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Abstract

Transfer of learned knowledge from one task to another of-
fers an opportunity to reduce development cost of knowledge-
based systems by reusing existing knowledge in novel sit-
uations. However, minor differences in the initial and tar-
get environments can reduce the effectiveness of the system
substantially. In previous work, we presented a system that
acquired procedural knowledge of American football from
video footage, and then applied it to controlling players in
a simulated environment. In this paper, we extend that sys-
tem by adding the ability to adapt the transferred procedures
to better fit the simulator. We show that even when the trans-
ferred structural knowledge provides a quality starting point
for performance in the game environment, a simple parame-
ter optimization technique can significantly improve its per-
formance and utility.

Introduction

Research into transfer of learning considers the problem of
applying knowledge obtained in one context to improve per-
formance in another. This include the initial acquisition
of knowledge in a source context, mapping of the learned
knowledge into a target context, and adaptation of the trans-
ferred knowledge to improve system performance in the tar-
get. Transfer offers the potential to greatly speed up learning
through reuse of related knowledge. More broadly, it offers
the long-term promise of replacing a one-off software de-
velopment model with a less expensive process of transfer,
adaptation, and reuse.

While much work in transfer of learning has focused on
the reuse of classification knowledge, procedural knowl-
edge transfer concerns the reuse of executable skills, such
as game playing strategies or problem solving behaviors.
The difficulty of the transfer task scales with the differ-
ence between the source and target contexts, so research
often concerns transfer among distinct tasks in the same
domain (Choi et al. 2007; Hinrichs and Forbus 2007) or
analogous tasks in related domains (Taylor and Stone 2005;
Könik et al. 2009).

This paper concerns transfer of procedural knowledge be-
tween two families of tasks in a context that makes contact
with the physical world: from play recognition in American
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football videos into play execution in a simulated Ameri-
can football game. The work presented here begins with
an existing transfer system described by Li et al. (2009b)
that observes football videos, extracts procedural knowledge
structures, and then uses the learned procedures to execute
plays in a simulated game environment. We extend this sys-
tem by adding a parametric learning component that adapts
the transferred structural knowledge to the dynamics of the
target domain by playing games in the target domain and
adjusting numerical parameters to improve performance.

Although the initial work by Li et al. (2009b) demon-
strated the feasibility of structural transfer and demon-
strated qualitative similarity between the behavior in ob-
served videos and simulated environment, performance in
the simulator suffered because the transferred knowledge
was not adapted to the dynamics of the target environment.
The work reported here addresses this limitation with a para-
metric learning component that adapts the transferred struc-
tural knowledge to the dynamics of the target domain by
playing games in the target domain and adjusting numeri-
cal parameters to improve performance. We claim that even
simple parametric adaptation substantially increases the per-
formance and utility of transferred structural knowledge and
we support this claim with experiments. We also argue
that structural knowledge transfer simplifies target play op-
timization by shaping the parameter space. This is based
on the observation that the transferred knowledge structures
provide a starting point and boundaries for the parameter es-
timation algorithm.

The Transfer Task

This work investigates procedural knowledge transfer in the
context of American football. The rules of the game are
complex, but we focus here on individual plays rather than
the entire game. This eliminates questions of long-term
strategy and play selection, and focuses attention on the ex-
ecution of specific sequences. A play begins with the ball
placed near the center of the field horizontally, and at the lo-
cation of the end of the previous play vertically. The team
in possession of the ball (offense) attempts to move the ball
into the opposition’s territory in an effort to score points by
reaching the end of the field. We consider here only pass-
ing plays, in which one player (the quarterback) attempts to
throw the ball down-field to a receiver. The opposing team
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Figure 1: A partial video frame from the source domain.

(defense) attempts to prevent any forward progress by the
offense by interfering with the pass. In the following, we
provide details on the source and target tasks, and introduce
the relevant elements of American football as needed.

The Source Task: Play Recognition

The raw data in our experiments consists of preprocessed
(Hess and Fern 2009) video footage that shows individual
plays executed by the Oregon State University football team
as recorded by an overhead camera. Figure 1 shows a sin-
gle frame from one of the plays. Given the preprocessed
video, the system described by Li et al. (2009b) first per-
forms play recognition to determine what happened during
the play. The system then extracts a hierarchy of executable
procedures that represent the observed behaviors employed
by all of the offensive players. The next section provides a
more detailed review of the transfer system.

