
A Knowledge-Migration-Based Multi-Population Cultural Algorithm
to Solve Job Shop Scheduling

Mohammad R. Raeesi N. and Ziad Kobti
School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P4

raeesim@uwindsor.ca and kobti@uwindsor.ca

Abstract

In this article, a multipopulation Cultural Algorithm
(MP-CA) is proposed to solve Job Shop Scheduling
Problems (JSSP). The idea of using multiple popula-
tions in a Cultural Algorithm is implemented for the
first time in JSSP. The proposed method divides the
whole population into a number of sub-populations. On
each sub-population, a local CA is applied which in-
cludes its own population space as well as belief space.
The local CAs use Evolutionary Programming (EP) to
evolve their populations, and moreover they incorporate
a local search approach to speed up their convergence
rates. The local CAs communicate with each other us-
ing knowledge migration which is a novel concept in
CA. The proposed method extracts two types of knowl-
edge including normative and topographic knowledge
and uses the extracted knowledge to guide the evolu-
tionary process to generate better solutions. The MP-
CA is evaluated using a well-known benchmark. The
results show that the MP-CA outperforms some of the
existing methods by offering better solutions as well as
better convergence rates, and produces competitive so-
lutions when compared to the state-of-the-art methods
used to deal with JSSPs.

Introduction
Job Shop Scheduling Problem (JSSP) is a combinatorial
optimization problem which is well-known in different ar-
eas, specially manufacturing systems. JSSP is the task of
scheduling different operations to be processed on different
machines. The main goal of this type of problems is mini-
mizing the maximum completion time of all the operations.
The maximum completion time of a schedule is also called
makespan. JSSP is still an open problem. It is proved that
the job shop scheduling systems with more than two ma-
chines are NP-complete (Garey, Johnson, and Sethi 1976),
which means that there is no method capable to find the
best solution for all the scheduling problems in an accept-
able time.

There are various types of algorithms proposed to deal
with JSSPs including heuristic approaches, meta-heuristic
methods and Evolutionary Algorithms (EAs). In the area

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of Evolutionary Computation, there are various algorithms
with different versions proposed to solve JSSPs including
Genetic Algorithm (GA), hybrid GA, Ant Colony Optimiza-
tion (ACO), Memetic Algorithm (MA), and Cultural Algo-
rithm (CA). Each method has its own strengths and weak-
nesses. However, combinations of different types of algo-
rithms work better.

In this article, a new CA is proposed to solve JSSPs.
The proposed method incorporate a multipopulation design
which is called multipopulation CA (MP-CA). In this de-
sign, there are a number of sub-populations incorporating
local CAs to cooperate with each other to generate better so-
lutions. The sub-populations communicate with each other
by exchanging their extracted knowledge every predefined
number of generations.

The structure of this article is as follows. Section present
the existing Evolutionary Algorithm introduced in the area
of Job Shop Scheduling, which is followed by the definition
of the classical JSSPs in Section . Section describes the pro-
posed MP-CA in details, and Section shows the results of
evaluating the MP-CA. Finally, the conclusions are repre-
sented in section .

Related Work
The application of EAs in JSSPs is first introduced by
Lawrence (1985) as a GA. Hasan et al. (2008) combined a
GA with different priority rules including Partial Reorder-
ing, Gap Reduction, and Restricted Swapping. An ACO
method is proposed by Wang, Cao, and Dai (2005), and re-
cently we proposed a MA to solve JSSPs (Raeesi N. and
Kobti 2011).

Becerra and Coello (2005) introduced the application of
CA in JSSP for the first time. CA, developed by Reynolds
(1994), is an EA which extracts knowledge to improve its
search mechanism as well as its convergence rate. CA con-
sists of population space and belief space. Population space
contains individuals which are evolving to generate the opti-
mal solution. The knowledge is extracted from the best indi-
viduals every generation. The extracted knowledge which is
also called belief is recorded in the belief space to be used in
the next generations to direct the evolutionary process. The
link from population space to belief space which sends the
best individuals in order to update the extracted knowledge
is called acceptance function, and the link from belief space

68

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference



to population space which sends the updated knowledge to
guide the evolution is called influence function.

The CA proposed by Becerra and Coello (2005) incorpo-
rates Evolutionary Programming (EP) for population space
evolution which only uses the mutation operator to generate
the offspring population. The belief space of their proposed
method only records the best individual as the situational
knowledge. An improved version of the first CA (Becerra
and Coello 2005) in JSSP is proposed by Corts, Becerra, and
Coello (2007). The newer method is similar to the first ver-
sion with the main differences being in the implementation
of the mutation operator and influence function.

