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Abstract

Many multi-agent traffic control designs have been pro-
posed; each makes different assumptions about the en-
vironment, which makes it difficult to compare their
performance. In this paper, we present a testbed for flex-
ible and consistent evaluation of multi-agent approaches
to urban traffic control. The testbed, an extension of
the MASON simulator, varies parameters such as traffic
load, existence of arterial street and grid size. We instru-
ment the testbed to collect a set of metrics defined in the
literature: delay, normal travel time, number of stops,
percent stopped, and wait time ratio. We implement
three distinct, well known multi-agent traffic controllers
and use the testbed to assess the impact of different sce-
narios by comparing agent performance. The different
metrics highlight clear trade-offs between time and flow
metrics, but the more challenging scenarios dilute the
distinctions. The testbed supports evaluation, compara-
tive analyses and hybridization of the approaches. We
use our analyses to suggest modifications to the agents
and show that the agent designs can be improved.

Introduction

With increasing congestion in many countries and global
warming concerns, improving traffic efficiency through au-
tomated control is becoming a valuable application for
multi-agent systems. Many approaches have been proposed;
each making unique assumptions about the environment and
the goals of traffic control. For example, Dresner and Stone
(Dresner and Stone 2008) anticipate future automated ve-
hicle/road systems and explore safety and efficiency issues;
Balan and Luke (Balan and Luke 2006) consider whether
fairness and efficiency can coexist; Bazzan et al. (Bazzan
2008; Bazzan and Klügl 2008) consider traffic control game
theory and driver route planning.

The differences in the agents translate naturally to differ-
ences in performance. Yet because each agent has been im-
plemented within different simulations, it is difficult to com-
pare their performance quantitatively. We present a unified
testbed for evaluating traffic control agent trade-offs. The
testbed provides a parameterizable simulator instrumented
with a set of metrics derived from the literature and supports
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the addition of alternative traffic control agents. Thus, one
contribution of this paper is the testbed itself, which is pub-
liclyilable at http://www.cs.colostate.edu/ redman/traffic.

Our testbed extends MASON (Luke et al. 2005) (Multi-
Agent Simulation of Neighborhoods (or Networks)). Our
current implementation includes five metrics from the traffic
control and the agents literature; they are: delay (Lieber-
man and Rathi 1990; Balan and Luke 2006), normal travel
time (Lieberman and Rathi 1990; Bazzan 2005), number of
stops (Bazzan 2005), percent stopped (Wiering et al. 14 17
June 2004), and wait time ratio (Lieberman and Rathi 1990;
Balan and Luke 2006). The current agents represent four
diverse designs: Evolutionary game theory (Bazzan 2005),
History thresholding (Balan and Luke 2006), Reservation
allocation (Dresner and Stone 2005) and a static baseline
agent. The simulation uses a simple, but flexible model of
traffic that is straightforward to interpret and can accommo-
date different capabilities required by the different agents.

A second contribution of this paper is that we used the
testbed to explore three questions about agent performance
in traffic simulations: Do the evaluation metrics differen-
tially distinguish performance? Do the environment set-
tings differentially influence performance on the metrics?
Can new designs be motivated by comparisons of perfor-
mance metrics? We find some overlap between the metrics
currently defined and a trade-off between two categories of
metrics (timing and flow). We also find an interaction ef-
fect with environment scenarios, especially in the more de-
manding scenarios. Finally, although interactions between
the agent, the environment and the metrics are complex, we
discover that it is possible to improve performance on one
metric (although not necessarily the one being targeted), and
not always to a commensurate detriment of other metrics.

Traffic Control Testbed

To design a realistic traffic simulator for agent evaluation,
we relied on (Lieberman and Rathi 1990) which summarizes
the dynamics of traffic simulators. The minimum environ-
ment features for traffic control simulation are:

Arterial if and where there is a street with higher traffic
Block size distance between intersections
Grid size number of intersections
Load number of vehicles
Speed average speed of vehicles
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Speed variation variance of vehicle speed
Time to measure cycle lengths, travel times, total time, etc.

Our testbed parametrizes these features to support a mi-
croscopic simulation like in (Bazzan 2005; Burmeister,
Doormann, and Matylis 1997). Arterial streets influence the
distribution of vehicles within the simulation; placement of
new vehicles is determined by a Gaussian distribution cen-
tered on the arterial. A Gaussian distribution, centered on
the speed, determines the speed of each vehicle. More chal-
lenging scenarios use large grid size and high load to simu-
late congestion in a metropolitan area.

