Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

Focused Grounding for Markov Logic Networks

Michael Glass

Department of Computer Science
University of Texas at Austin
mrglass@cs.utexas.edu

Abstract

Markov logic networks have been successfully applied
to many problems in Al. However, the computational
complexity of the inference procedures has limited their
application. Previous work in lifted inference, lazy in-
ference and cutting plane inference has identified cases
where the entire ground network need not be con-
structed. These approaches are specific to particular
inference procedures, and apply well only to certain
classes of problems. We introduce a method of focused
grounding that can use either general purpose or do-
main specific heuristics to produce only the most rele-
vant ground formulas. Though a solution to the focused
grounding is not, in general, a solution to the com-
plete grounding, we show empirically that the smaller
search space of a focused grounding makes it easier
to locate a good solution. We evaluate focused ground-
ing on two diverse domains, joint entity resolution and
abductive plan recognition. We show improved results
and decreased computation cost for the entity resolu-
tion domain relative to a complete grounding. Focused
grounding in abductive plan recognition produces state
of the art results in a domain where complete grounding
proved intractable.

Introduction

In recent years formalisms for probabilistic reasoning have
found applications in a wide variety of domains. Markov
logic networks (MLNs) (Richardson and Domingos 2006)
have been applied to entity resolution (Singla and Domingos
2006a), information extraction (Poon and Domingos 2007)
and even unsupervised semantic parsing (Poon and Domin-
gos 2009). The ability to consider multiple sources of prob-
abilistic evidence jointly is clearly important in AI (Domin-
gos 2006). But the computational cost of doing so can be
prohibitive. The standard inference methods for MLNs all
require the network to be grounded. That is, variables in the
first order formulas must be replaced with terms from the
Herbrand universe. The time required for exact inference is
exponential in the number of ground predicates, or atoms.
And the number of ground clauses in a complete ground-
ing is exponential in the highest arity first order formula. To

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ken Barker
IBM Watson Research Lab
kjbarker@us.ibm.com

address this problem, we use focused grounding to produce
a limited set of ground formulas. This permits inference in
cases where grounding the entire network would be infea-
sible. Additionally, inference over this smaller grounding is
faster, and may more easily locate a good solution.

Background

Markov Logic Networks are a probabilistic extension of first
order logic. An MLN is a set of weighted formulas in first
order logic over a finite domain of objects. This formalism
allows two types of inference: marginal and Maximum A
Posteriori (MAP).

Marginal Inference

Marginal inference can be used to find the probability of in-
dividual ground query predicates.

P(z) = %exp (Z wmi(ﬂc)) .

P(z) is the probability of the truth assignment x, w; is
the weight of the ith formula and n;(z) is the number of
satisfied groundings of formula ¢ given the state z. Z is
a normalization constant. Though an exact solution is #P-
complete (Roth 1996), sampling methods such as Gibbs and
MC-SAT provide a tractable approximation of marginal in-
ference (Poon and Domingos 2006).

MAP Inference

Maximum A Posteriori (MAP) inference finds the most
likely possible world X. This is the world in which the weight
of all the satisfied ground clauses is maximized.

X arginax (; wlnl(x)> .

In cases where there are multiple maximums, any can be
returned. Finding the MAP solution is a case of the weighted
satisfiability problem, known to be NP-Hard (Roth 1996). It
may be solved by conversion to Integer Linear Programming
(Taskar 2005), which when computationally tractable, will
return an exact solution. It may also be approximated by a
local search method, such as MaxWalkSat (Selman, Kautz,
and Cohen 1996).

Herbrand Base

The Herbrand Universe H for an MLN M is the set of all
terms that can be constructed from the constants and func-
tions in M. If there are no functions, it is simply C, the set
of all constants. The Herbrand Base B(M) is often defined
as the set of all ground predicates (atoms) that can be con-
structed using the predicates in M and the terms in H. Here
we are more concerned with all the ground formulas that can
be constructed from the formulas in M and the terms in H,
we call this the Herbrand formula base F'yp. The size of
the Herbrand formula base is exponential in the number of
variables v; in a formula 7.