Ho and Tay (2004) proposed a CA to solve Flexible Job
Shop Scheduling which is called GENACE. Like (Becerra
and Coello 2005), they used EP and situational knowledge.
The next version of GENACE is also proposed by Ho and
Tay (2005) which is called LEGA.

All of the proposed CAs in JSSP use a single population in
their population space. Our proposed method would be the
first attempt to use a CA with multiple populations which is
called MP-CA. However, there are a number of CAs in dif-
ferent fields which are using multiple populations. Digalakis
and Margaritis (2002) introduced the multipopulation con-
cept in CA for the first time by proposing a master-slave
design. The master processor generates the initial popula-
tion and manages it, while the slave processors execute dif-
ferent CAs on different sub-populations. The communica-
tion among sub-populations is implemented using Message-
Passing Interface (MPI). The latter also used the situational
knowledge.

One of the main issues in MP-CAs is the communication
among the sub-populations. Most of the existing methods
consider exchanging the best individuals as the communi-
cation process. But there is a more powerful strategy which
exchanges the extracted knowledge instead of the best in-
dividuals. The new strategy is called knowledge migration
which was first proposed by Guo et al. (2009). The extracted
knowledge can incorporate more useful information about
the previous generations to be used to direct the evolution-
ary process. Consequently, it would be more effective to use
knowledge migration as the sub-populations communication
mechanism.

Problem Definition
Classical JSSP is defined as a process of assigning different
jobs to be processed on different machines (Baker 1974).
There are M machines denoted by mk and N jobs denoted
by Ji, where k is the machine index and i is the job index.
Each job is defined by a fixed sequence of operations. Each
operation is denoted by Oij where i is the job index and
j is the operation index in that job. Each operation can be
processed on only one machine in a known processing time.
In other words, the route of operations of each job through
the given machines is predefined.

In classical JSSP, there are some assumptions which are as
follows: All the jobs are available at the starting point which
are independent from each other; the machine set up time
and part movement time between machines are negligible;
each job is processed only one time on each machine; the

Table 1: A sample classical job shop scheduling problem
Operation Index 1 2 3

J1 m2, 1 m1, 2 m3, 3
J2 m1, 2 m2, 1 m3, 2
J3 m1, 2 m3, 4 m2, 1

Figure 1: Sample Schedule

machines can process only one operation at a time which
cannot be interrupted; and there is no due date for the jobs.

Table 1 presents a sample classical JSSP which contains
3 jobs to be processed on 3 machines. This table shows the
applicable machine with the corresponding processing time
for each operation. The third operation of the second job
O23 , for example, is applicable on the third machine, and it
needs 2 time units to be processed. A sample schedule for
this example is shown in Figure 1.

It should be mentioned that we use the active schedule
concept defined by Croce, Tadei, and Volta (1995), and used
by Hasan et al. (2008) as Gap Reduction rule and by Becerra
and Coello (2005) as permissible left shift.

Proposed Cultural Algorithm
In this article, a MP-CA is proposed to deal with JSSPs. The
proposed method is the first attempt to incorporate multi-
ple populations in JSSP. In this method, the whole popula-
tion is divided into a number of sub-populations. Each sub-
population incorporates a local CA which contains its own
belief space. The local CAs are cooperating to find the opti-
mal solutions. They are communicating with each other by
exchanging their own extracted knowledge which is called
knowledge migration.

The architecture of the MP-CA is represented in Figure 2.
As it is illustrated in the figure, like other CAs, each local
CA has its own population space and belief space (Reynolds
1994).

Moreover, the overall framework of the proposed MP-CA
is represented in Figure 3. The number of sub-populations,
the number of iterations which is the termination cri-
terion, and the migration frequency are denoted by the
SubPopulationsNo, IterationNo, and ExchangeRate
parameters, respectively. The parameters values which are
used in our experiments are presented in Table 2.

Population Space
Population space is a set of individuals which are evolving
using EP. Our EP uses the selection and mutation as regular
EP, and incorporates a local search heuristic to speed up the
convergence rate.

69



Figure 2: MP-CA Architecture

PROCEDURE: MP-CA Framework
INPUT: Test Problems and Algorithm Parameters
OUTPUT: Optimal or Near-Optimal Schedules

Generate SubPopulationsNo sub-populations.
FOR (IterationNo)

FOR (each subpopulation)
Evaluate all individuals and sort them.
Apply mutation and local search method

to generate offspring population.
Update belief space.