The Target Task: Simulated Play Execution

After observing the plays and acquiring procedures for re-
producing the behaviors of the offensive players, the task
then becomes one of executing the same plays in the Rush
2008 football simulator1. Figure 2 shows an initial config-
uration of players in the simulator. The goal here is for the
offense to move the ball down-field as far as possible by exe-
cuting the observed plays. The system controls the offensive
players in Rush by providing commands that control them
on a tick by tick basis. Rush then automates the defensive
players using built-in scripts and controllers. The simulator
returns the outcome of the play in terms of yards gained or
lost. The extended transfer system that we describe here at-
tempts to improve upon the procedures learned by the orig-
inal system by adapting parameters embedded within them
to the simulated environment.

Rush differs from the observed college football setting in
several ways. First, Rush uses eight player teams as opposed
to eleven, and relies on simplified physics (no momentum,
for example). Likewise, the physical characteristics of the
simulated players, such as speed and ability, differ from the
players observed in the videos. The defensive strategies that

1http://www.knexusresearch.com/projects/rush/

Figure 2: An initial play state in the target domain.

Rush applies during simulation also differ from the those ob-
served in the videos. As a consequence, plays that worked
well for Oregon State team may not work well in Rush. Nev-
ertheless, the plays and player behaviors recognized from
the source task provide a useful starting point for adaptation.

The Transfer System

Our system follows a sequence of three steps to acquire and
transfer knowledge from videos into execution of plays in
a simulator. These include low level processing of videos,
construction of executable procedures by explaining ob-
served videos, and adaptation of those procedures to the
target domain by experimentation and parameter learning.
We discuss each of these steps and knowledge representa-
tion they use.

Representation and Execution of Procedural
Knowledge

We use knowledge representation and performance compo-
nents of the ICARUS agent architecture (Langley and Choi
2006) both in the source recognition and target execution
tasks. In the source task, ICARUS uses conceptual back-
ground knowledge about football to observe plays and ex-
tract executable procedural knowledge that encode strate-
gies for football plays. In the target, ICARUS executes the
learned procedural structures to control individual players
in the Rush simulator, and uses feedback from the simula-
tor to adjust parameters on the learned procedures with the
objective of improving performance.

Representation. ICARUS represents concepts in terms of
first-order logic rules similar to Horn clauses (Table 1).
Primitive concepts consist of tests on raw perceptual data.
When matched, they assert the relation given by the head
of the rule. For example, near becomes true when two per-
ceived agents are within a certain distance of one-another.
Non-primitive concepts reference other relations. For exam-
ple, the notion of an open recipient (for a pass) is defined as
an offensive receiver who is not near a defensive player.

ICARUS represents procedures (called skills) with hierar-
chical structures. Each skill has a head that describes a goal,
which is an abstract concept that is expected to be satisfied
at the end of skill execution, and a body that describes meth-
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Table 1: Sample concepts in the American football domain.

((near agent agent )
percepts ((agent agent )
(agent agent )
tests (( (sqrt ( (e pt (- ) )

(e pt (- ) ))) *t res old*)))

((covered-recipient agent agent )
percepts ((agent agent team o ense recipient t)

(agent agent team de ense))
relations ((near agent agent )))

((open-recipient agent)
percepts ((agent agent team o ense recipient t))
relations ((not (covered-recipient agent a ))))

ods for achieving the goal of the skill. The body of primi-
tive skills refer directly to executable procedural attachments
via an actions field, while non-primitive skills reference
other skills via an ordered set of subgoals. Moreover,
each skill has a start field that determines when a skill is ap-
plicable. In Table 2, the non-primitive skill for controlling
the Quarterback specifies subgoals for completing a pass
that will be reactively executed as they are enabled by game
conditions.

Inference and Execution. ICARUS operates in distinct cog-
nitive cycles. At each cycle, it first uses its conceptual
knowledge, by forward chaining on facts asserted in the
global perceptual buffer to infer their transitive closure. It
asserts these inferences into a short-term belief memory.
Next, it considers the top level goal for each agent. If the
concept corresponding to the goal is not satisfied in the cur-
rent state, ICARUS considers decomposing that goal into
subgoals using applicable skills. If ICARUS selects a non-
primitive skill, it considers the subgoals in order to select
the first unsatisfied subgoal and tries to achieve that subgoal
using other skills. The decomposition continues until the
system forms a path of skills starting at the top level goal
and ending at a primitive skill such that the start conditions
of all the skills in the path are satisfied with consistent vari-
able bindings.