Fup(M)] =3 0"

Complete Grounding

Consider the following rule taken from an MLN from the
Cora domain about entity resolution for citations (Singla and
Domingos 2006a).

—2.695 Venue(bel, vl) A Venue(be2,v2)A
HasW ord_workshop_Venue(v1)A
—~HasWord-workshop_Venue(v2) =
SameBib(bcl, bc2)

This rule states that if the venue for one citation contains the
word “workshop” and another citation has a venue without
that word, then the two citations are probably not the same.
There are four variables in this clause so its contribution to
the Herbrand formula base is |C|* groundings, where C'is
the union of all the venues, authors, titles and citations. In
one fifth of the Cora dataset, this is 436. So a completely
naive grounding would result in 36 billion groundings for
this one formula. Fortunately, the state of the art is well be-
yond this naive approach to grounding. Alchemy (Domingos
et al. 2006), a state of the art system for learning and infer-
ence in MLNs, implements two domain general controls on
grounding and allows for domain specific controls.

First, this MLN is typed. In this domain there is no doubt
about what is a venue, title, author or citation, so all pred-
icates have hard type constraints. The Venue predicate re-
lates a citation to its venue. So the number of groundings
with typing for this formula is only |Citation|? |Coenuel?-

Another control reduces the number of groundings even
further. Venue and HasW ord_workshop_Venue are evi-
dence predicates - all the true groundings for these predi-
cates are given as input. If v1 is not a venue with “work-
shop” in it or v2 is, the formula is trivially satisfied and need
not be grounded. Therefore the number of groundings for
this formula is only the number of venues with the word
“workshop” times the number of venues without the word
“workshop”. In this domain, the only non-evidence predi-
cate is SameBib.

The final control on the number of groundings for this for-
mula comes from a pre-clustering outside of the MLN. This
is a domain specific method and requires a partial solution
to the entity resolution problem apart from the MLN. This
“umbrella” clustering (McCallum, Nigam, and Ungar 2000)

532

gives a set of plausible SameBib groundings. Groundings
not present in this set can be assumed false with high confi-
dence. So the number of groundings can be further reduced
by eliminating all groundings where bcl and bc2 are not in
the same umbrella cluster.

We refer to the set of formulas grounded with these op-
timizations as the complete, or full grounding. This set is
much smaller than the Herbrand formula base. But even with
all of these controls on the number of groundings, attempt-
ing to ground the network for one fifth of the Cora citation
dataset requires more than 2 GB of memory. For one tenth
of the dataset, the memory required is 630 MB.

Focused Grounding

In order to address the problems of complete grounding,
we developed a method of focused grounding. Our method
grounds the most relevant clauses first, then successively
more, until a memory or time limit is reached, or until no
further groundings score above a threshold. The algorithm
also eliminates trivial groundings, and simplifies others, us-
ing a set of ground predicates that have known truth val-
ues, including evidence predicates and the results of any do-
main specific pre-processing. Formulas® groundings may be
scored for relevance using either domain general or domain
specific heuristics.

A key universal constraint is that all formula groundings
must be motivated by ground predicates present in the set
of current ground predicates, G P. This set initially contains
only the evidence. So all formula groundings are directly or
indirectly driven by the evidence.

The GROUNDOUT function is the key inner loop of the
focused grounding method. It is called for each first order
formula, f in the MLN, with an initially empty set of vari-
able bindings by. It operates by selecting each predicate in
the formula and attempting to unify it with entries in the
G P index. The unifiable ground predicates provide bindings
for the variables in the formula. The recursion terminates if
the formula grounding scores below a threshold (SCORE <
MINSCORE), all predicates are processed without a suc-
cessful grounding (SELECTPREDICATE returns L), or when
all variables are bound and the formula is added to the set of
ground formulas GF', and the ground predicates in the for-
mula are added to G'P. The notation p[b¢] means the predi-
cate p with its variables replaced by the bindings b;.

The SCORE function is responsible for providing a low
score whenever it is clear that the formula is either triv-
ial (true or false in all possible worlds) or that it will
not satisfy the relevancy heuristic for the domain. The
SELECTPREDICATE function selects a good predicate with
which to continue grounding. We use a simple rule: select-
ing the predicate with the fewest groundings. If all predicates
are marked as missing or complete (p = L), then grounding
terminates.

