Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Using Robots in Undergraduate AI Courses at Small Universities

Kenneth Moorman
Transylvania University
Lexington, KY 40508
kmoorman@transy.edu

Abstract

Artificial intelligence courses at universities that do not have
focused Al tracks may suffer from a lack of student interest
unless they are tied to some application of Al that students
find appealing. Robots have been used successfully to draw
students into Al courses, but their use can take time away
from material that instructors feel should be covered in a gen-
eral course. We present an approach that utilizes small-scale
robotics to teach traditional, core Al concepts. The approach
is somewhat generalizable and does not rely on any particu-
lar textbook. The methodology was used at two universities
in the spring of 2009 to good student response. After pre-
senting those results, we discuss ways in which we intend to
modify the approach in future semesters.

Introduction

As the field of computer science grows, it becomes increas-
ingly difficult to cover all topics, especially at universities
with small programs. Computer science programs tend to
rely on the ACM curricula guidelines to create a good bal-
ance of courses. Unfortunately, one area that often gets left
out is artificial intelligence (Al); in the 2008 revision to the
ACM curriculum, for example, Al is allocated only ten core
hours (ACM/IEEE 2008). To treat the subject in more depth,
many programs will offer an Al course as an elective. How-
ever, it is often difficult to attract students to such a course,
especially at smaller schools. Although AI pervades many
other areas of computer science (and other fields as well),
the undergraduate student may have to be “sold” on this.
The question then becomes how to market the course. An
Al class is generally aimed at upper-level undergraduates,
although an interdisciplinary approach can attract younger
students. Some universities take an engineering approach
while others follow a software engineering path. Many
larger universities use an overview course as a launching
point for follow-up courses on more focused topics. Unfor-
tunately, the options at a smaller university are limited. With
one terminal course, the problem becomes how to present a
wide-range of material in an appealing and effective way.
Another issue is the choice of textbooks. The most pop-
ular text is Russell and Norvig’s Al: A Modern Approach
(AIMA) (2003). A new edition of this text came out in

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

311

Dee Parks
Appalachian State University
Boone, NC 28608
dap@cs.appstate.edu

November, 2009. Without question, this book is exceptional
in its treatment of the field. Unfortunately, both the size and
cost make it somewhat less suited for universities where stu-
dents may be taking one terminal Al course. Only a fraction
of the material can be covered in such a course, making stu-
dents reluctant to invest in the text. It is also possible that
the flavor of the course may not lend itself to both the rigor-
ous and broad treatment of the field in Russell and Norvig.
For example, the first author has traditionally taught the Al
course from a cognitive science perspective which attracts
as many non-majors as computer science students. He has
found other texts to be more approachable. While the sec-
ond author’s Al course is aimed at junior and senior majors,
even they find the amount of material in the text somewhat
overwhelming.

To overcome these problems, we incorporated robots as a
core component of the Al course. This is not, on the surface,
an original idea; however, the particular goals we want to
achieve and the use of robots in this pursuit is atypical. We
redesigned our courses to achieve the following:

e Present a solid core of the Al discipline, suitable for fu-
ture work either in special topic undergraduate courses or
graduate courses.

e Make the topics independent of the textbook chosen.

o Integrate robotics not by making the course into a robotics
class but by making robots the platform on which to ex-
plore those core techniques.

Both of the authors have taught their respective courses
multiple times with numerous textbooks and areas of focus.
In the spring semester of 2009, the two classes were taught
for the first time using this robot-driven model. While there
were some issues that arose, both authors feel confident that
this approach is a significantly useful technique for teaching
artificial intelligence as either a cross-disciplinary Al course
at a small liberal arts university or as a stand-alone elec-
tive course in a typical computer science undergraduate pro-
gram. Both intend to continue teaching their courses using
this approach although we do acknowledge that there were
problems in our first pass.

