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Abstract

Many real world applications require managing both system
requirements and user preferences where the latter are usu-
ally provided in a qualitative way. We introduce a new ap-
proach to handle these two aspects, in an efficient way, re-
spectively through Constraint Satisfaction Problems (CSPs)
and CP-nets. In particular, we use Arc Consistency (AC) in
order to reduce the search space needed when looking for the
optimal outcome in an acyclic CP-net. More precisely, as-
suming that there are always some shared variables between
the CP-net and the CSP, our approach works by first applying
AC to the CSP and then update the CP-net with the remain-
ing variables values. The resulting simplified CP-net will
then be used to look for the best outcome. Experimental tests
conducted on randomly generated problem instances clearly
show the effect of AC on the size of the search space and the
time needed to find the best outcome.

Introduction

One of the main issues in building decision-making sys-
tems is to represent and handle user preferences (Boutilier
et al. 2004; Rossi, Venable, and Walsh 2008; Boutilier et al.
2001). Preferences can take different structures and forms
(Mouhoub and Sukpan 2008; 2012). Qualitative user prefer-
ences can be represented as preference statements under the
ceteris paribus assumption via Conditional Preferences net-
works (CP-nets) (Brafman and Dimopoulos 2003; Boutilier
et al. 2004). In addition to preferences, many decisions
take place under hard constraints or problem requirements
(Rossi, Venable, and Walsh 2008; Boutilier et al. 2001;
Mouhoub and Sukpan 2012). Therefore, reasoning about
preferences within a constrained environment is an impor-
tant step towards building decision support systems. For ex-
ample, in an online flight reservation system, a user may
prefer to have an aisle seat while the hard constraint could
be, for instance, the flight departure time. In this paper, a
new approach is introduced to determine the optimal out-
come for the CP-net with respect to a set of hard constraints,
defined through the Constraint Satisfaction Problem (CSP)
paradigm.

A CSP is a well known framework for representing and
solving problems under constraints. Since solving these
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problems is in general NP-hard, constraint propagation tech-
niques such as Arc Consistency (AC) have been proposed to
reduce the size of the search space before and during the
search (Mackworth 1977; Kumar 1992; Dechter 2003). In
order to handle constraints and preferences in an efficient
way, we use constraint propagation through AC in order to
reduce the search space used later by the CP-net for finding
the best outcome. More precisely, in our approach prefer-
ences represented by an acyclic CP-net are brought forward
and ultimately, the impact of adding a set of constraints to
the problem is observed. The search for the best feasible out-
come rather than simply the best outcome is the focus. That
is, the best outcome satisfying the set of constraints. Clearly,
adding constraints could result in eliminating several scenar-
ios or outcomes from the corresponding CP-net. For exam-
ple, assume x1y; > T1y2 > T2y > T2yo is the pre order
for a CP-net involving the values {x1,z2} and {y1,y2} for
variables X and Y respectively. Now assume that the con-
straint C'(X,Y") does only allow the tuples (z;,y;) when
i # j. Obviously, this makes z1y; and xoys not feasible
according to C'(X,Y"). Therefore, z1y; is no longer the best
outcome but x> is. These types of inconsistencies can eas-
ily be detected and removed if the CSP with AC is used to
manage hard constraints. More precisely, our approach con-
sists of applying AC first in order to remove some of the
inconsistent values. The result is a new CP-net where some
domains values are removed from the network. Ideally, this
can result in a huge decrease in the search space. By discard-
ing these inconsistent assignments for the CP-net, the dis-
covery of the optimal outcome will be obtained in a shorter
period of time. In addition, AC is performed in polynomial
time which means that the extra cost due to this propagation
technique does not affect the overall running time as demon-
strated by the experimental tests we conducted on randomly
generated instances and reported in this paper. Note that if
one of the variables domain becomes empty during the AC
process, the CSP is inconsistent in this case and there is no
need to look for an optimal solution since a feasible one does
not exist.

Recent research work on managing qualitative prefer-
ences and constraints include the Constrained CP-net (Prest-
wich et al. 2004), where the CP-net is first converted into
a set of hard constraints. The solution to the new constraint
network is then the optimal solution to the CP-net. (Boutilier



et al. 2001) proposed a different approach to handle con-
straints with CP-nets, however, the problem of pruning vari-
ables values and CP statements before searching for best
outcome was not discussed. We are not aware of any solving
system using constraint propagation when managing quali-
tative preferences through CP-nets and hard constraints.

The rest of the paper is structured as follows. Literature
review on related work is first covered in the next section.
Following that, we introduce in the third section our new
approach managing CSPs and CP-nets. More precisely we
present our approach by applying arc consistency to the CP-
net with constraints. Experimental results evaluating the
performances of our techniques are reported in the fourth
section. Finally, conclusion and possible future works are
listed in the last section.

