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Abstract 
I have taught Introduction to Natural Language Processing 
several times at Northern Illinois University. Since the 
students are more interested in the Python code that holds 
the assignments together than in the NLP content, over time 
I have cut back on linguistic content and added to the 
programming content. This year I renamed the course 
“Introduction to NLP in Python” and spent the first few 
weeks teaching Python from scratch. This decision has been 
very successful. The syllabus interweaves Python topics, 
core NLP topics, and essential computer science topics I 
feel every student should learn before graduating. In this 
paper I describe the motivation for teaching the course this 
way, the syllabus and its rationale, and prospects for 
expanding the course to two semesters. 

Introduction  

I have taught Introduction to Natural Language Processing 
several times at Northern Illinois University. Since the 
students are more interested in the Python code that holds 
the assignments together than in the NLP content, over 
time I have cut back on linguistic content and added to the 
programming content. This year I renamed the course 
“Introduction to NLP in Python” and spent the first few 
weeks teaching Python from scratch. This decision has 
been very successful. 
 Although I had to remove some linguistic content to 
make this change, it was all theoretical material: I did not 
have to remove any material that was needed for a 
programming assignment. Earlier versions of this course 
that were more linguistics-oriented are described in 
Freedman (2005, 2008). 
 The syllabus interweaves Python topics, core NLP 
topics, and essential computer science topics I feel every 
student should learn before graduating. In this paper I 
describe the motivation for teaching the course this way, 
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the syllabus and its rationale, and prospects for expanding 
the course to two semesters. 
 I chose Python because I like Python, because there is 
excellent pedagogical software for teaching natural 
language processing in Python with an accompanying 
textbook (NLTK; Bird, Klein, and Loper 2009), and 
because we didn’t already have a course in Python. 
Additional advantages for programming in Python are that 
it gives us another chance to teach good programming 
style, and it enables us to give the students a tiny taste of 
functional programming, which should also improve their 
programming style and throughput. 
 In this paper I describe my experience teaching NLP to 
students with no previous background and the syllabus I 
have developed as a result. An overview of the syllabus is 
shown in Figure 1. 

Student background 

 Northern Illinois University is a large state university 
located about 60 miles west of Chicago. NIU has a B.S. 
program in computer science and a coursework oriented 
M.S. Most undergraduate majors come from the suburbs of 
Chicago or from small towns near the university. Some of 
the graduate students come from a similar background, but 
most are international students. 
 For the majority of students, undergraduate and 
graduate, the preferred career path is generally to obtain a 
programming job in local industry, preferably in a hi-tech 
area. Most undergraduates who take the course do so out 
of a desire to do something different from their required 
courses. Many of the graduate students are looking for a 
course that does not require the prerequisites of their core 
courses. The possibility of learning a new computer 
language that might help them in the job market is a strong 
draw. Some graduate students are also interested in 
improving their programming skill by starting over in 
another language. 
 The following background information has influenced 
the design of the course. The information is derived from 
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talking to prospective and actual students as well as from 
several years of anonymous course evaluation forms from 
Introduction to Artificial Intelligence and Introduction to 
NLP. 
 1. Motivation for taking the course. Students are taking 
the course for fun or to learn Python. They are unlikely to 
need specific NLP content in their future careers. 
 
 2. Linguistic background. Students have never studied 
linguistics and are not particularly interested in it. In 
general, they are not familiar with the common syntactic 
constructions of English taught in traditional English 
grammar and are often unsure about parts of speech, even 
though most have studied a foreign language in high 
school. 
 
 3. Academic sophistication. Students are used to getting 
information from the web and are uncomfortable having to 
use offline reference materials. They are not comfortable 
with or interested in traditional academic prose or research 
papers. They expect to have everything they need for each 
assignment explicitly taught in class. 
 
 4. Programming ability. Students are not familiar with 
programming languages other than conventional 
imperative languages such as C++, Java, and .NET. They 
have a wide range of programming ability, where the best 
have professional-level skills and the weakest should 
probably not be in a graduate class. 

Course goals 

The course has three goals: 
 1. Give students a general background in the issues 
involved in handling written text, some of the most 
common applications, and some of the most widely used 
algorithms. 
 2. Provide students with a productive experience in a 
modern programming language. 
 3. Teach students a number of useful concepts that they 
might not otherwise come across in their course of study. 
These topics include: 
 
•  Bayes’ Law (e.g., spelling correction) 
•  Dynamic programming (e.g., chart parsing) 
•  Regular expressions and finite-state machines 
•  Context-free grammars 
•  Text mining via rule induction (C4.5) 
 
The following sections of the paper describe the most 
important units of the course, showing how they use the 
principles stated above to contribute to these goals. 