The AI course

Our first goal is to present a solid foundation in artificial
intelligence. The topics that need to be covered in such a

course can be debated; that debate will largely be driven by
the professors’ personal biases and their attempts to over-
come those. The ACM guidelines list a number of topics in-
cluding basic search techniques, advanced reasoning forms,
robotics, and perception. Again, we are bound by the style
of class at a smaller university and by the students who take
the course. The ACM suggests a fair amount of time be
spent on logic, for example. Unfortunately, we have both
found that our students are under-prepared to deal with the
complexities of logic beyond the basic level. So we cover
fundamentals of logic but make a conscious decision to fo-
cus most of our attention on other areas.

After considering the ACM guidelines as well as our own
Al courses over the past several years, we created a set of
three core ideas to present—problem solving, learning, and
communication. These were defined broadly enough to al-
low us both flexibility in deciding what to include and what
to leave out. Furthermore, the three concepts fit nicely into
a model of ever widening “agent-ness.”

First, an intelligent agent in a non-static environment
needs to be a problem solver. Methods to achieve this can
vary widely based on the complexity of both the environ-
ment and the agent. While exploring this area, students
are introduced to the idea of a purely reactive entity, using
either the subsumption model (Brooks 1986) or field tech-
nique (Arkin 1989). Students are reminded of search tech-
niques taught in previous courses (such as Data Structures).
The initial discussion quickly moves to the area of informed
searching, which leads to an overview of planning. Given
the time constraints, advanced planning techniques are not
given much consideration. Instead, the class moves towards
case-based reasoning as the final model of problem solving.

Second, if we want the agent to be dynamic (i.e., able to
respond differently to the environment over time as expe-
rience is gained), learning is needed. Since we would like
the entities we build to adapt their own behavior, a discus-
sion of various learning techniques is appropriate. Students
are given an overview of both supervised and unsupervised
methods. Symbolic approaches (e.g., version spaces and de-
cision trees) and subsymbolic ones (e.g., perceptrons, neural
networks, and Bayesian techniques) can be presented. Once
more, our goal is to lay a foundation. A student coming out
of this course should be conversant with the core ideas and
primed to go on to graduate work if desired.

We start with a static agent in a changing world and
move to a learning agent in a dynamic world. The last
step considers groups of agents via communication. This
ranges from low-level concepts like simple syntactic parsing
through higher levels of discourse understanding. Issues of
ambiguity can be introduced along with techniques for han-
dling them. In a historical approach to the issue, scripts and
plans are discussed as well as corpus-based techniques. Ad-
vanced ideas from communication can be discussed if time
allows, such as non-verbal comprehension or emotional un-
derstanding.

As desired, the three areas do not tie us to a specific text-
book. One author used Russell and Norvig in her course,
but the other taught from Nilsson’s Artificial Intelligence: A
New Synthesis (1998). Furthermore, a number of texts have

312

been utilized over the years, and we see no reason this ap-
proach could not be adapted to any of them.

In addition to using different texts, we approach the class
from fairly different perspectives. The first author prefers
to teach the course using a cognitive science approach. His
course fulfills an upper-level computer science elective but
is also taken by interested students from other disciplines
such as philosophy. psychology, or education. The class
is cross-listed as a philosophy course. As a result, there
is a wide mix of students. While it is a computer science
course, the emphasis is on using the computer programming
elements to improve comprehension of the concepts. Since
some students have no programming experience, scaffolding
is provided to allow all students to contribute to the finished
products. During the spring semester of 2009, only five out
of thirteen students were computer science majors. The oth-
ers were a mixed group, with two from psychology, and one
each from cognitive science, chemistry, English, business
administration, philosophy, and physics.

The second author teaches the course as a traditional elec-
tive; it is the only Al course and is offered every spring. It is
popular with the number of students typically 24 to 28. Data
Structures is a prerequisite course, and all Al students have
taken at least three prior courses in which they do extensive
Java programming. During the first half of the spring 2009
course, students attended one lecture and one lab per week
in which they worked with the robots. The second author
intended to use the same assignments as the first during this
period, but timing issues prevented her from assigning either
the learning or natural language understanding projects. She
will use those in spring 2010.

