compatible
with Matlab. Along with another piece of software,
ImageMagick (ImageMagick Studio, 2009), GNU Octave
allows students to read and write images, converting them
into 2D matrices. GNU Octave also provides linear
algebra functionality; most importantly for our purposes, it
includes functions for the extraction of eigenvectors and
eigenvalues from 2D matrices.
 While students were working on phase 1, class time was
spent introducing the necessary mathematical background
for the next phase (matrix multiplication, statistical
variance and co-variance, and an intuitive explanation of
eigenvectors and eigenvalues). Additionally, students read
and discussed two web tutorials on PCA (Smith, 2002;
Shlens, 2005). By the time students had completed phase
1, they had the information that they needed to begin on
phase 2.

�������	�
�	
�	����

��
��
���

����

���
�
�

�����
	�
���

���
�

������	�
��������
�
���������������
��

��
��
��
���
��

����
��
���
��
�
��
���	
������

����
���

���
����

��
�
�	����
��
 �����

������
�
�	� �
����
���������
�!"#��$

�	�
�
�
%&�
�����������
��

�
'���
�
�	� �
����
���������
�!�#��$

������
�
������
(
�
'���$

���	�

������

��

����

���
)
��

���
�
	�
����
�

������
�
������
*
�
�����������
��$

�������)
��

�
����

����	'�����+���������$

Figure 3: Reading and Averaging Images

319

Phase 2: Feature Extraction
In phase 2, students worked in small groups of 2 or 3 to
implement the PCA method described by Kirby and
Sirovich (1990) for feature extraction for face recognition
as a sequence of Octave functions. This included finding
the average image and normalizing all data, computing the
covariance matrix and its eigenvectors, sorting the
eigenvectors by eigenvalue, and choosing a subset of
eigenvectors for their features.
 Phase 2 was very challenging for students, since it
required them to use unfamiliar techniques and an
unfamiliar tool. Students were strongly encouraged to
display and verify their results at each step of the process,
and these visualizations helped them understand the
project, as well as debug their functions. At the end of this
phase, each team had a set of features to carry forward into
phase 3.

Phase 3: Letter Recognition
The letter recognition phase required each team to develop
a database of features from the training examples and write
functions to extract features from a new image and find the
nearest training example in the feature space. The result is
correct if the training example and the test example are
images of the same letter.
 Figure 3 shows a screenshot of a portion of one team’s
results. The first example shows that test image I27 was
closest to training image I16, and that test image I28 was
closest to training image I24. Because each training and
test sample was named with its letter e.g. A2, I27), a
successful recognition retrieves an image with the same
initial letter in its name. In both cases in the example
screenshot, the unknown sign was correctly classified as
the letter I.
 Due to time pressure, the feature vectors were stored in
an array and all teams used a simple sequential search to
find the closest image in feature space. Given more time,
this phase could involve developing more efficient search
structures, or possibly doing some feature clustering to
limit the number of comparisons.

Phase 4: Evaluation and Reporting
In the final phase of the project, student teams trained their
systems on data subsets of different sizes, then tested on
the remaining data. Each group produced a report
describing all the functions that they had written, the
decisions that they made in choosing features (e.g. how

many features to choose based on the sequence of
eigenvalues), and the results of their testing. Students
chose from three to ten eigenvalues, and all teams achieved
greater than 80% success on test data.
 The rigor of reporting was somewhat disappointing,
mainly due to insufficient instruction, but also because of
time limitations. In the future, n-fold cross-validation
(Devroye, et. al., 1996) will be taught and required. Using
the same measure of success, teams can easily see how
their results compare to their classmates’. This comparison
will be enhanced by requiring in-class oral presentations
for all students, for which time was not allotted this year.

Evaluation

In Spring 2009, twelve students, comprising six teams,
completed the project. Every student filled out a post-
project survey asking about their attitudes regarding the
project, artificial intelligence, and machine learning as a
result of the project. In addition, we analyzed specific
questions from the midterm and final exams to gauge
student learning related to the objectives of this project.
 Generally, the survey results were very positive. In
reporting details of the survey results, the number listed in
parentheses is the total number of students who selected
“Agree” or “Strongly Agree” for each statements. There
were 12 total surveys, and all questions were answered on
each.
 Students seemed to generally like the project. They felt
the student project was interesting to work on (10), that the
level of difficulty was appropriate (10) and (surprisingly,
considering the grumbling) that it took a reasonable
amount of time to complete (10). They also self-reported
that the project contributed to their understanding of course
material (9), and that it was an effective way to introduce
machine learning concepts (11). Finally, students reported
that they had a positive experience in the course (10).
 With regard to content, the students said that after the
course, they had a good understanding of the fundamental
concepts of Artificial Intelligence (12) and of Machine
Learning (10). They believed that the problem solving
techniques that were covered in the course were valuable
(11) and that they had a firm grip of these techniques (10).
They are confident that they can identify opportunities to
apply the techniques (9) and that they could apply them to
different problems (9).
 To determine how well students learned the portion of
the course about machine learning, we examined their

