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Abstract

Machine reading aims at extracting formal knowledge repre-
sentations from text to enable programs to execute some per-
formance task, for example, diagnosis or answering complex
queries stated in a formal representation language. Informa-
tion extraction techniques are a natural starting point for ma-
chine reading, however, since they focus on explicit surface
features at the phrase and sentence level, they generally miss
information only stated implicitly. Moreover, the combina-
tion of multiple extraction results leads to error compounding
which dramatically affects extraction quality for composite
structures. To address these shortcomings, we present a new
approach which aggregates locally extracted information into
a larger story context and uses abductive constraint reason-
ing to generate the best story-level interpretation. We demon-
strate that this approach significantly improves formal ques-
tion answering performance on complex questions.

Introduction
Machine Reading (MR) (Strassel et al. 2010) aims at cre-
ating coherent formal representations of knowledge from
reading natural language texts. While this has been a long-
standing goal of the AI and NLP communities, there has
been a recent resurgence of this topic with a focus on nat-
urally occurring texts at potentially very large scale. The re-
sults of an MR system should enable a computer program
to execute some performance task, for example, an infer-
ence engine answering complex queries specified in a for-
mal language, or a fraud detection system spotting potential
securities fraud from analyzing financial news and compa-
nies’ annual reports. This is somewhat of a departure from
tasks such as question answering, summarization, informa-
tion extraction (IE) or translation where results are usually
intended for human consumption only and do not have to
adhere to the rigor and brittleness of a formal representation
language and ontology. MR aims for a higher level of text
understanding than IE by requiring results to be globally co-
herent with respect to a background theory and by exploit-
ing inference both for extraction and use of results. In its
most general form, machine reading encompasses all forms
of knowledge, such as ontologies, rules and instance knowl-
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edge; however, here we focus on the generation of instance
knowledge only.

Despite the difference in emphasis, a traditional IE engine
is a natural starting point for an instance-level MR system.
Such an engine typically performs POS-tagging, parsing,
mention and named entity detection, coreference resolution
and relation detection, and a baseline approach could simply
map its entity types and relations onto the target ontology of
interest. Suppose we are using this to build an MR system
in the domain of American football where we are interested
in creating detailed accounts of football games from reading
sports news. The resulting knowledge base should contain
game instances, teams playing, winners and losers, points
scored, scoring events of interest, players scoring, their team
associations, game location, home/away team, game date,
etc. Now consider the following news story paragraph:

San Francisco’s Eric Davis intercepted a Steve Walsh
pass on the next series to set up a seven-yard Young
touchdown pass to Brent Jones. Doug Brien missed a
conversion kick, but the 49ers still led 13-3 early in the
second quarter.

The first problem immediately apparent are the large
number of gaps, that is, things left implicit, since they can
be inferred or are uninteresting in this context. For example,
only Davis’ team association is explicitly described, figur-
ing out the teams of the four other players is left to the
reader. Similarly, a football-literate reader can easily infer
that Walsh and Young are (likely) the quarterbacks of their
respective teams. Finally, we can infer that San Francisco
and the 49ers must be the same team, since that is the only
way one could arrive at a 13-3 score after a touchdown that
counts for at least six points. Since current IE techniques
generally focus on surface features at the phrase and sen-
tence level, many of these unstated implicit relationships
will remain undetected.

The second problem we are faced with is error compound-
ing: given such a knowledge base of games extracted by
an MR system, it becomes easy to ask complex conjunc-
tive queries, for example, “find all losing teams of games
where San Francisco was the game winner, scored at least
two touchdowns and missed one conversion kick”. An an-
swer to such a query will be based on multiple relations
extracted by the underlying IE engine and their extraction
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49ers rip Bears, reach NFL semi-finals

William Floyd rushed for three touchdowns and Steve Young scored two more, moving the San 

Francisco 49ers one victory from the Super Bowl with a 44-15 American foo ball rout of Chicago.

By winning the National Football League (NFL) playoff game, the 49ers will host the winner of 

Sunday's Dallas-Green Bay game on January 15 to decide a ber h in the January 29 championship 

game at Miami.

Chicago struck first, recovering a fumble to set up a 39-yard Kevin Butler field goa  for a 3-0 lead 

just 3:58 into the game. But nothing went right for the Bears after that.