Python 

Basic Python 
I teach Python from scratch for two reasons. For the 
stronger students, I want them to have an opportunity to 
learn a new programming style from scratch. For the 
weaker students, I want to give them the opportunity to 
catch up. As computer science majors, the students tend to 
find that the treatment of Python in the NLTK textbook 
does not answer enough of their technical questions, such 
as issues on argument handling and copying of objects 
vs. references to them. 
 I give several lectures on Python, including the 
following topics: 
 
•  Basic data structures 
•  Basic control structures 
•  Functions 
•  File handling 
•  Associative arrays 
•  Options for implementing trees 
•  Basic functional programming 
•  Objects 
 
I also give several lectures on Python libraries, including 
the following topics: 
•  GUI programming with Tkinter 
•  Reading and parsing web pages 
•  Regular expressions 
 
The online Python tutorial (http://docs.python.org/tutorial) 
is the main reference for the topics in the first group. I also 
use the Python tutorial for GUI programming. I use the 
Dive into Python web site (http://www.diveintopython.org) 
for regular expressions and web programming. I have not 
found a good reference for teaching about objects in 
Python or for the Python memory model. 
 Although it is easy to find references for the functional 
programming constructs themselves, I have not found a 
good reference for motivating students to use these 
constructs or for helping them learn to visualize their 
programs in terms of these new constructs. 
 This section of the course basically covers the material 
in chapters 1–4 of the NLTK textbook. In the end students 
cope well with a language that allows them to code much 
faster than C++ with less debugging. They all learn to use 
Python lists and associative arrays (dictionaries). Most 
learn to use some of the functional programming 
capabilities available, such as list comprehensions, 
although not to the degree I would like. 

Allowing for student differences 
To prevent the best students from getting bored, I allow 
them to use any construct or library they like, whether I 
have taught it in class or not. I also permit them to use 
other GUIs, as some feel strongly that wxPython is 
superior to Tkinter. 
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Week 1:   Program 1 – Counting letters and words; using the compiler and editor 
Week 2:   Homework 1 – Simple functional programming practice 
Week 3:   Program 2 – Count by first letter; use of associative array (Python dictionaries) and data files 
Week 4:   Program 3 – Web programming with urllib; functions and objects 
Week 5:   Program 4 – Interactive Eliza-like system; regular expressions 
Week 6:   Program 5 – GUI front-end to an earlier assignment; Tkinter 
Week 7:   Program 6 – Part-of-speech tagging; serialization via the pickle module 
** First exam 
 
Week 8:   Program 7 – Email spam classifier; text mining with C4.5, regular expressions to identify features 
Week 9:   Program 8 – Parsing with finite state machines 
Week 10: Program 9 – Parsing with context-free grammars; implementations of trees 
** Choose project topics 
Week 11: Homework 2 – Earley’s chart parsing algorithm; dynamic programming (paper/pencil) 
Week 12: Program 10 - Information retrieval with tf–idf 
Week 13: Homework 3 - Spelling correction via Bayesian statistics (paper/pencil) 
** Second exam 
 
Week 14: Slack – could be used for latent semantic analysis or another theoretical topic 
Week 15: Project presentations 
 

Figure 1: Outline of syllabus 
 
 
 Later on in the course, I let them use the data mining 
algorithm of their choice. Many prefer support vector 
machines (SVM, Vapnik 1995) because they have learned 
it in our pattern recognition class. I prefer C4.5 because it 
produces a decision tree rather than just a binary decision, 
and because I would like to show how machine learning 
can be accomplished with only elementary mathematics. 