Working through the example formula, first the base
cases are considered. On the first call, the formula is
neither below threshold nor fully ground, so a predi-
cate is selected to look up in the GP index. Since ini-
tially only evidence predicates are in the GP index,
SameBib(bcl, bc2) has zero groundings. It is marked as

Algorithm 1 The focused grounding algorithm

GROUNDOUT(f, by)

1 if SCORE(f,bs) < MINSCORE
2 then return
3 if ISGROUND(f[by])
4 then GF <+ GF U {f[bs]}
5 for each p marked missing € f
6 do GP « GP U {p[by]}
7 return
8 p < SELECTPREDICATE(f)
9 ifp=_1
then return
11 pis marked as complete

12 B, + all possible unifications of p[bs| with GP
13 foreachb, € B,
14 do GROUNDOUT(f, by U by)

15 pis marked as missing
GROUNDOUT(f, by)

missing and GROUNDOUT recurses. Suppose the third pred-
icate, HasWord_workshop_Venue(vl) is selected next.
From the evidence, all venues with the word “workshop”
present are found. Each of these provides a constant to bind
to v1 and the loop recursively calls our grounding procedure
with the predicate marked as completed, and the bindings
{vl — SomeVenue}. Eventually all variables are bound.
Then the formula with the bindings substituted for the vari-
ables, f[by], is added to the ground formula set GF. The
missing predicate SameBib(bcl,bc2)[by] is also added to
the ground predicate index.

The relevancy heuristic is very important in focusing the
grounding. A basic, domain general heuristic is to prefer
formulas with the fewest missing predicates. This heuris-
tic is motivated by the fact that any formula in conjunctive
normal form (CNF) containing a ground predicate appear-
ing nowhere else can be trivially satisfied by setting that
ground predicate to whatever truth value is needed to make
the formula true. For purposes of counting missing predi-
cates, all closed world ground evidence predicates are con-
sidered present. This is the heuristic used in the Cora entity
resolution domain.

Another heuristic uses the G P index as a proxy for things
that are plausible, and grounds only those formulas where
no negated predicates are marked as missing. The rest of the
formula can be seen as plausibly true, given that the negated
portions are plausibly true. We use this heuristic in a plan
recognition domain since some abductive formulas contain
many unnegated predicates, and therefore are likely to have
many missing predicates.

A separate heuristic, apart from the SCORE function, is
present in the outer loop of focused grounding, which simply
calls GROUNDOUT for every formula in the knowledge base
on each iteration. On the first pass through the first order for-
mula base, only those formulas directly motivated by the ev-
idence are ground. On the nth pass, the formula groundings
are at most n steps removed from the evidence.

533

In addition to this main phase of grounding, where for-
mulas are grounded in approximate order of relevancy, there
are two other phases: an initial phase and a final phase.

Because known truth is so valuable in limiting the num-
ber of groundings, focused grounding begins with an initial
phase in which hard formulas (those with infinite weight) are
grounded using predicates that have a known truth. If the re-
sult of the simplified formula is a single literal (a negated or
unnegated ground predicate), it is added to the known truth
table.

A final phase ensures that the most important formulas are
grounded. Without this phase the last formula grounded may
introduce a new ground predicate. Some other formula may
specify as a hard constraint that atoms of this type are mu-
tually exclusive with some other previously grounded atom.
But this formula is not grounded with the newly introduced
atom, so the result of MAP inference may output both atoms
as true. The final phase can be configured based on domain
specific heuristics. Currently the only heuristic used is that
hard clauses with no missing predicates must be grounded,
and clauses with only a single predicate (specifying priors)
must be grounded.

Experimental Evaluation

To test the effects of focused grounding on efficiency and
correctness, we considered two diverse domains: entity res-
olution in citations and plan recognition for emergency
responses. In each case there were existing probabilistic
knowledge bases specifying the domain knowledge and the
associated probabilities.

Cora Entity Resolution

Entity resolution is the task of determining for each pair of
mentions whether they refer to the same real world entity. In
cases where the mentions have structure, like citations, per-
formance on the entity resolution problem can be improved
by jointly matching whole records and each component of
the records, such as authors, titles and venues. Along with
axioms for transitive closure this ensures that each matching
decision is influenced by the other relevant matching deci-
sions (Singla and Domingos 2006a).