Figure 4: Classification Result

320

second midterm exam, of which 50 points were from
questions directly related to learning. One question (15
points) specifically required students to apply what they
had learned in the project giving them a set of data, and
asking qualitative questions about variance, covariance,
and nearest neighbor classification. The median score of
the 12 students on this problem was 12 / 15, and 4 of the
12 students received a perfect score of 15.
 The other three machine learning questions asked about
decision trees, neural networks, and version space learning.
Considering all four questions together (50 total points),
the median machine-learning subscore was 39.5 / 50, or
79%. This compares to an overall test median of 65.5%.
Although our sample is too small to make any statistical
claims, this result is suggestive that the project was
successful in helping students learn the machine learning
topics, even those that were not directly utilized in the
project.
 We also looked at the final exam of the last Artificial
Intelligence course taught before the machine learning
project was added. In this class, machine learning topics
(decision trees and neural networks) were covered in a 20-
point question on the final exam, taken by 14 students.
The median score on this question was 8 / 20, or only 40%.
Again, we cannot draw any statistically significant
conclusions, as the question itself was different and the
student populations were not matched, but our result is
suggestive that the class with the machine learning project
retained more knowledge about machine learning than the
class where no machine learning project was given.
 Finally, we can report an anecdotal experience that
shows the value of the project for one student who was in
the class. This student participated in an undergraduate
summer research experience at an engineering school. Part
of his project was to adapt and modify Matlab code. He
was able to hit the ground running, because “Matlab is just
like Octave.” Writing in more detail about his project, he
indicated that he understood what he had done in class, and
how it could be applied in the future: “Anyway, this
project reminded me of the image recognition project we
did in AI and I was thinking of using the same approach
for our needs. … Taking into consideration that we identify
the most important features of say, [sound X vs. sound Y],
by finding those with higher eigenvalues, would it be
possible to identify the source of those features in the
sound rather than evaluating and sorting ALL of the
features present, thus speeding up the process?”
 The student went on to comment about the need to
isolate the relevant part of the sound (similar to cropping
the image), and offered relevant considerations about the
processing time. The student’s ability to jump into a new
task, recognize the general pattern of classification, and his
appropriate consideration of adaptations of the method he
had learned in his project, indicates that the project has
succeeded in one of its primary goals to prepare students
to appropriately use machine learning techniques for novel
problems.

 Conclusion

We have developed a student project for the introductory
artificial intelligence course where students apply Principal
Component Analysis (PCA) to the problem of recognizing
American Sign Language letters from images. Using the
GNU Octave tool, students normalize the images, compute
the covariance matrix, extract eigenvectors and rank them
by their eigenvalues, choose a subset of the eigenvectors as
features, and then use these features to classify novel
images.
 The project was piloted in a class of 12 students in
Spring 2009. Surveys indicated that students were
engaged in the activity, and that they felt the project was an
effective introduction to machine learning concepts.
Students also self-reported that they had a good grasp of
the concepts of machine learning, and this was borne out in
their exam results.

Acknowledgements

This project was inspired by a capstone project in
computer vision performed by Art Geigel III, who also
provided the training and test images used in the project.
The helpful comments made by anonymous reviewers have
improved this paper and are appreciated.
 This work was supported by National Science
Foundation grant DUE-.0716338

 References

Devroye, L, Gyorfi, L, and Lugosi, G. 1996. A
Probabilistic Theory of Pattern Recognition, New York,
NY: Springer.

Eaton, John W. 2006. GNU Octave.
http://www.gnu.org/software/octave/.

ImageMagick Studio, LLC. 2009. ImageMagick: Convert,
Edit, and Compose Images.
http://www.imagemagick.org/script/index.php.

Kirby, M. and Sirovich, L. 1990. Application of the
Karhunen-Loeve Procedure for the Characterization of
Human Faces. IEEE Trans. Pattern Anal. Mach. Intell.
12(1): 103-108.

Markov, Z., Russell, I., Neller, T., Coleman, S. 2005.
Enhancing Undergraduate AI Courses Through Machine
Learning Projects. In Proceedings of the 35th ASEE/IEEE
Frontiers in Education Conference. Piscataway, NJ: IEEE
Press.

Rich, L., Perry, H., and Guzdial, M. 2004. A CS1 course
designed to address interests of women. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer
Science Education. 190-194. New York, NY: ACM.

Russell, I, Markov, Z. and Coleman, S. 2007. Project
MLExAI: Applying Machine Learning to Web Document
Classification. Journal of Computing Sciences in Colleges
23(2): 226-235.

321

Russell, I, and Markov, Z. 2009. A Multi-Institutional
Project-Centric Framework For Teaching AI Concepts. In
Proceedings of the 39th ASEE/IEEE Frontiers in
Education Conference. Piscataway, NJ: IEEE Press.

Russell, S., and Norvig, P. 2003. Artificial Intelligence A
Modern Approach 2nd ed New York, NY: Prentice Hall.

Sebe, N., Cohen, I., Garg, A., Huang, T.S. 2005. Machine
Learning in Computer Vision. Secaucus, NJ: Spring-
Verlag New York, Inc.

Shlens, J. 2005. A Tutorial on Principal Component
Analysis.
http://www.snl.salk.edu/~shlens/pub/notes/pca.pdf.

Sloan, R. H. and Troy, P. 2008. CS 0.5: a better approach
to introductory computer science for majors. In
Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, 271-275. New York, NY:
ACM.

Smith, L. 2002. A Tutorial on Principal Components
Analysis.
http://www.cs.otago.ac.nz/cosc453/student tutorials/princi
pal components.pdf

322