At this point, ICARUS instantiates the variables in the
primitive skill and records the action it will need to exe-
cute. ICARUS applies this process for each top-level goal
(one for each offensive player), and then executes the result-
ing actions in parallel. This high-level loop of perception,
inference, action selection, and execution repeats every cog-
nitive cycle. When a subgoal at any point in the hierarchy
is satisfied, ICARUS considers the next subgoal of that skill.
This process continues at all levels of the hierarchy until all
top level goals are satisfied.

As an example, consider the first skill in Table 2. This
skill requires three sub-skills to be executed in sequence.
Note that the execution of any of sub-skill may consume
several time cycles, for example, if the QB has to wait for a
receiver to become clear.

Extraction of Structural Knowledge

Preprocessing of Real Football Videos. As input of our
transfer system, we converted preprocessed versions of the
source videos (Hess and Fern 2009) into a sequence of

Table 2: Sample skills in the American football domain.

((pass-completed passer receiver n-steps)
start ((snap-completed passer ball))
subgoals

((dropped-bac passer n-steps)
(scrambled passer ball)
(pass-completed passer receiver)))

(pass-completed passer receiver-role)
start ((possession passer ball))
actions ((*t ro passer receiver)))

ICARUS perceptions for the architecture to observe. Specifi-
cally, the perceptual representation includes: (1) the 2D field
coordinates of each player at each video frame, (2) player la-
bels describing the functional role of each player (e.g. quar-
terback, running back, etc), and (3) activity labels describ-
ing the low-level activity (such as running or blocking) of
each player throughout the play. We used the activity labels
and player labels generated by Hess, Fern, and Mortenson
(2007) to produce the perception sequence for the play.

Extraction of Procedural Knowledge. The next step is to
construct skills that explain the behavior of the offensive
players in the videos. In previous work, Li et al. (2009b)
used ICARUS to extract skills from football videos using a
learning technique (Li et al. 2009a) they integrated in the
architecture. The input of this system consists of a goal, a
set of concepts sufficient for interpreting the observed agents
behavior, a set of low-level methods available in the environ-
ment, and a sequence of observed perceptual states. The out-
put is a set of executable skills hierarchies, one for each of-
fensive player, consistent with the behavior of the observed
players.

The algorithm runs in three steps. First, the system ob-
serves the video of the game and infers beliefs about each
state, storing the results in belief memory. Next, the agent
explains how the goal was achieved using its background
knowledge. Then, it parses the observation sequence based
on the times when these subbeliefs became true. This expla-
nation process continues recursively until the agent builds
explanations that show what sequence of events and/or
known actions led the agent to achieve its goal. Finally, the
explanation is used to determine the start conditions and sub-
goals of the skill hierarchy.

Mapping executable knowledge to target domain. The
mapping algorithm translates generalized source behavior
represented with ICARUS skills to the target environment.
Since in this research, we have selected the same basic vo-
cabulary (i.e., the player and ball location) for the source and
target domains, the same conceptual knowledge base can be
used to interpret both real video data and Rush events and
therefore no representation mapping (Könik et al. 2009) be-
tween source and target symbols is required. The only re-
maining problem is to map the source players to their target
counterparts since Rush employs fewer players with differ-
ent requisites and a different field size.

Since the source involves eleven players but the target
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only has eight, the mapping algorithm selects and eliminates
three players. It retains any player that touches the ball, al-
ways including the center, the quarterback and one receiver.
Per the rules of Rush football, it must also retain a minimum
of three guards on the line of scrimmage. A source play con-
tains two guards on either side of the center. The algorithm
keeps the two guards that flank the center, but eliminates
the two outermost guards, leaving 9 players on the offensive
team. Thus the problem comes down to eliminating one eli-
gible receiver among the three or four such receivers in typ-
ical source plays. Since the algorithm retains the player that
catches the ball, it randomly eliminates one of the remain-
ing eligible receivers. Finally, the initial positions extracted
from videos are scaled according to new field size in Rush.

Parametric Adaptation in the Target

The parameter learner accepts as input ICARUS skills with
some constant values marked as parameters and a reward
function, executes the skills using different parameter val-
ues to evaluate the reward they return, and updates the skill
parameter values to increase predicted future rewards.

In our current implementation, the parameter learner is
an external wrapper around the ICARUS architecture. How-
ever, in future, we want to make parameter learning part of
the architecture, functioning in conjunction with other ar-
chitectural processes. Therefore, our algorithm improves
the parameters incrementally when the agent experiences re-
ward, without depending on the history of the behavior ex-
cept some summary statistics that are updated incrementally.