The Cora dataset contains clusters of citations that all re-
fer to the same paper. There are approximately 1300 cita-
tions referring to about 130 distinct papers. The Cora dataset
is divided into five parts for five fold cross validation. We
further divided each fold, splitting it into two pieces. Each
of the citation clusters was randomly assigned to one of the
splits, subject to the constraint that the largest split is within
a factor of two of the smallest split.

We used MLNSs trained on the MLN(B+N+C+T) model,
the best performing and one of the most complex mod-
els described by Singla and Domingos (2006a). The model
includes axioms based on naive Bayes, reverse predicate
equivalence, transitive closure, and word mention equiva-
lence using n-grams.

Monroe Plan Recognition

The Monroe dataset is an artificial domain constructed to
aid in research on plan recognition (Blaylock and Allen

crew_get_to(xy, xs) =

fiz_power_line(x2) N power_crew(xi)V

Jloc (clean_up_hazard(xzq,loc) A hazard_team(zq))V

Floc (repair_pipe(xzs, loc) A water_crew(zq))V

Jloc (set_up-cones(xa,loc) N work_crew(zy))V

I loc (take_down_cones(xa,loc) N work_crew(xy))V

It (clear_tree(t) A tree_crew(xzy) A tree(t)
Nobject_atloc(t, x2))V

3 b (remove_blockage(b) N work_crew(xy)
Nobject_atloc(b, x2))V

d person (emt_treat(person) A emt_crew(zy)
Aperson_atloc(person, x3))

Figure 1: The abductive rule for crew_get_to

2005a). The Monroe knowledge base, built by Raghavan and
Mooney (2010), consists of Horn clauses for forward chain-
ing one of ten top level emergency response plans such as
fix_water_main. The test data consists of 1000 automat-
ically generated example plan observations, with an aver-
age of about 10 observations per example. We used the first
twenty as a development set and tested on the next 500. The
plan recognition task is: given the observations, identify the
top level plan predicate, called the schema, and its parame-
ters.

Alone, the forward planning Horn clauses such as
clean_up_hazard(from,to) A hazard_team(crew) =
crew_get_to(crew, from) in the Monroe dataset do not
support abductive plan recognition in an MLN. Reversed
formulas must also be added (Kate and Mooney 2009).
These formulas are automatically constructed from the for-
ward rules by gathering all possible antecedents that result in
a given plan action. The abductive rule is constructed by tak-
ing the plan action as the left hand side and the disjunction
of all the gathered antecedents as the right hand side. Infor-
mally, if a plan action takes place, then one of the higher
level plans that causes that plan action is likely to be true.

Critically, the variables appearing in the antecedent of the
original planning rule that do not also appear in the conse-
quent must be existentially quantified. When there are many
possible higher level plans that can result in a specific lower
level plan, and these higher level plans have variables not
present in the lower level plan predicate, this conversion can
result in formulas with many existentially quantified vari-
ables.

Figure 1, the abductive rule for crew_get_to shows that
there are many reasons for a crew to go to a location in the
Monroe planning domain. The multiple existential variables
introduced create an exponential growth in the memory re-
quirements for a full grounding of the MLN. This makes
MLNs with a complete grounding unsuitable for this do-
main (Raghavan and Mooney 2010). The complete ground-
ing consumes more than 4 GB of memory.

We added a large negative prior for every top level plan,
and a hard rule specifying that there exists some top level
plan. Together, these ensured that one and only one plan was
abduced.

534

Results

For the Cora dataset, split into ten pieces, we found dramatic
improvements in time, memory and accuracy using focused
grounding. The full grounding was performed by Alchemy.
On average, the full grounding produced 2.6 million clauses,
while we limited our focused grounding to 300 thousand
clauses. Both our focused grounding system and Alchemy
used MaxWalkSat with one million flips to find the MAP
solution. We ignore the large number of false query atoms,
citations and citation fields that are different, and report pre-
cision and recall over the true query atoms.