Vehicles in our testbed move based on a squares per sec-
ond calculation. Each square in our grid representation is a
seven by seven feet area. Vehicles make path decisions at in-
tersections. If they are moving toward a specific destination,
they will be moving in an overall direction and will choose
randomly if options lead equally toward their goal (e.g., if
heading due east, a vehicle may go straight or turn right if
its destination is southeast). It is impossible for a vehicle to
occupy a space that is already occupied by another vehicle.
Therefore, we do not model collisions, and assume vehicles
will only slow down while traveling behind slower traffic.

MASON Framework

MASON (Luke et al. 2005) is a simulation framework, writ-
ten in Java, designed to evaluate multi-agent systems. The
two most important components of the MASON framework
are the SimState and Steppable classes which can
be specialized to specific domains. Our SimState com-
ponent is the interface to our testbed where variables can
be changed to create various scenarios. Our Steppable
classes include the vehicles and the traffic light controllers.
Swapping alternate agent designs requires instantiation of
different versions of controllers and sometimes vehicles.

Balan et al. (Balan and Luke 2006) used MASON for their
History agent, but have not made the traffic control code
available. Our design differs from theirs in that it explicitly
models vehicle movement, but does not model acceleration
and does support multiple agent designs.

Traffic Control Evaluation Metrics

The metrics are calculated as summaries of low level instru-
mentation in the simulation for each intersection and across
a simulation run. Most traffic control metrics fall into two
categories. Timing metrics summarize time across all vehi-
cles as they move along their paths through the grid:
Delay (D) sums the difference between the actual travel

time and the optimal travel time (assuming no stopping
due to traffic lights or slow traffic).

Normal Travel Time (NTT) computes the average actual
travel time normalized by travel distance.

Wait Time Ratio (WTR) divides cumulative time the ve-
hicles are stopped by the cumulative actual travel time.

Flow metrics indicate vehicle throughput:
Number of Stops (NS) sums the total number of vehicles

stopped.
Percent Stopped (PS) divides the total number of stopped

vehicles by the total number of vehicles.

Traffic Control Agents

Each intersection is controlled by an agent. We implemented
four traffic control agents based on specific publications1.

Evolutionary Agent

The Evolutionary Agent (Bazzan 2005) uses evolutionary
game theory. Each agent selects an action and receives a
gain or loss due to the action. The actions change the phase
lengths of the traffic lights the agent is managing. Gains
(or losses) are calculated at discrete time intervals triggered
when performance is worse than neighboring controllers.
Traffic controllers that have more free flowing traffic (com-
pared to neighbors) receive gains. Performance is mea-
sured as travel time and queue size (the number of vehicles
stopped in the queue of a traffic controller).

Every few time steps, an Evolutionary Agent checks its
performance and queries neighbor controllers for their per-
formance. The agent then compares itself to neighbors
and decides whether to enter a learning phase. Top rank-
ing neighbors are involved in a cross over operation where
their phase and cycle lengths are combined and with some
probability, lower ranking neighbors can receive this timing
schedule or a new mutated schedule. It was designed to con-
trol an arterial street.

History Agent

The History Agent (Balan and Luke 2006), uses a credit sys-
tem: awarding green lights to lanes containing high wait
time vehicles. Vehicles stopped at red lights receive credit
and spend credit when passing through a green light. Phase
and cycle lengths are subject to change every 20 time steps.

Each vehicle starts with no credit; at green lights, cred-
its are dispersed to all other vehicles in the system that are
stopped at red lights. The total credits in the system al-
ways sums to zero; negative credits are allowed. The History
Agent is designed to reduce the variance in mean wait time
(WTR). The authors tested various loads between 31 and
16K vehicles on four by four and ten by ten grid sizes. The
grid, as in our testbed, is an orthogonal mesh with square
blocks and sensors with a 0.125 mile range. Their vehicles
traveled at exactly 25 mph.

Reservation Agent

(Dresner and Stone 2005) designed traffic agents that utilize
cruise control, GPS, and auto-steering. Vehicles request and
receive space and time slots from intersection controllers.

The authors define many message types that can be passed
between the two agent types. Vehicles request space in an
intersection or cancel a reservation. A controller grants or
cancels reservations. Both controllers and vehicles send ac-
knowledgments. The authors use a detailed simulation of a
single intersection to show that delay can be reduced with-
out sacrificing safety (Dresner and Stone 2008). Total trip

1Some of the publications used are not the most recent from the
authors. We used the earlier descriptions due to the timing of our
implementation and/or because the earlier designs were simpler to
understand and validate.