Use of Python libraries 
The course includes several topics based on well-
established existing libraries. These topics include simple 
web programming, regular expressions and GUI 
programming. 
 I teach simple web programming, e.g., how to access a 
web page from a program. First, it’s useful and it impresses 
students as to how easy it is to do in Python. Second, more 
advanced usage, such as HTML or XML parsing, gives 
them an opportunity to practice functions and objects. 
Finally, accessing web content from a program is a skill 
highly desired by students. 
 I teach regular expressions for two reasons. In addition 
to being required for continued use of the NLTK textbook, 
regular expressions are an important idea that students do 
not necessarily encounter in another programming class. 
We experiment with Rocky Ross’ interactive web site 
(Pascoe 2005) and a web site where students can build 
their own tables at http://scoter3.union.edu/~hannayd/ 
csc350/simulators/FiniteStateMachine/fsm.htm. 
 As an example of an NLP application, albeit a shallow 
one, that can be implemented with regular expressions, we 
experiment in class with Eliza, trying both to make it work 
and make it fail. I give out a list of versions available on 
the web, and students can easily find more. In class I often 

use the emacs built-in version. I then give out copies of the 
original Eliza paper (Weizenbaum 1966), which contains 
the original script in an appendix, although the coding style 
in that paper is not useful for students to emulate. 
 The first major project in the course is to write their own 
Eliza-type program. Students choose a realistic but limited 
domain such as a database front-end. This project is 
implemented in Python as a rule-based system with heavy 
use of regular expressions. If the class is small enough, I 
have students do a short presentation of their domain, 
including a sample conversation, before they write their 
code. After the projects are due, they present their results 
to the class. 
 Finally, I teach Tkinter because it’s easy to learn and 
students benefit greatly, both for class projects and 
elsewhere, by knowing a GUI framework. Some of the 
better students prefer wxPython. 

NLP 

This section of the course covers key sections of chapters 
5, 6 and 8 of the NLTK textbook. 

Part-of-speech tagging 
 I follow the treatment in the NLTK textbook, which starts 
from a simple baseline and adds features to improve 
accuracy. Although most of the students have no intrinsic 
interest in parts of speech, the more adventuresome ones 
appreciate this unit because they enjoy tweaking the 
features and increasing the size of the training set to 
improve the accuracy of the algorithm. I confine my 
comments in class to the common parts of speech that they 
already know. An important principle students learn during 
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this unit is that accuracy is strongly affected by the 
quantity of training data used. 
 I also teach the use of Pickle to create persistent objects 
at this point because a tagger good enough to handle the 
test data is quite large. 

Text mining 
Next I present a simple approach to text mining using C4.5 
(Quinlan 1993). The project for this unit involves 
identifying spam in a corpus provided by the makers of 
SpamAssassin (http://spamassassin.apache.org/public 
corpus/). Students enjoy guessing features in email headers 
and text that might indicate spam. They write regular 
expressions to identify these features, then use the data 
acquired as input to the classifier. 

Finite state machines 
Finite state machines are another topic that I believe 
students should not graduate without being exposed to. My 
linguistically naive students are more willing than most 
linguists to believe that FSMs can be used to recognize 
English. It is interesting to note that their FSMs are quite 
different from those derived by linguists. From a Python 
point of view, FSMs are another application of the 
dictionary data type, which is one of Python’s most 
versatile creations. 

Context-free grammars and parsing 
I present several approaches to parsing, since many 
students will not otherwise see context-free grammars in 
their studies. These include the top-down recursive descent 
parser, the bottom-up parser, and the chart parser described 
in the NLTK book. NLTK has some beautiful demos that 
show these parsers running step by step. These demos are 
extremely helpful in showing students how the parsers 
work. 
 The assignment for this unit involves writing a small 
CFG to handle the same sentences as the FSM assignment. 
By this time students have acquired some fluency with the 
common parts of speech, although their CFGs are again 
quite different from those a linguist would develop. NLTK 
returns the parses as parenthesized trees, which means that 
this is a good time to demonstrate different ways to 
implement trees in Python, as Python does not have a 
primitive tree data type. 
 Since the reaction of a previous class to Earley’s 
algorithm was “we understand it; it’s just not interesting,” I 
frame Earley’s algorithm as an example of dynamic 
programming, again a topic that I feel students should not 
graduate without knowing. 

Information retrieval using tf-idf 
As an example of a numerical technique I teach 
information retrieval using tf-idf (Salton 1988). This year I 
used each of the 70,000 sentences in the Brown corpus as a 
“document.” Students were impressed by the behavior of 

such a simple formula. The Porter stemming algorithm 
(Porter 1980) is an ugly but practical way to remove 
prefixes and suffixes from words. I teach it at this point so 
that students can try information retrieval with and without 
stemming, a well-known issue in information retrieval. I 
use the treatment of it in Jurafsky and Martin (2009). 