Full MAP | 300k Limit
Precision | 53.3% 76.6 %
Recall | 21.7% 87.9%
F-Score | 30.9% 81.9%
Total Time | 1494 s 211s
Memory | 636 MB 248 MB

Table 1: Results for different grounding systems on the Cora
entity resolution task

Compared to MAP inference over the complete ground-
ing, focused grounding produced better precision, recall, run
time and memory usage. We report detailed results on fo-
cused grounding only for the limit size of 300 thousand.
However, the method proved largely insensitive to the spe-
cific number of ground formulas allowed. With one third as
many groundings the F-Score was 79.1% and with twice as
many the F-Score was 80.9%.

Using Alchemy to perform marginal inference on the
complete grounding worked considerably better. Marginal
inference approximates the probability of each query atom.
By considering every atom above some probability thresh-
old p, to be true, we can produce a set of predictions and
evaluate its precision and recall. Though our method of fo-
cused grounding can apply to marginal inference as well, we
only implemented MAP inference with MaxWalkSat. Table
2 compares the marginal inference of Alchemy (MCMC) to
the MAP inference of our focused grounding system.

Full Marginal p; = 0.5 | 300k Limit MAP
Precision | 96.5% 76.6%
Recall | 58.4% 87.9%
F-Score | 72.8% 81.9%
Total Time | 9824 s 211s
Memory | 763 MB 248 MB

Table 2: Results for marginal inference on the Cora entity
resolution task

The probability threshold of p; = 0.5 means that we re-
garded citation and citation fields as the same when the in-
ference procedure reported that they refer to the same entity
with at least 50% probability. We selected this threshold to
facilitate a comparison between marginal and MAP infer-
ence, although the highest F-Score of 94.4% was achieved
at the much lower threshold of p; = 0.0001.

In the Monroe domain, we use the metrics of schema
convergence, SchemaConv, and parameter convergence,
ParamConv, following Blaylock and Allen (2005b).
Schema convergence refers to the percent of top level plans
correctly predicted after considering all observations. Pa-
rameter convergence refers to the average number of cor-
rectly predicted plan parameters for those cases where the
schema prediction was correct. Because some sequences of
observations do not contain a mention of the correct parame-
ter, and this is the only source of information for the plan rec-
ognizer, there is a ceiling of feasible parameter recognition.
Therefore we also report parameter convergence divided by
the feasible performance ceiling, Adj ParamConuv.

600k Limit | Blaylock and Allen
SchemaConv | 94.6% 94.2%
ParamConv | 59.6% 40.6%
AdjParamConv | 75.9% 51.4%

Table 3: Results for focused grounding on the Monroe
dataset, compared to results reported by Blaylock and Allen

We achieved similar performance to Blaylock and Allen’s
system for instantiated plan recognition on schema recog-
nition. The 0.4% difference is not statistically significant.
We found substantially better performance on feasible pa-
rameter recognition, with a 50% error rate reduction. Us-
ing the same knowledge base, a Bayesian Abductive Logic
Program (Raghavan and Mooney 2010), achieved 98.8% on
schema convergence. Parameter recognition results were not
reported.

Related Work

Other research has addressed the computational complexity
of grounding and performing inference over the Herbrand
formula base.

Lifted inference attempts to avoid many groundings for
objects about which identical facts are known. It is possi-
ble to construct examples where this method produces expo-
nential savings in time and memory, while preserving cor-
rectness (Braz, Amir, and Roth 2005). However, in cases
where all objects are distinguishable, the gains from tradi-
tional lifted inference are sharply reduced (de Salvo Braz et
al. 2009). Lifted inference does not change the optimal so-
lution but is not applicable in all cases. Focused grounding
reduces the size of the ground network for arbitrary MLNSs,
at the cost of possibly changing the optimal solution.

Culotta and McCallum (2005) noted that representing cer-
tain aggregate features important in entity resolution, such as
the number of distinct strings that are first names for a per-
son, can result in an exponential explosion in the number of
groundings. Their method of incremental grounding creates
ground predicates as needed for networks too large to in-
stantiate completely. FACTORIE (McCallum, Schultz, and
Singh 2009) uses imperatively defined factor graphs to per-
form marginal inference while only keeping a fraction of the
network in memory at any given time. In fact, only a single
possible world is represented at a time. The factor graph is
described by programmatically specifying how to transition

535

from each possible world to each nearby possible world. In
contrast we retain the declarative nature of MLNs.