81



Table 1: The 12 scenarios used in our study.

Arterial Grid/Load Grid/Load Grid/Load

Off 10x10/50 10x10/100 10x10/200

Off 20x20/100 20x20/200 20x20/400

On 10x10/50 10x10/100 10x10/200
On 20x20/100 20x20/200 20x20/400

time was examined, but safety and efficiency were primary
targets.

Baseline Agent

The Baseline Agent has fixed phase lengths which are set to
200 time steps (about three minutes). The controller at each
intersection randomly chooses initial light states making the
north/south lights green and the east/west lights red or vice
versa.

Evaluating Agents with the Testbed

We use the testbed to evaluate agent performance as influ-
enced by metric, scenario, and agent design combinations.

Experiment Design

Our scenarios use three environment settings:

1. grid size: small (GS) or large (GL)

2. load: low (LL), medium (LM), or high (LH)

3. arterial: arterial is on (AN) or arterial is off (AF)

Table 1 summarizes the exact settings for each of these
twelve scenarios. The total simulated time is 5000 time
steps; the time between data collection visits is 79 time
steps. We set the speed limit to 35 miles per hour. To model
variation in speed, we made one standard deviation in speed
equal to ten percent of the speed or 3.5 miles per hour.

Our dependent variables are the evaluation metrics. For
30 trials of each agent type and scenario combination, we
collect 63 timed samples for each of the evaluation metrics:
a total of 362,880 samples.

Evaluation Metrics and Agent Performance

First, we consider whether the different metrics actually
distinguish performance by examining agreement in effect
(same ranking of agents across the metrics). We rank the
four agents in each scenario by their mean performance on
each metric. To confirm the rankings, we used Wilcoxon
Signed-Rank tests2 to make pair-wise comparisons of rank-
ings for all treatment groups. The null hypotheses were gen-
erated by examining the metrics’ means across all scenar-
ios. For the timing metrics, the rankings were: Reservation,
History, Evolutionary and Baseline; for the flow metric, the
rankings were reversed. We find that the agents follow these
rankings (p < 0.0001) for 39 out of 48 combinations of met-
ric and scenario.

2We use this non-parametric alternative to the t-test to compare
agents because our data do not display equality of variance and in
some cases appear non-normal.

Table 2: Ranking changes for the nine combinations out of
48 in which the agent rankings deviated from expectations.

Combination Deviation

D, GL, AN, LH B and E before H
NTT, GS, AN, {LL, LM, LH} B before E

NTT, GL, AN, LL B before E

NTT, GL, AN, LM B before E
NTT, GL, AN, LH B before E and H

E before H
PS, GL, AN, LH E and B tie

H before B
H before E

WTR, GL, AN, LH B before H
E before H

Of the nine combinations that deviate from the expected
(see Table 2), only one with PS does not invert the time met-
ric rankings. Thus, we observe a performance trade-off be-
tween the flow metric and the time metrics. Generally the
three timing metrics agree.

Figures 1 and 2 show mean performance of each agent in
each scenario on D versus NS and D versus PS, respectively.
Specific agent designs tend to cluster together. However, the
History, Evolutionary and Baseline agents each have points
in the upper middle with NS and upper left with PS which
correspond to the most challenging scenario [GL, AN, LH].
The two plots differ especially in the Reservation Agent,
which performs relatively well on NS, but not PS.

Influence of Scenario?

Performance is a function of scenario. To assess the strength
of each scenario’s effect, we ran a four factor analysis of
variance (ANOVA) to examine the interaction among load,
arterial, grid size, and agent type. We found that each factor
(and all combinations of factor interactions) had a significant
impact (p < 0.0001).

Since every factor is significant, we looked at the sum of
squares and found that agent type has the greatest impact, in-
dicating significant differences in the scenarios they handle
well.

The presence of the arterial street appears most often in
the rankings that deviate from the hypothesized rankings.
Every combination in Table 2 has the arterial on. The arterial
setting presents a distinct challenge for the designs.

Baseline Agent and Evolutionary Agent have nearly the
same environment setting sensitivities and appear to be more
impacted by the arterial setting than the History Agent or
Reservation Agent. The interaction between arterial and
load setting is important for all agent types. The History
Agent and Reservation Agent are more sensitive to the load
setting, and the Baseline and Evolutionary agents are more
sensitive to the grid setting.
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Figure 1: Mean performance on D and NS metrics for each
agent in the 12 scenarios.