END
IF (IterationNo mod ExchangeRate = 0)

Exchange knowledge.
END

END
Output the best found individual so far.

Figure 3: MP-CA Framework

Chromosome Representation Chromosome representa-
tion is one of the main characteristics of an EA. In the
literature, there are various chromosome representations,
with nine of them described by Cheng, Gen, and Tsujimura
(1996). Recently, we introduced Machine Operation Lists
(MOL) representation (Raeesi N. and Kobti 2011). MOL is
an extended version of preference list-based representation
such that it adds the concept of fixed list, the operation se-
quence of which cannot be changed unless due to the per-
missible left shift. In (Raeesi N. and Kobti 2011), we showed
that MOL representation outperforms preference list-based
representation by yielding better solutions.

In our proposed algorithm, we incorporate the MOL rep-
resentation. MOL considers a list of operations for each
machine determining the sequence of operations to be pro-
cessed on that machine. Because each machine only pro-
cesses one operation of each job, the operations in the list
can be denoted by their job indices. For example, the sam-
ple schedule illustrated in Figure 1 is represented as follows.

{(1, 2, 3) , (1, 2, 3) , (2, 3, 1)}

Evolutionary Programming The proposed method uses
EP to evolve the population space. The EP incorporates only
the mutation operator as a genetic operator. The mutation
operator uses the knowledge recorded in belief space to in-
fluence the direction of evolution. The EP applies the mu-
tation operator on all the individuals to generate new ones.
In our proposed MP-CA, there are two mutation operators
which will be described in details in subsection .

Local Search After generating the offspring population, a
number of best individuals will be selected to be investigated
by a local search heuristic. We use the same local search
method as we used before (Raeesi N. and Kobti 2011) which
is compatible with MOL representation. The search method
reassigns all the operations of a randomly selected job to de-
crease the makespan. It has been shown by the authors that
the time complexity of the local search method is negligi-
ble compared to the number of fitness evaluations in each
generation.

Belief Space

Each local CA has its own belief space which space gets up-
dated every generation using the acceptance function. The
acceptance function passes a number of best individuals
from the sub-population to the belief space. We consider
the top 20 percent of the individuals in our implementation.
The belief space extracts both normative and topographic
knowledge from the individuals, and updates its own belief
by the extracted knowledge. The knowledge stored in the
belief space is incorporated to direct the mutation operator
using the influence function.

The local CAs migrate their knowledge to each other to
improve the search exploration in different sub-populations.
The knowledge migration occurs every predefined number
of generations. In knowledge migration, the sub-population
which finds the best individual so far sends its own knowl-
edge to others. The sub-populations which receive the mi-
grated knowledge replace their own knowledge with mi-
grated one.

70



Normative Knowledge We use normative knowledge to
improve the search exploration of our proposed method.
Since normative knowledge records the feasible search
space, it is used to explore all the feasible search space uni-
formly. In our method, we consider the position of each op-
eration in its corresponding machine list as the search vari-
able. So we have M × N variables for a system with M
machines and N jobs. For each operation Oij , there are a
lower position LOij

and an upper one UOij
. The normative

knowledge is initialized using the best individual as follows:
LOij = POij − 0.5
UOij

= POij
+ 0.5

where POij denotes the position of operation Oij in its cor-
responding machine list in the best individual at the first it-
eration. The 0.5 is used to provide a range of 1 for each po-
sition. The normative knowledge gets updated every genera-
tion by each individual passed by acceptance function using:

LOij = min
(
LOij , POij − 0.5

)
UOij = max

(
UOij , POij + 0.5

)
where POij

denotes the position of operation Oij in its cor-
responding machine list in that individual.

Topographic Knowledge We use the topographic knowl-
edge to exploit certain regions which have more individu-
als. The topographic knowledge for each operation keeps
the record of all positions used by all the individuals passed
through the acceptance function. For each operation, there
is a list of N available positions where N is the number of
jobs. The topographic knowledge counts the number of oc-
currences for each position. Since the greater number of oc-
currences determines the existence of more good individuals
in that region, the topographic knowledge is used to exploit
those regions. Like the normative knowledge, topographic
knowledge is also updated every generation, and it has its
own mutation operator which influences the evolution to ex-
ploit certain regions.

Influence Function Each type of knowledge has its own
mutation operator, one mutation for normative knowledge
and another one based on topographic knowledge. To gener-
ate a new individual, each machine list of an existing in-
dividual is mutated using one of both mutation operators
which is selected randomly with the same chance.