LazySat (Singla and Domingos 2006b) is a modification
of MaxWalkSat to avoid grounding formulas that are never
unsatisfied during inference. In many domains the conjunc-
tive normal form (CNF) clauses contain at least one negated
predicate and most atoms are false. Therefore most formu-
las are satisfied, and need not be grounded. LazySat uses this
fact by initially assuming only those atoms present in the ev-
idence are true and all others are false. Clauses not satisfied
by this assignment become active and are grounded. Unlike
our work there is no limit to the number of clauses that may
be grounded.

Cutting Plane Inference (CPI) (Riedel 2008) proceeds
from some initial grounding and incrementally grounds only
those formulas that are violated by the current solution. It
can be seen as an extension of LazySat in that formulas are
only grounded when they are unsatisfied. But rather than
working the grounding into the inference algorithm itself,
CPI interleaves the two, allowing it to be applied to any
MAP solver. Like our method, CPI produces some initial
approximate grounding. This grounding must be engineered
to avoid both an empty grounding or a grounding that con-
sumes more memory than is available. One possible use
case for focused grounding is to provide an initial ground-
ing for CPI that avoids these two failure modes. Also like
our method, CPI can produce approximate groundings by
stopping at some iteration before all unsatisfied formulas
are grounded. However, focused grounding can use domain
specific heuristics to select the most suitable approximate
grounding.

These methods take the form of creating groundings on
an as needed basis while preserving the exact semantics of
the MLN. However, because randomized, approximate in-
ference is needed for large practical problems, the real-world
guarantee of focused grounding is not fundamentally differ-
ent. When using approximate inference, all methods find an
approximate solution, in general, different from the solution
found with approximate inference on the complete ground-
ing.

Conclusions

Like Riedel (2008), we found that using MaxWalkSat to try
to find the MAP solution for the full grounding gives poor
results in the Cora domain. Though it may seem strange to
run MaxWalkSat for only one million flips on two and a half
times as many clauses, we found no improvements with 10
or even 200 million flips. The problem, fully grounded, is
simply too difficult to find a reasonable solution.

By limiting to the most relevant 300 thousand ground for-
mulas, we were able to get an F-Score of 81.9%. Using cut-
ting plane inference, Riedel reported an F-Score of 70% us-
ing MaxWalkSat as a base solver and 72% using Integer Lin-
ear Programming. Since ILP gives an exact solution and CPI
inherits its accuracy from its base solver, we must conclude
that a better MLN, rather than a better inference procedure
is responsible for our higher F-Score.

Unlike MAP inference, marginal inference over the com-
plete grounding performed well, a result established earlier

by Singla and Domingos (2006a). There are two possible ex-
planations for this substantial difference. First, while MAP
inference attempts to find a complete truth assignment that
is most probable, marginal inference finds the probability
of each individual query atom. When scoring precision and
recall over individual true query atoms, this method maxi-
mizes the scoring function. Second, the MLN used for these
experiments was engineered and trained with marginal in-
ference in mind.

In the Monroe domain, Blaylock and Allen’s (2005b) in-
stantiated plan recognition system operates in two stages:
first it predicts the most probable plan schema, then pre-
dicts its parameters. Like Raghavan and Mooney (2010), we
found that using MLNs with a complete grounding is in-
tractable. With a focused grounding, we were able to use
the advantages of jointly considering plan schemas and plan
parameters to produce better parameter recognition, while
keeping the same accuracy in schema recognition.

Our method of focused grounding constrains the number
of formula groundings in a domain general way while also
permitting domain specific heuristics. Focused grounding
can be applied to any problem represented using a Markov
Logic Network and paired with any inference procedure that
operates over a set of ground formulas. The smaller set of
ground formulas produced by our method allows more effi-
cient and accurate inference in two diverse domains.

Acknowledgments

Research supported in part by Air Force Contract FA8750-
09-C-0172 under the DARPA Machine Reading Program.