The robots

As our courses are not intended to be classes in robotics,
we do not want the students to spend significant time on the
engineering elements. Further, neither institution can invest
a great deal of money in the robots themselves. We also
want the groups to be able to take the robots with them after
class and to be able to use them outside of a formal lab set-
ting. As Kay (2010) pointed out, a potential key to success
of robotics in the classroom is precisely whether students
can take the kits back to the social side of a campus. Lego
Mindstorms seem an obvious choice due to their low-cost,
durability, and portability.

Lego released the NXT model of their popular robotics
system in 2006 as an improvement over the original RCX
model. The NXT computer contains an Atmel 32-bit ARM
processor running at 48 MHz. The unit runs with 64 KB of
RAM, as well as 256 of non-volatile storage for programs
and data (LEGO Group 2006). In addition to the light and
touch sensors, the NXT includes a sonar module for prox-
imity sensing. The new motors are both more precise than
the older ones and boast an included odometer which gives
decent reports. Finally, both authors added compass sensors
to their NXT Kkits.

Although the included NXT-G graphical language is
extensive, we chose to use the replacement Lejos NXJ
firmware (Bagnall 2007). This firmware installs a Java vir-
tual machine on the robot, includes extensive libraries, per-

mits detailed communication between a host PC and the
robot, and is open source. The developers are active and
respond quickly to bug reports and suggestions for improve-
ments. Finally, our students are either already conversant in
the Java language or can work with someone who is. There-
fore, the overhead of this approach is much less than the
NXT-G language choice. This is important since we want to
use robots with as little overhead as possible.

For the robotic activities prior to the final project, we pro-
vide them with a straightforward design of a tricycle-base
differential drive robot known as ZippyBot (Perdue 2007).
ZippyBot’s third “wheel” is actually one of the plastic balls
included with the NXT. We find that of all the designs we
have tried, ZippyBot is able to make the most precise 90 de-
gree turns and still travel in a relatively straight path.

Assignments
Other work

As mentioned previously, there are numerous examples of
courses taught using robots. A variety of projects are used
in these courses based on the goals of the course. As
Dodds, et al point out in their overview, an important ele-
ment when considering robots is “...how well they fit into
the overall syllabus of course topics” (2006). It is not our
desire to simply graft a robotics project onto our courses;
it is imperative that the assignments be tightly coupled to
the existing content. This eliminates many potential ap-
proaches. For example, the well-known RoboCup is often
used as a springboard to assignments (Dodds et al. 2006;
Heintz, Kummeneje, and Scerri 2001). We also avoid robot-
centric projects, such as the excellent ones used by Green-
wald, et al involving localization and obstacle detection
(2006). Further, it is not our goal to have assignments which
are just as effective without robots; for example, Talaga
and Oh (2009) leverage off the extensive tools provided by
AIMA to have robots navigate and play board games. The
closest model to ours comes from Kumar which presents a
traditional Al course that makes use of robotics (2001;2004)
in a fashion similar to our approach.

Group based

Students in both courses work in small groups. In the first
author’s course, this allows each student to contribute their
own skills to the projects and offsets any weaknesses stu-
dents have due to their respective majors. A team consists
of at least one computer science student and one non-major.
Since programming from scratch is not an important part of
the course, the groups are required to produce short papers
(5 to 7 pages) detailing the design choices made during each
project, the testing methodology used, and what discoveries
were made. The strengths of all are utilized by this approach.
On the pedagogical level, it permits the groups to reflect on
what they learn from the projects and from one another.
Because of the relatively large number of students in the
second author’s course and the expense of the robot kits,
students work in pairs. All programming and testing is done
in these pairs and, in almost all cases, both members of the
pair receive the same grade on the assignments. Students

313

self-select their partners and, for the most part, their choices
work well. Occasionally, some rearrangements are done.