In our transfer framework, the arguments that occur in
the top level goal of each player agent are selected as pa-
rameters and the reward function is the yardage gained at
the end of each play. Our system differentiates between
ordinal and nominal parameters that have ordered and cat-
egorical values respectively. For example the parameter-
ized top level goal of the quarterback (pass-completed
QB *receiver *qbDropSteps)can be achieved us-
ing the first skill in Table 2 for specific parameter values for
the nominal parameter *receiver (the player the quar-
terback is going to throw the ball), and the ordinal parame-
ter *qbDropSteps (number of steps the quarterback runs
back once he receives the ball). We use the convention that
the first argument (here, QB) denotes the player the goal be-
longs to and that argument is not parameterized. Our current
implementation assumes a method for specifying the legal
range and step size for ordinal parameters and legal values
for nominal parameters.

Our system start optimizing the parameters of a skill set
by starting with their initial values and perturbing those val-
ues one parameter at a time. It executes the skills to perform
the task (a play in our case) for each new parameter setting a
few times and returns an average reward. The system selects
which parameter to perturb randomly, but the probability of
choosing a parameter is proportional on expected reward im-
provement. More precisely, the probability of choosing a
parameter depends on the average reward improvement his-
torically observed when perturbing that parameter.We use
the Laplace notion to assign an initial reward improvement
credit to each parameter so that previously unselected pa-

rameters have some non-zero probability of being selected
for perturbation.

The parameter learner maintains a personal best, a record
of the highest reward that has ever been received and the
complete parameter setting that produced that reward. It also
records how long it has been since it has set a new personal
best. Using that information, the longer the system has gone
without setting a new personal best, the greater the perturba-
tions it is willing to make on the parameter values.

When an ordered parameter pi is selected for perturbation,
if this is the first time this parameter has been chosen since
a personal best was set, then the magnitude of the perturba-
tion is set to the step-size of the parameter (the intuition is
that the step-size specifies the minimum amount of change in
the parameter that is worth thinking about for reward maxi-
mization). A direction (one of ”increasing” or ”decreasing”)
is chosen at random. The magnitude together with the di-
rection of perturbation is added to the previous value of this
parameter to produce the new value. If this parameter is cho-
sen again (on another iteration) in between setting a personal
best, then the step size on each such occasion is increased by
si. Thus, the agent searches further and wider until it sets a
new personal best score. If it reaches the limit (minimum
or maximum) of the parameter, it resumes its search by set-
ting the step size down to its initial value (si) again. If a
significant improvement in reward is experienced after per-
turbation of a parameter, then that same parameter is locked
in for the next iteration - the previously used step-size and
magnitude are retained and the agent simply takes another
step in that good direction in parameter space.

If a nominal parameter is chosen, the agent chooses a
value at random, with probability depending upon how
much reward was historically obtained when choosing that
value. More precisely, the probability of a value being
chosen is computed by taking the mean reward associ-
ated with that value and subtracting its standard-deviation
(variability)2. Only 3 running totals per value need be
kept in memory to support online computation of mean and
standard-deviation, therefore the current memory require-
ment is linear to the number of parameters and independent
of the length of the history making our algorithm incremen-
tal.

Transfer Experiments
In this section we describe the methodology and results of
our transfer experiments. Our goal is to show that our trans-
fer system creates agents with good performance and param-
eter learning contributes to the effectiveness of the transfer
system.

Methodology

In this paper, our focus is the case where initially our sys-
tem does not possess any executable target knowledge and
all such knowledge must be transferred from the source do-
main. This scenario does not permit a methodology that
compares a transfer agent against a non-transfer agent be-
cause the non-transfer agent would always achieve zero per-
formance. Instead, we show that our system achieves posi-
tive transfer (positive average yardage), parameter learning
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Figure 3: Comparison of transfer agents on play13.

in the target improves upon skills structurally transferred
from source, and the performance of the transferred knowl-
edge is comparable to the performance of build-in Rush
agents.

To measure the effect of target learning on transfer, we
compared the performance of agents generated by three
transfer systems against hand-coded agents. The first sys-
tem is a baseline system (Tb) that transfers structure and pa-
rameters from the source but does not apply target learning,
the second system applies parameter learning starting with
structures and parameters transferred from source (Tsp), and
the third system employs target learning only on transferred
structures using random initial parameters (Ts). We com-
pared the performance of the agents generated by these sys-
tems against manually coded agents (M) written in Rush
script language designed to generate behavior similar to the
input videos.

We randomly chose two plays to which we applied the
source recognition and target learning. For each agent in
each play, we performed five repetitions - the learning curves
in Figures 3 and 4 are averages over these five repetitions
(each learning curve took 1-2 days of CPU runtime (˜2Ghz)
to produce, which limited how many plays we could use for
our experiments).