References

Blaylock, N., and Allen, J. 2005a. Generating artificial cor-
pora for plan recognition. In International Conference on
User Modeling (UM’05). Springer.

Blaylock, N., and Allen, J. 2005b. Recognizing instantiated
goals using statistical methods. In G. Kaminka (Ed.), Work-
shop on Modeling Others from Observations (MOO 2005),
79-86.

Braz, R. D. S.; Amir, E.; and Roth, D. 2005. Lifted
first-order probabilistic inference. In Proceedings of IJCAI-
05, 19th International Joint Conference on Artificial Intelli-
gence, 1319-1325. Morgan Kaufmann.

Culotta, A., and Mccallum, A. 2005. Practical Markov
Logic containing first-order quantifiers with application to
identity uncertainty. Technical report, HLT Workshop
on Computationally Hard Problems and Joint Inference in
Speech and Language Processing.

de Salvo Braz, R.; Natarajan, S.; Bui, H.; Shavlik, J.; and
Russell, S. 2009. Anytime lifted belief propagation. In
Proc. SRL-2009, the International Workshop on Statistical
Relational Learning.

Domingos, P.; Kok, S.; Poon, H.; Richardson, M.; and
Singla, P. 2006. Unifying logical and statistical AI. In

Proceedings of the Twenty-First National Conference on Ar-
tificial Intelligence, 2—7. AAAI Press.

536

Domingos, P. 2006. What’s missing in Al: The interface
layer. In Cohen, P, ed., Artificial Intelligence: The First
Hundred Years. AAAI Press.

Kate, R. J., and Mooney, R. J. 2009. Probabilistic abduc-
tion using Markov Logic networks. In Proceedings of 1J-
CAI 2009 Workshop on Plan, Activity, and Intent Recogni-
tion (PAIR), 22-28.

McCallum, A.; Nigam, K.; and Ungar, L. H. 2000. Effi-
cient clustering of high-dimensional data sets with applica-
tion to reference matching. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery
and data mining, KDD °00, 169—178. New York, NY, USA:
ACM.

McCallum, A.; Schultz, K.; and Singh, S. 2009. Factorie:
Probabilistic programming via imperatively defined factor

graphs. In Neural Information Processing Systems Confer-
ence (NIPS).

Poon, H., and Domingos, P. 2006. Sound and efficient in-
ference with probabilistic and deterministic dependencies.
In Proceedings of the 21st national conference on Artificial
intelligence - Volume 1,458-463. AAAI Press.

Poon, H., and Domingos, P. 2007. Joint inference in in-
formation extraction. In Proceedings of the 22nd national
conference on Artificial intelligence - Volume 1, 913-918.
AAALI Press.

Poon, H., and Domingos, P. 2009. Unsupervised semantic
parsing. In EMNLP '09: Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 1-10. Morristown, NJ, USA: Association for Computa-
tional Linguistics.

Raghavan, S., and Mooney, R. 2010. Bayesian abductive
logic programs. In Proceedings of the AAAI-10 Workshop
on Statistical Relational Al (Star-Al 10), 82-87.

Richardson, M., and Domingos, P. 2006. Markov Logic
networks. Machine Learning 62:107-136.

Riedel, S. 2008. Improving the accuracy and efficiency
of MAP inference for Markov Logic. In Proceedings of
the Twenty-Fourth Conference Annual Conference on Un-
certainty in Artificial Intelligence (UAI-08), 468-475. Cor-
vallis, Oregon: AUAI Press.

Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82:273-302.

Selman, B.; Kautz, H. A.; and Cohen, B. 1996. Local search
strategies for satisfiability testing. In DIMACS: Series in

Discrete Mathematics and Theoretical Computer Science,
521-532.

Singla, P., and Domingos, P. 2006a. Entity resolution with
markov logic. In ICDM, 572-582. IEEE Computer Society
Press.

Singla, P., and Domingos, P. 2006b. Memory-efficient infer-
ence in relational domains. In Proceedings of the 21st na-
tional conference on Artificial intelligence - Volume 1, 488—
493. AAAI Press.

Taskar, B. 2005. Learning structured prediction models: a

large margin approach. Ph.D. Dissertation, Stanford, CA,
USA. AAI3153077.