Length

We assign three focused projects and a more open-ended
term project. This allows one project from each of the three
themes of the course and has the benefit of permitting the
groups to have two or three weeks for each assignment and
still have time to work on the term project. Since the courses
are taught in the spring semester, it makes logistical sense to
shift to the term project about the time of spring break.

Materials

Each assignment is designed to allow the robots to navigate
their way through a maze. The two authors take slightly dif-
ferent approaches to the physical construction of the maze.
The first author uses 2x4 wooden segments as bases along
with foam board for the walls. The second author connects
14 inch sections of 2x8 wooden planks with specially made
connectors (straight, L-shaped, and T-shaped). Both maze
designs are easy to reconfigure while being sturdy enough
that an accidental bump by a robot does not displace a wall.

In order to ease the students into the robotic program-
ming, the first author provides a class file in Lejos. The sec-
ond author provides a specification for the class but requires
the students to create it. For both, the use of the abstraction
permits the groups to focus on higher level problems rather
than the robotic interface. Some of the methods can be seen
in Figure 1. These simply include an interface to the robot
that helps to abstract away from the physical elements.

MazeRobot (float diam, float trkWidth, float unit)
The constructor for the class receives the wheel
diameter, the distance between the wheels, and
the length of one maze unit. The unit simplifies
movement by restricting the robot to moving one
space at a time.

void setUpSensors () Sets up the compass.
void moveOneUnit () Move the robot forward.

boolean safeMoveOneUnit() Move the robot for-
ward one unit, but stop and return true if the touch
sensor is pressed.

void turnBackToZero () Turns the robot back to the
0 heading.

void moveArbitraryDistance (float distance) A
dangerous function, this moves the robot an amount
of space you specify.

void turnLeft (), void turnRight() Turns 90 degrees
to the left or right.

int getSonarValue () Returns the distance to a de-
tected obstacle.

Figure 1: Sample methods provided to students

Problem solving

In order to get the students familiar with the ZippyBot,
Lejos, and with robotics in general, the first assignment
is a straightforward implementation of two searching tech-
niques. First, the groups implement a depth first search
(DFS). The robot is given a simple text file representing the
current state of the maze. Using DFS, the robot finds a path
from the current location to the goal. A portion of the de-
scription from the assignment handout follows:

Search first, then run For our first exercise, you will
be provided with a text file representing the physical
maze. Your robot will find a solution to the maze using
the traditional DFS technique and will then execute the
solution. The text file contains a matrix representing
the maze. In the matrix, a ’0’ represents an open space,
a ’1’ represents a wall, an 'S’ represents the starting
location, and a ’G’ represents the goal. Your program
should consider possible moves one at a time, follow-
ing a pathway until there are no possible next moves.
At that point the program backtracks, returning to the
most recent prior state from which a different decision
can be made, and tries that move. Backtracking also
occurs if the algorithm determines that the next move
will create a cycle.

Students are often annoyed by their inability to get the
robot to travel precisely the amount of distance indicated or
to make precise 90 degree turns. We address these issues
in the lecture and class discussion. Naturally, the longer the
robot navigates through the maze, the worse its performance
becomes due to an accumulation of these errors. This is the
motivation for the second element of the problem solving
assignment—the reactive approach to maze running.

From the assignment:

Search while running Unfortunately for ZippyBot, the
DFS approach has some problems. Our robots don’t
make precise turns and find it difficult to stay in the
center of the pathways. We know that we can find our
way out of a maze by keeping our left hand on the wall
(or our right). This technique works in any maze that
doesn’t have teleportation cells.

In order to use this idea with the robot, you need to
access the sensors. In particular, the robot needs a way
to determine if a passageway opens up. If so, the robot
needs to turn in that direction. If the robot runs into a
wall in front of it, it should turn around 180 degrees and
come back down that passageway.

This approach permits the robot to navigate with no ad-
vance planning while reacting to dynamic situations. The
assignment is designed to launch a discussion of reactive
robotics; both authors felt it was successful in spring 2009.
Note that while we stay away from specific robot discussions
such as which drive configuration is best or what sensor fu-
sion is, we do introduce basic robot concepts through the
natural flow of the assignments.