The 49ers moved ahead 7-3 on Floyd's two-yard touchdown run 11:19 into the game

San Francisco's Eric Davis intercepted a Steve Walsh pass on the next series to set up a seven-

yard Young touchdown pass to Brent Jones. Doug Brien missed a conversion kick  but the 49ers 

s ill led 13-3 early in the second quarter.

Floyd broke three tackles to add a four-yard touchdown burst 6:04 before half ime.

Merton Hanks returned an interception 31 yards and Jerry Rice sustained the drive with an 18-yard 

catch on fourth down to set up a 36-yard Brien field goal that gave San Francisco a 23-3 lead.

A failed fake punt by Chicago set up a six-yard touchdown run by Young 77 seconds before half-

time hat gave the 49ers a 30-3 edge at the break.

Young was knocked down after scoring by Chicago's Shaun Gayle, who was smothered under a 

wave of angry 49er players to spark a brief scuffle.

In an anti-climax second half, Floyd added a one-yard touchdown run and Adam Walker dove one 

yard for another score.

Chicago found the end zone on a two-yard touchdown toss from Erik Kramer to Jim lanigan, a 

lineman used as a receiver on he play. Lewis Tillman later added a one-yard touchdown run.

?

IE Engine Output

ID Entity or Type Points Trailer

1 rout 38 44:15 American.5 Bears

2 lead 54 3:0 UNK UNK

3 ahead 57 7:3 49ers UNK

4 touchdown.60 Floyd.0, UNK

5 led.70 13:3 UNK UNK

6 touchdown.76 UNK

7 field goal 84 Brien.16, 49ers

8 lead 87 23:3 49ers UNK

9 touchdown 89 UNK

10 touchdown.100 Floyd.0, UNK

11 touchdown.104 Kramer.21, UNK

12 touchdown.108 Tillman.23, UNK

Agent, Team
  or Leader

Story Explanation

gap FieldGoal 3 Bears

2 Score 3:0 Bears 49ers

4 TD+1 7 49ers

3 Score 7:3 49ers Bears

gap TD+0 6 49ers

5 Score 13:3 49ers Bears

6 TD+1 7 49ers

7 FieldGoal 3 49ers

8 Score 23:3 49ers Bears

9 TD+1 7 49ers

gap Score 30:3 49ers Bears

10 TD+1 7 49ers

11 TD+1 7 49ers

12 TD+0 6 Bears

gap Event 6 Bears

1 Score 44:15 49ers Bears

Figure 1: Example information flow from text to IE-engine outputs to detailed story explanation event sequence

errors will usually compound. For example, a state-of-the-
art per-relation extraction f -score of 0.7 (cf. (Jiang and Zhai
2007)) will lead to a much lower per-query f -score on the
order of 0.73 = 0.34 for queries with three relations.

A key reason for both of these problems is that IE engines
primarily focus on the sentence level and do not take the
larger story structure nor any background knowledge into
account. Human readers, on the other hand, build an evolv-
ing representation of the story they are told, where different
portions complement and constrain each other, and where
background knowledge helps to fill in story gaps.

In this paper we describe a story-level inference process
we call story explanation to address these problems. Our
approach aggregates locally extracted information from an
IE engine into a larger story context and uses abductive
constraint reasoning to generate the best story-level inter-
pretation. We demonstrate that this approach significantly
improves relation extraction and question answering perfor-
mance on complex questions.

We study our approach in the domain of sports news such
as reports about American football games. Game reports are
interesting, since they often require a reading of the whole
story to fit all the pieces together. The limited domain makes
it more tractable to model relevant domain knowledge, yet
the language is still highly variable and rich in difficult NLP
problems such as metaphor, anaphora or complex coref-
erence between aggregate event descriptions, to name just
a few. Moreover, a large number of databases compile all

kinds of information about sports teams and games, which
facilitates gold standard creation and result evaluation.