Results

In both scenarios, the final agents created by transfer sys-
tems that employ learning (Tsp, Ts) gained significant
yardage, and after learning, they outperformed manually
coded agents. In Play 63 (Figure 4), target learning signifi-
cantly improved the performance of transferred agents (Tsp,
Ts) and they outperformed the agents of the transfer system
that does not employ target learning (Tb). The effect of tar-
get learning was also positive but not as dramatic in Play13,
because the transferred agents were already performing at
the level of hand-coded agents or better.

Our experiments show that both structural and parametric
transfer contribute to the performance of transferred agents.
In our system, structural transfer is crucial because the pa-
rameters are variables of the transferred structures and they
are meaningless in the absence of those structures. Our
results confirm that transferring parameters in addition to
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Figure 4: Comparison of transfer agents on play63.

structures is also useful because starting with good parame-
ter values can help the learning algorithm to converge faster
or to avoid local minimas. For example, in Figure 4, we ob-
serve that Tsp converges faster than Ts and in Figure 3, Ts
does not catchup with Tsp. These observations confirm the
added value of transferring parameters.

Related Work

Research on procedural knowledge transfer is rare in com-
parison with work in a classification setting, but it shares an
evolution towards producing transfer between increasingly
distant source and target tasks. This work is often conducted
in a reinforcement learning framework, where the object of
transfer is a value function (Taylor and Stone 2005). This
form of transfer requires auxiliary mappings between do-
main states and actions, and the technology for acquiring
those mappings can become quite involved as the gap be-
tween source and target environments grows. For exam-
ple, Liu and Stone (Liu and Stone 2006) employ a struc-
ture mapping engine to find analogies among qualitative dy-
namic Bayes nets expressing soccer keepaway tasks, while
Kuhlmann and Stone (Kuhlmann and Stone 2007) develop
a graph-based method for identifying large scale structures
(e.g., rectilinear grids) in previously encountered games.
Torrey et al. (2006) transfer situation-action rules obtained
by ILP techniques (again, among keepaway tasks), but em-
ploy them to provide advice for constructing a value func-
tion.

Research on transfer in the context of cognitive architec-
tures tends to communicate more structured skills. For ex-
ample, Gorski and Laird (2006) port executable SOAR rules
representing topological knowledge (maps, locations, and
routes) among path finding tasks. As in the reinforcement
context, this form of transfer requires sophisticated machin-
ery to bridge distinct source and target domains. For ex-
ample, Hinrichs and Forbus (2007) use analogical mapping
to transfer case-based decision rules among Freeciv tasks,
while Könik et al. (2009) develop a goal-directed analogi-
cal reasoning algorithm to transfer skills between grid-based
games that lack shared symbols and subgoal structure.

Our work on reusing recognition knowledge for play de-
sign continues this trend towards disparate source and tar-

463



get tasks. However, in contrast with the above, we bridge
distinct purposes versus representations. This shifts empha-
sis from the mapping technologies that enable transfer onto
the power of the skill representation itself. Like Choi et al.
(2007) who argue that the generalization inherent in ICARUS

skills naturally supports performance in similar tasks, we ar-
gue that the structure of such skills natively biases learning
after transfer. That benefit can be exploited by simple meth-
ods, such as plan critics that date back to Hacker (Sussman
1975) and NOAH (Sacerdoti 1977).

Summary

This paper has presented a system that accomplishes proce-
dural knowledge transfer between distinct families of tasks;
from recognition of American football plays into play de-
sign for a different variant of the game, beginning with raw
video footage. The work has the character of an application
study, in that it involves significant integration of multiple
technologies.

Our experimental results demonstrate first that the task is
feasible, and second that the transfer is strong, it generates
comparable results to hand-coded agents. Moreover, even
simple parametric target learning can significantly improve
the performance and usefulness of transferred structures.

Since our transfer system is based on a general cogni-
tive architecture, we are able to make a clear distinction be-
tween domain dependent knowledge and domain indepen-
dent mechanisms. All components of our transfer system
except low level video preprocessing, is domains indepen-
dent and could in principle be applied to different problems
by changing only background knowledge.

Our current work expands on this theme. We are work-
ing on structural learning, which would further adapt trans-
ferred knowledge to the target domain. Other fruitful fu-
ture directions include synthesis of new plays by merging
knowledge extracted from multiple source plays, and learn-
ing play selection based on capabilities of the offensive and
defensive teams. Although our work focuses on a single ap-
plication domain, it shows promise of transferring data from
real world to generate software agents automatically.
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