The first assignment also demonstrates an important point
made by Kumar (2004)—robot projects in an Al course

314

should build on the natural strengths of the platform. Prob-
lem solving in a more abstract fashion or even in something
like the classic 8-tile puzzle game (Klassner 2002) would
not be as successful in our classes since these are not tasks
that an NXT robot could easily engage in. The maze task
allows the strengths of the platform to be utilized.

Learning

We considered several possibilities for a robotic learning as-
signment. For example, it is popular to teach neural net-
works using robot kits (see (Imberman 2003) for one such
approach). However, we decided to use the more symbolic
approach of decision trees (Quinlan 1987). The theory be-
hind decision trees is a little easier to present to students and
permits interesting class discussions of information theory
and entropy.

The project begins with the robot randomly attempting to
find its way through the maze and storing traces of its paths.
We place a black square at the goal so the robot can use
its light sensor to determine success. The robot attempts to
run the maze several times and transfers the traces to a host
computer, thus building a library of positive and negative
training cases. The students then use a decision tree program
to learn the proper moves for each junction in the maze.

From the assignment:

Introduction This project allows you to explore the use
of induction trees, in particular an extension of Quin-
lan’s famous ID3 program. The goal is to see if Zippy-
Bot can inductively learn a basic path through a fairly
simple maze.

Description The robot will be placed in the maze at
the starting location. Your code will cause it to make
10 moves or less. Each move will be chosen at ran-
dom. The sequence will stop when 1) an illegal move
is attempted (indicating a fail) or 2) the goal is reached.
At that moment, the robot will wait for a button press.
This will enable you to connect Zippy to the computer
so that it can upload its path. You will repeat this pro-
cess to gather more test cases.

When all the test cases have been assembled, you will
use C4.5, a decision tree program, to attempt to learn
a proper series of actions to get the robot through the
maze. If this is successful, you will load this path into
Zippy and watch as he unerringly arrives at the goal.

Natural language understanding

The goal of the final assignment is to give commands to
the robot using natural language. As with the learning
project, we examined a variety of techniques, including
Roger Schank’s work with conceptual dependency (1975)
and the program Micro-ELI (Birnbaum and Selfridge 1981);
ultimately, we decided to use a simple Java-based imple-
mentation (Martin 2009) of the Earley parser (Earley 1970).
This chart-based parser is an efficient (cubic time) handler
of context free languages. Since the commands for navi-
gating a maze are straightforward, nothing more powerful is
needed.

The assignment is to create a grammar of navigational
commands; for example, a group may want the robot to go
forward 3 units, turn left, go forward 5 units, play a song.
The PEP parser produces a parse tree which is then fed into
a second program on the host computer. This creates a se-
ries of commands to issue to the robot as a standalone Lejos
program. After that program is downloaded to the robot,
students can watch the robot follow their directions.

Term project

The goal of the final project is to allow the students to re-
lax a little with a more open-ended assignment while at the
same time incorporating the concepts taught up to that point.
Students are not required to make use of earlier assignments
but many do. They submit a prospectus for the work, turn
in regular progress reports, and present their project both in
class and to the larger campus community. In addition, stu-
dents write a detailed paper discussing all aspects of their
work. Papers are structured using ACM journal specifica-
tions. In spring 2009, projects ranged from a self-parking
car to a smart house controlled by the NXT brick to an in-
stantiation of Frogger in which the NXT dodged older RCX
robots running on tracks. One project that did make direct
use of the earlier assignments involved a robot that accepted
a natural language set of commands and combined that with
a reactive framework to allow the robot to respond to obsta-
cles in the intended path.