The normative-knowledge-based mutation operator cal-
culates a position for each operation using the following for-
mula, and then it sequences the operations in their operation
lists based on their calculated position values.

POij
=

 POij
+R×

(
UOij

− LOij

)
POij

< LOij
,

POij
−R×

(
UOij

− LOij

)
POij

> UOij
,

POij +G otherwise,

where R is a random number uniformly distributed between
0 and 1, and G is a random number in a normal distribution
with mean 0 and variance 1.

In topographic knowledge, there is a list of position oc-
currences for each operation such that we need to use the
position with greater occurrence to generate new individu-
als. Here we use roulette-wheel selection strategy to choose
the new position for each operation.

Table 2: Parameters of the proposed algorithm
Parameters Value
SubPopulationsNo 7
SubPopSize 142
IterationNo 200
ExchangeRate 20

Table 3: Sample Results on LA Benchmark
Problem Algorithm Best Median Worst

la02 CA 655 660.5 667
655 MP-CA 655 655.0 655
la20 CA 907 912.6 924
902 MP-CA 902 907.0 907
la40 CA 1256 1277.4 1328
1222 MP-CA 1228 1234.0 1245

Results
The proposed algorithm is implemented and evaluated using
the java programming language version 1.6.0.18 on a system
with Intel(R) Core(TM)2Quad 2.50GHz CPU and 8.00GB
RAM. Table 2 presents the parameters used in our exper-
iments which are adjusted using extensive experiments. In
our experiments, we generate 7 sub-populations with 142
individuals, approximately 1000 individuals in total. We run
the method for 200 iterations such that the knowledge mi-
gration occurs every 20 iterations.

In our experiments, we consider a well-known benchmark
(Lawrence 1984) for classical JSSP. The benchmark consists
of 40 different problems with different size. All the experi-
ments are done 10 times independently.

The experiment results show that the proposed MP-CA
finds the optimal solution for 28 test problems out of 40. To
show the performance of the proposed method, we compare
our method with another CA recently published by Corts,
Becerra, and Coello (2007). The authors claim that their
method finds the optimal solution for 26 test problems. How-
ever, our MP-CA outperforms their method by finding the
best solution for 2 more test problems as well as by offer-
ing better statistical results (lower median and worst solu-
tions) for those 26 test problems which means that the con-
vergence rate of our proposed method is better than theirs.
Moreover, for the remaining test problems, our method of-
fers better solutions comparing to theirs, for all the best, me-
dian and worst solutions. Table 3 shows three sample results
of our proposed MP-CA compared to the result of Corts, Be-
cerra, and Coello (2007)1. The results show that incorporat-
ing multi-population and using knowledge exchange offers
better solution and improves the convergence rate.

To have a fair comparison, we compare our results with
their results for 200,000 fitness evaluations, not for more
than 2,000,000 evaluations (Corts, Becerra, and Coello
2007). The maximum number of evaluations in our method
is 200,000 which is 1000 evaluations in 200 iterations.

1Please refer to http://cs.uwindsor.ca/∼raeesim/Flairs-
25/Statictical-Analysis.pdf to see the complete results.

71



Table 4: Comparison among Different Evolutionary Algorithms proposed recently to solve JSSP on LA Benchmark
Problem Size Best Known Hybrid GA MA CA Proposed MP-CA
LA20 10×10 902 907 (0.55%) 907 (0.55%) 907 (0.55%) 902 (0.00%)
LA21 15×10 1046 1046* (0.00%) 1057 (1.05%) 1059 (1.24%) 1048 (0.19%)
LA22 15×10 927 935 (0.86%) 935 (0.86%) 947 (2.16%) 932* (0.54%)
LA24 15×10 935 953 (1.93%) 944 (0.96%) 950 (1.60%) 943* (0.86%)
LA25 15×10 977 986 (0.92%) 983* (0.61%) 998 (2.15%) 983* (0.61%)
LA26 20×10 1218 1218 (0.00%) 1218 (0.00%) 1219 (0.08%) 1218 (0.00%)
LA27 20×10 1235 1256* (1.70%) 1269 (2.75%) 1279 (3.56%) 1264 (2.35%)
LA28 20×10 1216 1232 (1.32%) 1223 (0.58%) 1236 (1.64%) 1219* (0.25%)
LA29 20×10 1157 1196 (3.37%) 1191 (2.94%) 1219 (5.36%) 1182* (2.16%)
LA36 15×15 1268 1279 (0.87%) 1281 (1.03%) 1296 (2.21%) 1274* (0.47%)
LA37 15×15 1397 1408* (0.79%) 1429 (2.29%) 1416 (1.36%) 1415 (1.29%)
LA38 15×15 1196 1219 (1.92%) 1208 (1.00%) 1231 (2.93%) 1202* (0.50%)
LA39 15×15 1233 1246 (1.05%) 1248 (1.22%) 1269 (2.92%) 1240* (0.57%)
LA40 15×15 1222 1241 (1.55%) 1234 (0.98%) 1256 (2.78%) 1228* (0.49%)