Redesigning the Agents

Based on the trade-offs that we observed, we identified op-
portunities for improvements in the current agent designs.

Reservation Agent performed relatively poorly on PS. We
hypothesize that PS may be improved by using a reserva-
tion priority based on the previous time spent stopped.

History Agent excelled on PS (54% drop over same sce-
nario with AF) for the most challenging scenario [GL,
AN, LH] at the marked expense of the timing metrics
(e.g., 3.5 times higher delay). We conjecture that it might
starve the side streets causing the longest possible waits
there, which might be mitigated by having the agent mon-
itor maximum credits and offer priority for higher maxi-
mums than their neighbors.

Evolutionary Agent had difficulties with the arterial sce-
narios. We conjecture that this could be due to con-
trollers along the arterial passing their behavior to con-
trollers with very different traffic patterns; those along
non-arterial side streets. Breeding should only commence
between controllers with similar traffic patterns. Addi-
tionally, breeding and mutation frequency should increase
when performance is poor.

By investigating these changes, we show that by compar-
ing performance in the same testbed, we can merge features
of the different agents to improve performance.

Specifics of Redesigns

Reservation Agent When a vehicle enters the domain of
a controller, it sends a message to check in. The controller
keeps track of two data structures organized by stopped
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Figure 2: Mean performance on D and PS metrics for each
agent in the 12 scenarios.

time: north/south vehicles within range and east/west vehi-
cles within range. If a vehicle is alone at an intersection,
a green is automatically granted. If there are vehicles in
both the north/south and east/west structures, then the con-
troller examines the single most stopped north/south vehicle
and the single most stopped east/west vehicle. The green
is granted to the direction (or maintained in the direction)
which has a vehicle within range with the greatest stopped
time. When a vehicle exits the intersection, it sends a mes-
sage to check out and is removed from the appropriate data
structure. Vehicles with a greater stopped time have likely
been stopped more frequently thus this change introduces
the notion of fairness.

History Agent If the ‘stopped credits’ exceeds the ‘mov-
ing credits’, then the green is granted to the opposite direc-
tion in that intersection. We added a provision so that if any
one vehicle is stopped more than 400 time steps (approxi-
mately seven minutes), that lane automatically gets a green.

Evolutionary Agent Breeding happens between con-
trollers with similar traffic patterns, and mutation occurs
whenever the number of stopped vehicles exceeds the num-
ber of moving vehicles. During global evolutions, the agent
compares at four values against four neighbors: north and
south vehicles stopped, north and south vehicles moving,
east and west vehicles stopped, and east and west vehi-
cles moving. Using the current and neighboring controllers’
number of stopped and moving vehicles, the standard de-
viations of the number of stopped and moving vehicles are
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Figure 3: Mean NS and D for the modified agents in the 12
scenarios. Note the difference in D range from Figure 1.

calculated. Controllers are not allowed to breed unless the
current number of vehicles stopped and moving (in both the
east/west and north/south directions) are within one standard
deviation of the standard deviation calculated for the con-
troller and its neighbors.

Performance of the Redesigned Agents

We ran the same scenarios as before with the new agents. We
analyzed the data to address three questions. First, was the
expected improvement achieved? Second, did the sensitiv-
ities to environment change? Third, how was performance
across the metrics?

Improvements as Expected? We analyzed the results in
two ways: quantitative and qualitative. First, for each
agent/scenario combination, we calculated the percentage
difference in each metric relative to the performance of
the baseline agent. We then looked at how the percentage
changed between the original agent and the redesigned ver-
sion (see Table 3). Second, we reevaluated the agent rank-
ings using the Wilcoxon Signed-Rank test.

The changes to the agents did not at all match our ex-
pectations (see Table 3). PS for the Reservation Agent im-
proved slightly; however, NS improved dramatically. We did
not obtain an improvement in timing metrics for the History
Agent or an overall improvement in the Evolutionary Agent
relative to the Baseline. Instead, the redesigns accentuated
previous performance superiorities. Figures 3 and 4 shows
the performance of the modified agents; the separations are
more pronounced than before.

The qualitative analysis shows a general change in rank-

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00

Trade−Offs After Modifications

Percent Stopped

D
el

ay
s Baseline

Evolutionary
History
Reservation

Figure 4: Mean PS and D for the modified agents in the 12
scenarios. Note the difference in D range from Figure 2.

Table 3: Mean across scenarios change in percentage dif-
ference from Baseline for each agent and metric. Negative
numbers indicate an improvement over prior design. NTT
was too coarse to show much difference.