Knowledge Aggregation
Figure 1 shows an example information flow in our machine
reading system. We start with a natural language document
such as the particular game report shown, and send that to
a state-of-the-art information and relation extraction engine.
The extraction engine we are using is a statistical extractor
called SIRE (Florian et al. 2004), however, our approach is
not tied to that particular technology. SIRE performs a vari-
ety of NLP tasks such as parsing, mention detection, entity
detection/coreference resolution that groups mentions into
equivalence classes, and relation detection. The outputs of
SIRE that form the primary inputs to our machine reading
system called Knowledge Aggregator are entities and their
types, e.g., “William Floyd” of type “Person”, and relations
between entities, for example, “William Floyd” “agentOf”
“touchdown”. SIRE is a supervised system that uses anno-
tated documents to learn a statistical extraction model spe-
cific for a domain. In this case, SIRE was trained to extract
entity types and relations specific to football games in addi-
tion to a set of generic entity and relation types.

The boxes around words and phrases in the story in Fig-
ure 1 indicate a subset of the entities and relations SIRE de-
tects in this document. A more detailed account of these is
given in the table labeled “IE Engine Output”, where each
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row represents a brief summary of relevant information ex-
tracted for an event or score snapshot. The arrow points to
the text portion where this information is coming from. Each
row is identified by an ID (not generated by SIRE) used to
identify it with the corresponding row in the story explana-
tion below. The second column lists specific event and score
entities extracted by SIRE. All of these also have generic
types associated such as “EventPlayScored” or “EventOut-
comeFinal”. These types are not shown in the table but con-
sidered by the story explanation system.

The next two columns describe what we know, based on
IE engine output only, about the agent of a particular scor-
ing event (person or team) or who the leading/trailing teams
are for a score snapshot. Note that for many rows that in-
formation is fully or partially unknown, e.g., for Row 2, or
incorrect as for the leading team in Row 1. These gaps are
either due to information left implicit in the story, long dis-
tance relationships as in the third paragraph, or extraction
errors that link incorrect information or miss relevant infor-
mation such as the field goal by Kevin Butler. If we base
the extraction of an MR target relation such as “gameWin-
ner” on IE output alone, we will often get no or an incorrect
result such as “American”.

In the story explanation step (described in more detail in
the next section), the system uses abductive constraint rea-
soning to fit all this information together, correct likely er-
rors and fill in missing information to come up with the most
plausible event sequence that explains the data extracted by
IE. The table labeled “Story Explanation” shows the result
of this process. Each item or row shown in bold font shows
an addition, elaboration or correction of an IE datum. The
sequencing of rows in this explanation is significant. Rows
labeled “gap” explain scoring events or scores that were
missed by IE (indicated in text by the dotted boxes). After
this explanation step, we now know the proper winner of this
game. However, not all of the explanation details are cor-
rect. While the system correctly predicts the last two scoring
events to be by the Bears with six points each, the touch-
down in Row 11 by Kramer is attributed to the 49ers, which
is incorrect. Nevertheless, if we only look at the team level,
all the information in the explanation is correct.

In the final step not shown in the example, the Knowl-
edge Aggregator uses the generated story structure to pop-
ulate a knowledge base with instances and relations from a
particular target ontology. For example, we can now directly
read off game winner, loser, points scored, subevent struc-
ture, detailed event types, player-team associations, numbers
of scoring events by type, etc. Moreover, the subevent struc-
ture can help with the determination of other information
such as game date, location or whether the game went into
overtime, since often pertinent information will be linked to
a subevent instead of the game event itself. This last step
is similar to the template generation step in a traditional in-
formation extraction system (Hobbs and Riloff 2010), with
the exception that the result instantiates some arbitrary tar-
get ontology which might be significantly removed from the
structures expressed directly in language.

Story Explanation
Conceptually, story explanation can be separated into the
following phases:

1. Story classification
2. Story segmentation
3. Skeleton construction
4. Hypothesis generation
5. Abductive explanation
6. Explanation evaluation

Our approach is implemented using a general logical infer-
ence framework, hence, these phases will be automatically
interleaved by the underlying inference engine.

Story classification determines whether a particular docu-
ment is amenable to explanation. In the current system, ex-
planation is only attempted in documents deemed to be re-
ports on a single game, since multi-game stories pose a more
difficult segmentation challenge. To determine the document
class, the system uses a simple heuristic based on the num-
ber of final scoring events reported by the IE engine.

Segmentation finds entities and events of interest, for ex-
ample, scoring events and intermediate and final score re-
ports, and collects them into a set of story objects that will
be subject to explanation. Aggregate entities, e.g., “Floyd
rushed for three touchdowns” are currently excluded from
this step, since they are difficult to coreference with other
individually reported events.