Spelling correction via Bayes’ Law 
I present Kernighan, Church and Gale’s (1990) Bayesian 
approach to spelling correction, as explained by Jurafsky 
and Martin  (2009, section 5.9). 
 Kernighan et al. choose the correction that maximizes 
P(t|c)P(c), where t is the typo and c is a candidate 
correction. I teach briefly about Bayes’ Law in general, as I 
feel it is a topic every computer scientist should have in 
their toolbox. Many students have studied Bayes’ Law in a 
statistics class, but have not seen it used in this fashion. I 
motivate Kernighan’s formula by showing a picture of the 
veery, a small brown bird. Although duplicating a letter is 
a common typo, “veery” is an uncommon word and is 
unlikely to be the one intended by the average student. 
 Students choose a corpus and replicate Kernighan’s 
calculations. They then compare their results to results 
from their favorite word processor. They are generally 
surprised at how similar the results are from what they 
originally see as an unmotivated calculation. They are 
always surprised to learn that spelling correction is 
generally not done by a lookup process. They are also 
surprised to learn that results are largely independent of the 
corpus chosen. 
 I also demonstrate approximating word frequencies by 
page counts in Google, along with a discussion of the 
advantages and disadvantages of doing so. In general, 
students prefer to obtain word frequencies from one of 
corpora included with NLTK or a similar corpus 
downloaded from the web. 

Course project 

Once most of the programming assignments for the course 
are complete, I introduce the course project. To give 
students time to work on it, I save some of the paper-and-
pencil simulations for the end of the semester. 
 I give students a list of several possible projects, 
including an interactive conversation system or game, a 
text mining project, or extending the part-of-speech tagger, 
FSM or CFG they have already built. Students can also 
develop their own project. I encourage international 
students to redo the part-of-speech tagger, FSM or CFG 
assignment in their native language; however, most 
students prefer a programming project or an extension of 
the text mining assignment. For weak programmers, I 
provide some non-programming projects such as 
evaluating a tagger or evaluating one of the large 
probabilistic parsers currently available. 
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Future work 

Now that the concept of teaching NLP by carefully 
sequenced Python programs has been established, I would 
like to extend the course to a second semester. Python 
topics requested by students include a more detailed 
treatment of modules, objects and the memory model, and 
additional web programming. 
 I would like to include several more fundamental 
computer science topics in the second semester. Instead of 
utilizing the top-down and bottom-up parsing algorithms 
included in NLTK, I would like students to learn 
backtracking by writing their own versions of these 
algorithms. 
 A major component of the second semester will be 
algorithms for handling spoken language, including the 
Viterbi algorithm and the use of HMMs. I would include 
backtracking, the Viterbi algorithm and the use of HMMs 
in the category of general purpose algorithms that all of our 
students should learn before graduating. The actual spoken 
language understanding and generation will be done with 
packages. I would also like to include the use of 
VoiceXML as a easy way for students to build an 
interactive system. 
 Finally, I would also like to find a good application for 
introducing constraint satisfaction, as I feel that this is a 
valuable technique that is not often taught. 
 I know students would like to do some game 
development, perhaps using Pygame. While I would like 
them to learn the basics of event-driven programming, I am 
afraid that the details of game development would 
overwhelm the value of the assignment. 
 There are also additional NLP topics available in the 
NLTK book and elsewhere that I have not yet tried to teach 
in this format, including other types of grammars and 
statistical machine translation.  
 NIU scheduling for the M.S. program works best when 
students can start in any semester. For this reason the 
second course needs to be independent of the first rather 
than requiring it as a prerequisite. My proposed syllabus 
for the second course contains about three weeks of 
overlap at the beginning to make it available to students 
with no Python background. Since one of these weeks 
covers programming style and functional programming, 
which students always need more practice in, there are 
only two weeks of overlap. At that point it is reasonable for 
students to receive credit for both courses. 

Conclusions 

This paper describes a syllabus for teaching NLP to 
computer science majors with no background in linguistics. 
The course includes carefully sequenced Python 
programming assignments that teach Python programming, 
the fundamentals of NLP, and some algorithms every 
computer scientist should know in an organized fashion. 
This course has been successfully taught to undergraduates 
with a strong programming background as well as to 

international graduate students with a wide range of 
undergraduate preparation. They have enjoyed learning 
Python and have learned something new about language 
processing. I have enjoyed keeping up with natural 
language processing in a way that is only possible from 
detailed programming. Both of us have enjoyed having 
novel assignments in a programming class. 
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