Metrics
PS D WTR

R 2.0 -6.1 -12.7
Agents H -31.7 149.9 72.3

E 0.7 2.0 1.5

ings where the Evolutionary Agent outperforms the Base-
line and the History Agent on most of the scenarios with
respect to the timing metrics. The Evolutionary Agent im-
proves on the [GS,AN,LH] scenario with respect to PS. The
History Agent improves significantly according to PS by out-
performing both the Evolutionary and Baseline Agents in
nearly every scenario, but at the cost of the timing metrics.

The History Agent, especially along the arterial, might
stop many vehicles to allow perhaps just one vehicle to go
that has been stopped a long while. The combined force of
the arterial vehicles’ stopped time has worsened the timing
metrics for this reason.

Same Environment Impact? We ran three factor
ANOVAS to analyze the impact of the scenarios on each
modified agent design. For the Evolutionary Agent, grid
size had more effect on PS than before and the arterial
setting became less important. Grid size’s effect may be due
to the longer simulation run.

The History and Reservation Agents had the most changes
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in sensitivities. For the History Agent, arterial setting re-
placed load as most important and performance became
more spread out. For the Reservation Agent, the grid setting
replaced load as most important and the arterial diminished
in its influence. Because the controller no longer makes de-
cisions based on individual vehicles, it makes sense that load
no longer has such a strong impact.

Overall Performance? Although the changes did not
meet our expectations, they underline what are likely traffic
control trade-offs. For the Reservation and History agents,
improvements in one type of metric degraded the other;
however, the amounts were not necessarily commensurate.
For the Reservation Agent, the degradation was small rela-
tive to the improvement; for the History Agent, the degrada-
tion was large. These trade-offs crossed all scenarios.

However, the Evolutionary Agent showed more variabil-
ity, relative to Baseline, due to environment setting. For
some of the scenarios, it improved in either timing (6/12 for
D and 3/12 for WTR) or flow metrics (2/12 for PS); in one
case [GS,AN,LH], it improved both.

Future Work and Conclusion
Our current study shows the utility of consistent comparison
of traffic control agents: performance can be characterized
with respect to particular scenarios and strengths and weak-
nesses, then the analysis can spark new designs.

In the future, we will extend the capabilities of the simu-
lator as well as further explore the trade-offs in assumptions
and performance. In particular, we envision three changes
to the simulator. First, the set of metrics should be ex-
panded. For example, increases in fuel prices and concern
about greenhouse gases motivate metrics of cumulative fuel
consumption and vehicle emissions; both require better ve-
hicle models. Second, the drivers should be made more goal
oriented; route planning and sink/source distributions should
be modeled. (Bazzan and Klügl 2008) has examined the
impact of route choices and interaction with traffic control;
their designs may be beneficially included. Third, the traf-
fic distributions and model should be made more realistic.
We will improve the model of acceleration/deceleration and
obtain real grid pattern data to seed the simulation.

The second category of change is the agents. Newer ver-
sions of some of the agents have been developed and will be
incorporated. For example, as in Dresner and Stone (Dres-
ner and Stone 2008), we should allow for the vehicles to
self-organize. In addition, adding more data retention (col-
lective and historical memory) may facilitate moving off the
trade-offs we currently observe. For example, if agents re-
tain data such as vehicle trip length, route, and credits then
information such as expensive routes can be uncovered. Ve-
hicles can earn a bonus by traveling on less expensive routes.

As a contribution of this research, we offer three lessons.

• Each agent design represents trade-offs between timing
and flow metrics as well as between capabilities of agents
and controllers. No one is best across all metrics, but each
appears to occupy different points on a Pareto frontier.

• The complexity of the interactions between agent imple-
mentations and this environment can produce effects to

performance that are hard to predict (as in the impact of
some of the agents changes).

• A unified, parameterizable testbed allows one to compare
potential designs and better understand effect of scenario
on different performance metrics.

The future of technology will have an important impact on
traffic control. Vehicular automation becomes ever prevalent
as advances in computer vision and automated cruise control
are made. Sensor sensitivity, accuracy, and standardization
will improve. We see vast improvements in wireless network
fidelity, security, and cost effectiveness. The fact that tech-
nology moves forward so quickly emphasizes the need to
compare traffic control agent designs carefully; considering
a wide variety of conditions and admitting the availability of
technologies currently on the horizon or just beyond (as in
(Dresner and Stone 2008)).
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