Average Error Rate 1.20% 1.20% 2.18% 0.73%
Average Ranking (Friedman) 2.39 2.46 3.79 1.36

Furthermore, different Evolutionary Algorithms are con-
sidered to be compared with our MP-CA including a hybrid
GA (Goncalves, de Magalhaes Mendes, and Resende 2002),
our published MA (Raeesi N. and Kobti 2011), and the CA
(Corts, Becerra, and Coello 2007). All the four algorithms
find the optimal solution for certain 26 test problems includ-
ing la01-la19, la23, and la30-la35. Table 4 represents the
results for the remaining 14 test problems. The Error Rate
(ER) is considered to be able to compare the results over all
the 14 problems which is defined as follows.

ER =
C − LB
LB

× 100%

where LB is the best-known solution, andC is the best solu-
tion found by the algorithms. The ER values are represented
in brackets in Table 4. To compare the 4 algorithms on the
14 problems, we used the non-parametric procedure incor-
porated by Garca et al. (2009) with the same levels of sig-
nificance as theirs which are α = 0.05 and α = 0.10. To
do so, first the algorithms are ranked using Friedman’s test.
The p-value for this test is less than 0.0001 which is also less
than both significance levels; this means there are significant
differences between the compared algorithms. Then, the al-
gorithm with the minimum average ranking is selected as
the control algorithm which is our MP-CA. Afterwards, the
critical differences (CD) for control algorithm MP-CA are
calculated using Bonferroni-Dunns test which are:

CD = 1.17 for α = 0.05
CD = 1.09 for α = 0.10

Now, the algorithms with the average rankings greater
than the summation of the control algorithm ranking and
CDs are considered as the algorithms with worse perfor-
mance than the control algorithm. In other words, the sum-
mation of the average ranking of the MP-CA and the CD
for each significance level is a threshold to find the worse
algorithms. So the thresholds are as follows.

Threshold = 2.53 for α = 0.05
Threshold = 2.45 for α = 0.10

Figure 4: The Graphical Representation of Statistical Result
of Friedman’s test and Bonferroni-Dunn’s method

Figure 4 represents this concept graphically. The thresh-
olds for α = 0.05 and α = 0.10 are illustrated using a solid
line and a dashed line, respectively. This figure shows that
the control algorithm MP-CA outperforms the algorithms
whose bar exceeds the threshold line. So based on the Fried-
man’s test and Bonferroni-Dunn’s approach, we can claim
that our proposed MP-CA outperforms the CA proposed by
Corts, Becerra, and Coello (2007) with significance level
α = 0.05 and outperforms our published MA (Raeesi N. and
Kobti 2011) with level α = 0.10. However, while the aver-
age ER and average ranking of the proposed MP-CA are bet-
ter than the hybrid GA (Goncalves, de Magalhaes Mendes,
and Resende 2002), these statistical tests show that the dif-
ferences are not significant enough to say their performance
is worse than our method’s performance.

Finally, we compare our algorithm with others mutually
over all the 40 problems. The comparison results illustrated
in Table 5 shows that, for example, the MP-CA works sim-
ilar to the hybrid GA (Goncalves, de Magalhaes Mendes,
and Resende 2002) for 27 problems, outperforms it for 10

72



Table 5: Overall Mutual Comparison
Proposed MP-CA Win Tie Lose
HGA 10 27 3
MA 12 28 0
CA 14 26 0

problems, and works worse for the remaining 3 problems.

Conclusions
In this article, we propose a MP-CA to solve JSSP which
is a combinatorial optimization problem proved to be NP-
Complete. This article introduces application of the MP-CA
in JSSPs for the first time. Using multipopulation we im-
prove the search exploration. The proposed method incor-
porates local CAs on the sub-populations cooperating to find
the optimal solution. In addition, it uses knowledge migra-
tion among sub-populations as the communication link. In
the proposed method, we consider the extraction of norma-
tive and topographic knowledge.