Results

Students at both locations provided similar feedback after
the spring semester. The overall view can be summarized
from this response: “Using robots for the projects was a
good idea. It added another level of fun to the projects.
However, there is a lot of overhead along with the robot.”
Notice that every aspect of the robots is not positive for the
students. We continually stress that even when the robot is
correctly programmed, conditions outside the students’ con-
trol can cause problems. Walls can and do fall down during
demonstrations. Batteries die. The compass sensor is noto-
riously bad due to a large number of electrical devices in the
science buildings. As instructors, we see these occurrences
as teaching moments. Projects in the real world suffer from
these kinds of distractions, and we are not deterred from our
use of robots by dealing with such annoyances.

The groups had varying degrees of success with the
projects. All groups at both schools were able to get the
searching assignment completed successfully, even though
this assignment involved the most original programming.
The learning assignment proved to be the most difficult of
the three. Students became more frustrated with this assign-
ment due to the effect of accumulated errors from the robot’s
motion through the maze.

Students in the second author’s course found the lab as-
signments conceptually simple but difficult at run-time due
to multiple difficulties with both the robots and the environ-
ment. In addition to the errors already described, the maze
had to be constructed in the hallway prior to the 75-minute
lab and taken down immediately after. Students had to finish

315

their programming during lab in order to demonstrate their
robot’s success, but this was often impossible with thirteen
groups of students using the single maze in the hallway. A
few times it was necessary to use a second class period to fin-
ish a lab. In spring 2010 the second author intends to move
labs to evening hours and use all class periods for lectures
and discussions.

e The robots were very helpful once one figured out
how to use them. By using the robots for the
projects, they gave good hands-on experience.

e Robots helped but took away from the focus/reason
behind the assignments. The work that came with
the robots presented more of a challenge than the
material and theories behind it.

e The ZippyBot was a lot of work, but he was fun and
it did help to visualize the techniques in question.

e The hands-on approach to learning Al with robots
was very interesting and useful.

Figure 2: Selected student responses to course

Student reflections

Course evaluations were generally positive. Overwhelm-
ingly, students felt that the robots added to the experience.
Some of the student evaluations of the course can be seen
in Figure 2. It is important to note that a number of stu-
dents commented on the frustrations they felt. We realize
that our approach is not problem-free. The fact that a “per-
fectly” programmed robot can fail to accomplish its task is
not something that can be ignored. However, we feel that
students need to confront such issues—very few projects in
the post-college world are as clean as our in-class assign-
ments. Things will go wrong even with code that is “proper”
by some internal metric. We see our work with the robots as
an opportunity to present this reality.

In the section of the spring 2009 evaluations that asks
for suggestions for improvements, the first author saw com-
ments that suggested more scaffolding was needed and that
the groups might be better with fewer members. Interest-
ingly, while one person advocated reducing the number of
assignments, two others asked for more projects. Other sug-
gestions for improving the course can be seen in Figure 3.

Faculty reflection

Both authors are happy with the outcomes so far. In par-
ticular, the students in the first author’s course were more
engaged than in prior (non-robotic) terms. Enthusiasm was
high; this is significant given the increased level of frustra-
tion. Rather than being put off by this, students were willing
to “work through” the frustrating elements due to the level
of excitement created by working with the robots. Finally,
the performance of the students was not significantly differ-
ent from previous semesters; we are confident that the robots
did not negatively impact student learning.

e Reduce to one project. Do massive term project en-
compassing problem solving, learning, and commu-
nication.

e Maybe partner groups (two people). I also think the
robots may not be the best method because it is hard
to program them.

e Give mini-checkpoints over the course of projects
so students feel more compelled to work earlier and
ask for help.

Figure 3: Student suggestions for improvements

In spring 2010, we plan several changes. As noted earlier,
the second author will move the lab sessions to the evening
to overcome some of the noted scheduling issues. This will
enable better time management and allow her to get through
all three assignments. The first author plans to offer a more
formal set of lab sessions to provide additional scaffolding.
Although the level of discomfort felt by the students can-
not be completely eliminated, more formal lab sessions will
lessen the students’ uncertainty. Finally, we are intrigued
by an idea offered by Kumar (2004) where groups may sub-
mit an unedited video of their robot “in action.” This would
greatly lower some of the frustrations felt by students who
stated that their projects worked fine the night before.