Skeleton construction imposes a likely temporal ordering
on the scores and events of interest. For example, in Figure 1,
the final score was reported first, followed by some more
detailed description in the body of the story. We use a sim-
ple heuristic that orders scores by their points and assumes
temporal sequencing of events from presentation order (al-
lowing for some minor proximity-based variations such as
a scoring event closely following the score it caused). Fu-
ture versions will also take temporal qualifications such as
“two minutes into the second half” into account. Constrain-
ing event order is important, otherwise, the space of possible
event sequences quickly becomes intractable.

Hypothesis generation produces candidate bindings for
certain variables in the story structure. For example, in or-
der to properly account for a scoring event, we need to know
which team was responsible for it. If a team can be inferred
directly or from a player whose team is known, or from a
team association to an event that caused the scoring event,
that team will be used (e.g., for Row 7 in Figure 1). If no
such team can be found, possible team candidates from the
rest of the document will be used. Moreover, even if a team
is found it might be incorrect, hence, we always have to sup-
plement with a set of additional possibilities. The predicates
“possiblePlayTeamsOf” and “possiblePlayScores” in the ex-
ample rule in Figure 2 are implementing this type of hypoth-
esis generation (the latter for types of plays and associated
points, e.g., a touchdown might count for 6,7 or 8 points).
The most likely candidates are always generated first in or-
der to produce simple, plausible explanations quickly.

Abductive explanation then combines domain knowledge
and hypothesis generation to fit a set of story elements into
a plausible picture. Due to space constraints, we can only
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(=> (and (lastElement ?story ?play)                                                              ….explain ?story starting from its end
               (ScoringPlay ?play)                                                                        …?play is a scoring event
               (nthHead ?story -1 ?remainder)                                                      …?story prefix ?remainder prior to ?play
               (gameExplanation ?subt1 ?subt1Pts ?subt2 ?subt2Pts ?remainder ?all ?subEvSeq)   ...try to explain ?remainder
               (possiblePlayTeamsOf ?play ?all ?playTeams)                             ….?playTeams hypotheses for ?play
               (or (memberOf ?playTeam ?playTeams)
                    (and (= (cardinality ?playTeams) 0)                                           ….if we don't know any possible agents for
                            (memberOf ?playTeam (listof ?subt1 ?subt2))))                ….?play, try teams of subexplanation
               (memberOf (listof ?playType ?playPts) (possiblePlayScores ?play))   ….?playType hypotheses for ?play
               (or (and (= ?subt1 ?playTeam)                                                        ...leading team ?subt1 scored with ?play
                             (= ?t1 ?subt1) (= ?t2 ?subt2)
                             (+ ?subt1Pts ?playPts ?t1Pts)
                             (= ?t2Pts ?subt2Pts))
                    (and (= ?subt2 ?playTeam)                                                         ...trailing team ?subt2 scored with ?play
                            (+ ?subt2Pts ?playPts ?newPts)
                            (or (and (> ?newPts ?subt1Pts)                                          ...lead changed
                                          (= ?t1 ?subt2) (= ?t2 ?subt1)
                                          (= ?t1Pts ?newPts) (= ?t2Pts ?subt1Pts))
                                 (and (=< ?newPts ?subt1Pts)
                                          (= ?t1 ?subt1) (= ?t2 ?subt2)
                                          (= ?t1Pts ?subt1Pts) (= ?t2Pts ?newPts)))))
               (insertLast ?subEvSeq (eventDetail ?play ?playType ?playTeam ?playPts) ?evSeq))  ….add event to explanation
    (gameExplanation ?t1 ?t1Pts ?t2 ?t2Pts ?story ?all ?evSeq))

Figure 2: Example game story explanation rule

show one of the story explanation rules involved in Figure 2.
This rule (written in KIF) handles the case where the current
element is a scoring event such as a touchdown. It then enu-
merates possible types and agents for this event, connects
those with different possible explanations of the remaining
prior events, and computes a score tally and detailed event
description that then become part of one possible story ex-
planation. In case there are not enough candidate events to
explain known score snapshots, unknown events are hypoth-
esized (e.g., the initial field goal event in Figure 1). If the
system is overconstrained, events will be ignored to relax
some constraints. Even though this is an abductive inference
process, the use of hypothesis generators such as “possible-
PlayScores” allows us to do this with a deductive prover.