The experiments show that the proposed MP-CA offers
better solutions. Moreover, it improves the convergence rate.
The comparison of the MP-CA with the traditional CA
shows that using multiple populations as well as incorpo-
rating knowledge migration enhance the search space explo-
ration and help the algorithm to avoid trapping into local
optimal solutions.

The statistical comparisons reveal that the proposed
method outperforms some existing methods very well and
offers competitive solutions compared to other state-of-the-
art methods. Furthermore, while the statistical comparisons
do not show the significant differences between the proposed
MP-CA and those methods, the results show that it outper-
forms others by offering lower error rates.

The proposed method is also applicable for other types
of JSSPs, but since it uses the MOL representation and this
representation does not cover other JSSP types, we need to
use another representation or provide an extension for MOL,
in future work.

Acknowledgments
This work is made possible by a grant from the National
Science Foundation and NSERC Discovery No. 327482.

References
Baker, K. R. 1974. Introduction to Sequencing and Schedul-
ing. Wiley.
Becerra, R., and Coello, C. 2005. A cultural algorithm for
solving the job-shop scheduling problem. In Knowledge In-
corporation in Evolutionary Computation, Studies in Fuzzi-
ness and Soft Computing, volume 167, 37–55. Springer.
Cheng, R.; Gen, M.; and Tsujimura, Y. 1996. A tutorial
survey of job-shop scheduling problems using genetic al-
gorithms i: representation. Computers and Industrial En-
gineering 30 (4):983–997.

Corts, D.; Becerra, R.; and Coello, C. 2007. Cultural algo-
rithms, an alternative heuristic to solve the job shop schedul-
ing problem. Engineering Optimization 39 (1):69–85.
Croce, F.; Tadei, R.; and Volta, G. 1995. A genetic algo-
rithm for the job shop problem. Computers in Operations
Research 22:15–24.
Digalakis, J., and Margaritis, K. 2002. A multipopula-
tion cultural algorithm for the electrical generator schedul-
ing problem. Mathematics and Computers in Simulation
60(3-5):293–301.
Garca, S.; Molina, D.; Lozano, M.; and Herrera, F. 2009.
A study on the use of non-parametric tests for analyzing
the evolutionary algorithms’ behaviour: A case study on
the cec’2005 special session on real parameter optimization.
Journal of Heuristics 15:617–644.
Garey, M. R.; Johnson, D. S.; and Sethi, R. 1976. The com-
plexity of flowshop and jobshop scheduling. Mathematics
of Operations Research 1:117–129.
Goncalves, J.; de Magalhaes Mendes, J.; and Resende, M.
G. C. 2002. A hybrid genetic algorithm for the job shop
scheduling problem. Technical Report TD-5EAL6J, AT&T
Labs.
Guo, Y.-N.; Cao, Y.-Y.; Lin, Y.; and Wang, H. 2009. Knowl-
edge migration based multi-population cultural algorithm.
In Fifth International Conference on Natural Computation
(ICNC 09), 331–335.
Hasan, S.; Sarker, R.; Essam, D.; and Cornforth, D. 2008.
Memetic algorithms for solving job-shop scheduling prob-
lems. Memetic Computing 1:69–83.
Ho, N., and Tay, J. 2004. Genace: An efficient cultural
algorithm for solving the flexible job-shop problem. In IEEE
Congress on Evolutionary Computation (CEC), 1759–1766.
Ho, N., and Tay, J. 2005. Lega: an architecture for learning
and evolving flexible job-shop schedules. In IEEE Congress
on Evolutionary Computation (CEC), 1380–1387.
Lawrence, S. 1984. Resource constrained project schedul-
ing: an experimental investigation of heuristic schedul-
ing techniques. Master’s thesis, Graduate School of In-
dustrial Administration, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania.
Lawrence, D. 1985. Job shop scheduling with genetic al-
gorithms. In First international conference on genetic algo-
rithms, 136–140.
Raeesi N., M. R., and Kobti, Z. 2011. A machine operation
lists based memetic algorithm for job shop scheduling. In
IEEE Congress on Evolutionary Computation (CEC).
Reynolds, R. G. 1994. An introduction to cultural algo-
rithms. In Sebald, A. V., and Fogel, L. J., eds., Thirs Annual
Conference on Evolutionary Programming, 131–139. River
Edge, New Jersey: World Scientific.
Wang, C.; Cao, Y.; and Dai, G. 2005. Bi-directional con-
vergence aco for job-shop scheduling. Computer Integrated
Manufacturing Systems 10(7):820–824.

73