Background
Conditional Preferences networks (CP-nets)

A Conditional Preferences network (CP-net) (Boutilier et
al. 2004; Brafman and Dimopoulos 2003) is a graphical
model to represent qualitative preferences statements includ-
ing conditional preferences such as: “I prefer A to B when
X holds”. A CP-net works by exploiting the notion of pref-
erential independency based on the ceferis paribus (with
all other things being without change) assumption. Ceteris
Paribus (CP) assumption gives us a clear way to interpret
the user preferences. For instance, I prefer A more than B
means I prefer A more than B if there was no change in the
main characterstics of the objects. A CP-net can be repre-
sented by a directed graph where nodes represent features
(or variables) along with their possible values (variables do-
mains) and arcs represent preference independencies among
features. Each variable X is associated with a ceteris paribus
table (denoted as C'PT(X)) expressing the order ranking
over different values of X given the set of parents Pa(X).
An outcome for a CP-net is an assignment for each variable
from its domain. Given a CP-net, the users usually have
some queries about the set of preferences represented. One
of the main queries is the best outcome given the set of pref-
erences. We say outcome o; is better than outcome o; if
there is a sequence of worsening flips going from o; to o;
(Prestwich et al. 2004). A Worsening flip is a change in
the variable value to a less preferred value according to the
variable’s CPT.

Constraint Satisfaction Problems (CSPs)

A Constraint Satisfaction Problem (CSP) (Dechter 2003) is
a well-known framework for constraint problems. More for-
mally, a CSP consists of a set of variables each defined on a
set of possible values (variable domain) and a set of relations
restricting the values that each variable can take. A solution
to a CSP is a complete assignment of values to variables
such that all the constraints are satisfied.

Arc Consistency

A CSP is known to be an NP-Hard problem. In order
to overcome this difficulty in practice, several constraint
propagation techniques have been proposed (Dechter 2003;
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Kumar 1992). The goal of these techniques is to reduce the
size of the search space before and during the search for the
solution to the CSP. One of the well-known constraint prop-
agation techniques is called Arc Consistency (AC) (Mack-
worth 1977). The aim of AC is to enforce a 2 consistency
over the constraint problem. More precisely, the 2 consis-
tency consists in making sure that for each pair of variables
(X,Y) sharing a constraint, every value a from X’s domain
has a corresponding value in Y’s domain such that the con-
straint between X and Y is satisfied, otherwise a is elimi-
nated.

Arc Consistency for the CP-net under
Constraints

While a CP-net is a powerful model for representing quali-
tative preferences (Rossi, Venable, and Walsh 2008), man-
aging both hard constraints and preferences is required in
many real world applications (Mouhoub and Sukpan 2008;
2012; Ghavamifar, Sadaoui, and Mouhoub 2011). In these
situations, it is important to determine the best solution to
the CP-net with respect to the set of hard constraints that we
represent with a CSP. It should be noted that satisfying a set
of hard constraints is often more important than satisfying
the user’s preferences statements due to the nature of the
preferences and constraints. Constraints mostly represent
strict system requirements while preferences represent a
pre-order likelihood over a set of features. As a result, in
our proposed approach, with respect to any CP-net there is a
CSP behind it representing the hard constraints. Following
this representation, when looking for the best outcome
we will first run arc consistency in order to remove some
inconsistencies (which will reduce the size of the search
space) and then look for the best outcome in the simplified
CP-net.

The result of updating the CP-net with the AC changes is
a new CP-net that we call Arc Consistent CP-net (ACCP-
net). In order to update the CP-net (into the ACCP-net) after
arc consistency, we propose an algorithm that traverses over
the shared variables (variables that belong to the CSP and
the CP-net) in the CP-net and removes the domain values
that have been eliminated during the AC process. As a con-
sequence for removing a domain value = from the CP-net
variable X, we remove = from the CPT(X). We also re-
move any cp-statement that contains «x in the set of children
of X. For each shared variable, we use X to refer to the
variable in the CP-net and X to refer to the corresponding
variable in the CSP. The following pseudocode illustrates
our proposed algorithm. Checking the consistency of a vari-
able X is straightforward. We simply check the cardinality
of the domains, i.e. |[dom(X)| # |dom(X)]. Since for each
CP-net variable X there is a set of parents Pa(X), we refer
to the set of different instantiations of the parents in CPT(X)
as pa(X). The time complexity of the this approach is as fol-
lows assuming N is the number of variables, e the number
of constraints, d the largest domain size of the variables and
m the largest CPT in the network. We use AC-3 (Bessiere
et al. 2005) for the arc consistency and the corresponding



Algorithm AC for the CP-net under Constraints

procedure generateACCP—net

input
CSP C' after applying AC
CP—net N
output
CP—net reflecting AC changes
begin

for each shared variable X in N
if —isConsistent(X,X)
for each z; € dom(X)
if x; ¢ dom(X)
remove z; from dom(X) and CPT(X)
for each Y € Children(X)
for each statment S e CPT(Y)
if z; € pa(S)
remove S
end

cost is O(ed?). In the worst case scenario, the cost of the
ACCP-net algorithm is N (d + m).