Conclusion

Although we experienced problems with our approach in
spring 2009, we are happy with our decision to use robots to
teach core Al concepts. Students were enthusiastic and ea-
ger to begin each new assignment. Papers were well-written
and demonstrated that the students had mastered the core
ideas. Term projects were well-received and students were
excited about their presentations. Both authors are looking
forward to an improved implementation in spring 2010 and
will report on its success at a future venue.

References
ACM/IEEE. 2008. Computer science cur-
riculum 2008: An interim revision of CS
2001. http://www.acm.org/education/

curricula/ComputerScience2008.pdf.

Arkin, R. C. 1989. Motor schema-based mobile robot nav-
igation. The International Journal of Robotics Research
8(4):92-112.

Bagnall, B. 2007. Maximum Lego NXT: Building Robots
with Java Brains. Variant Press.

Birnbaum, L., and Selfridge, M. 1981. Conceptual Anal-
ysis of Natural Language. In Schank, R. C., and Riesbeck,
C. K., eds., Inside Computer Understanding. Hillsdale, NJ:
Lawrence Erlbaum Associates. chapter 13.

Brooks, R. 1986. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation
RA-2(1):14-23.

316

Dodds, Z.; Greenwald, L.; Howard, A.; Tejada, S.; and
Weinberg, J. 2006. Components, curriculm, and commu-
nity: Robots and robotics in undergraduate ai education. Al
Magazine 27(1):11-22.

Earley, J. 1970. An efficient context-free parsing algorithm.
Communications of the Association for Computing Machin-
ery 13(2):94-102.

Greenwald, L.; Artz, D.; Mehta, Y.; and Shirmonhammadi,
B. 2006. Using educational robotics to motivate complete
ai solutions. Al Magazine 27(1):83-95.

Heintz, F.; Kummeneje, J.; and Scerri, P. 2001. Using
simulated RoboCup to teach Al in undergraduate education.
Frontiers in Artificial Intelligence and Applications 66:13—
21.

Imberman, S. P. 2003. Teaching neural networks using
Lego-Handyboard robots in an artificial intelligence course.
In SIGCSE ’03: Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, 312-316. New
York, NY, USA: ACM Press.

Kay, J. S. 2010. Robots in the classroom ... and the dorm
room. J. Comput. Small Coll. 25(3):128-133.

Klassner, F. 2002. A case study of LEGO
mindstorms’™suitability for artificial intelligence and
robotics courses at the college level. In SIGCSE °02: Pro-
ceedings of the 33rd SIGCSE technical symposium on Com-
puter science education, 8—12. New York, NY, USA: ACM.
Kumar, A. N. 2001. Using robots in an undergraduate ai in-
telligence course: An experience report. In 31st ASEE/IEEE
Frontiers in Education Conference.

Kumar, A. N. 2004. Three years of using robots in an arti-
ficial intelligence course: lessons learned. J. Educ. Resour.
Comput. 4(3):2.

LEGO Group. 2006. LEGO Mindstorms NXT hardware
developer Kkit. http://mindstorms.lego.com/
Overview/nxtreme.aspx.

Martin, S. 2009. Pep source and binaries.
http://www.ling.ohio-state.edu/~scott/.
Nilsson, N. J. 1998. Artificial Intelligence: A New Synthesis.
San Francisco, CA: Morgan Kaufmann Publishers, Inc.
Perdue, D. J. 2007. The Unofficial Lego NXT Inventor’s
Guide. San Francisco, CA, USA: No Starch Press.

Quinlan, J. R. 1987. Simplifying decision trees. Interna-
tional Journal of Man-Machine Studies 27:221-234.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ: Pearson Educa-
tion, Inc., second edition.

Schank, R. C. 1975. Conceptual Information Processing.
Amsterdam: North-Holland.

Talaga, P., and Oh, J. C. 2009. Combining AIMA and LEGO

mindstorms in an artificial intelligence course to build real
world robots. J. Comput. Small Coll. 24(3):56-64.