Testing Optimality

Consideration is given to the query of finding the best as-
signment with respect to a set of constraints. The optimal
solution for an acyclic CP-net N is the one with the mini-
mum worsening flips according to IV (Boutilier et al. 2004;
Brafman and Dimopoulos 2003). The best outcome can be
computed by assigning each variable to its most preferred
value throughout the network . Note that in the presence of
constraints, an optimal assignment A can be infeasible. In
this case, a solution should be investigated where A satis-
fies the set of constraints C' while minimizing the number of
worsening flips.

Experimentation

In order to evaluate the performances of our proposed tech-
niques, we have conducted several experiments on randomly
generated instances. All the experiments are conducted us-
ing our solver integrating the algorithms managing the CSP
and the CP-net. The solver is coded in Java programming
language, under NetBeans 6.9.1 environment. The operat-
ing system used in the experiments is Mac OS X, version
10.6.7. The computer specifications are 2 GHz Intel Core
17 and 4 GB of RAM. Each experiment consists in running
the solving technique on 100 instances and then take the av-
erage time needed to find the best outcome. The problem
instances are randomly generated using the Model RB (Xu
and Li 2000). The reason for choosing this model is that it
has exact phase transition and the ability to generate asymp-
totically hard instances. The constraint tightness is defined
as the ratio of the number of allowed tuples to the total num-
ber of possible combinations (cartesian product) (Beek and
Dechter 1997). The tightness for a given problem is the ratio
over all constraints tightness in the problem. The following
two experiments are performed, given a tightness range, to
evaluate the response time needed to find the best outcome.
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In each experiment, the tightness is altered and the average
time over 100 runs needed to find the best solution is cal-
culated. Figure 1 shows the time needed to find the best
outcome when the ratio of the constraint density for each
problem is 50%. On the other hand, Figure 2 represents the
results when the instances are generated using the Model RB
without restrictions. Thus, the tightness ratio is randomly
selected for each problem. As we can easily see in both fig-
ures, arc consistency has a great effect on the response time
especially with a large number of variables.
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The following two experiments are performed with differ-
ent constraint tightness ratio. The goal here is to show the ef-
fect of applying arc consistency in terms of the total number
of possibilities. Figure 3 shows the number of possibilities
for CP-nets and CSPs with 50% tightness ratio. Eliminat-
ing some domain variables will indeed result in reducing the
number of possibilities. Figure 4 shows the number of possi-
bilities when each CSP associated with a CP-net has a tight-
ness ratio equal to 75%. Here, the number of eliminations
for domain values has been reduced. Thus, the number of
possibilities in the new induced CP-nets is larger than those
in Figure 3.
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Conclusion and Future Work

In this paper, a discussion was initiated regarding the rela-
tion between the CSP and the CP-net. Then, the consistency
aspect of the CP-net was introduced along with a method
to apply arc consistency to the CP-net. The ACCP-net al-
gorithm with which to update the CP-net to reflect the new
domains in the CSP was introduced and discussed. It was
shown that applying arc consistency to the CP-net can re-
duce the search space and the time needed for finding the
best outcome. This was also demonstrated through the ex-
perimental tests we conducted on randomly generated in-
stances. Indeed, when using arc consistency the running
time needed for finding the best outcome and the number
of possible scenarios are drastically reduced. In the near fu-
ture we plan to extend this framework in order to include
quantitative preferences and uncertainty. One possible way
to do that is to handle these two types of information us-
ing the C-semiring model. The C-semiring (or constraint-
based semiring) (Bistarelli, Montanari, and Rossi 1997,
Bistarelli and Rossi 2008) is a general formalism for han-
dling different types of soft and hard constraints problems.
Through its instances (Fuzzy CSPs, Probabilistic CSPs and
Weighted CSPs), the C-semiring can be used to manage con-
straints, quantitative preferences and uncertainty. Another
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future work is to manage preferences in the presence of dy-
namic hard constraints. In this case, we can use a dynamic
variant of the arc consistency algorithm (Mouhoub 2003) in
the preprocessing phase.
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