Finally, multiple competing explanations are evaluated
based on a simple cost model for ignored and hypothesized
events. Based on these evaluations, the least-cost explana-
tion that covers the maximum number of game entities and
relations while still obeying all constraints is chosen to pop-
ulate the resulting knowledge base.

The underlying rule base contains about 110 domain-
specific and 30 domain-independent rules to support interac-
tion with the IE system, text-level and domain-specific infer-
ence and story explanation. It took about one man month for
a skilled knowledge engineer to develop. This is comparable
to the document annotation time for about 80 documents to
train the extraction engine. We use PowerLoom as our rep-
resentation and inference engine which can analyze a corpus
of 500 news stories in about 30 minutes on a standard Intel
i7 desktop exploiting eight-core parallelism.

Experimental Setup
To evaluate our story explanation approach, we use formal
question answering as a performance task. The system gets
as input a set of natural language documents and a set of

queries expressed in RDF. The types and relations in each
query are restricted to those in the given target ontology. To
answer a query the system has to map it onto the knowledge
extracted from the set of corpus documents and use some
limited inference to handle type and relation subsumption
plus a small set of domain-specific rules. The output of the
system is a set of RDF graphs where each graph instantiates
one of the queries by providing bindings for its variables.
We measure performance by comparing the resulting graphs
to the ones generated by running the queries over a gold-
standard corpus created by human annotators. This compar-
ison yields standard recall, precision and f -measures based
on the number of correct and incorrect graphs produced by
the system. To evaluate the impact of story explanation, we
compare query results against a baseline version that maps
IE results directly onto the target ontology without any story
explanation inference.

For our experiments, we used a corpus and target ontol-
ogy in the domain of games in the American National Foot-
ball League (NFL). The ontology describes types of games,
NFL teams, game winners, losers, points scored, numbers of
game periods, overtime, numbers of scoring events, etc. and
is described in some more detail in (Strassel et al. 2010). The
corpus LDC2009E112 V1.2 was developed by the Linguis-
tic Data Consortium as a training corpus for the DARPA Ma-
chine Reading Program. It contains 110 news stories (from
NYT, AFP & APW) with about 600 words on average de-
scribing (mostly) football-related content. A gold standard
was created by LDC annotators who annotated the corpus
for concepts and relations in the target ontology that were
observable or inferable more or less directly from text.

A typical content sentence would be the following: “Den-
ver again proved inhospitable to the Kansas City Chiefs,
as the Broncos pounded them 30-10 in a National Football
League Monday night game.” From this sentence an annota-

211



Query ID English Paraphrase

Packers-losers

NFLGame-date Find all games on date where team1 played team2
NFLGame-scores Find all games where winner played loser and their respective points scored
NFLGame-2TDs+ Find all games where loser scored touchdowns and touchdowns >= 2
NFLGame-OT-win Find all games where winner won the game in overtime

Find all games where loser lost to the Green Bay Packers and the loser's points scored

Table 1: Test query IDs and their English paraphrases. Note that queries are formulated in RDF and that the underlined words
above correspond to output variables in a SPARQL select statement.

Query ID
IE Baseline with Story Explanation

F1 Change
R P F1 R P F1

232 29 74 0.125 0.282 0.173 44 92 0.190 0.324 0.239 38.1%
155 52 12 0.335 0.813 0.475 64 22 0.413 0.744 0.531 11.8%

44 (51) 27 1 0.529 0.964 0.684 31 4 0.608 0.886 0.721 4.6% (5.5%)
10 0 0 0.000 0.000 0.000 1 0 0.100 1.000 0.182 ∞

Packers-losers 7 4 1 0.571 0.800 0.667 4 1 0.571 0.800 0.667 0.0%

Gold Standard 
Answers TPs FPs TPs FPs

NFLGame-date
NFLGame-scores
NFLGame-2TDs+
NFLGame-OT-win

Table 2: Story explanation improvement over IE baseline on several test queries

tor might infer that Denver played Kansas City, Denver was
the home team and won with a final score of 30, Kansas City
lost with a score of 10, and that the game was on a Monday
night which in conjunction with the article date would allow
us to infer the actual game date.

A typical evaluation query in this domain looks like this
(in SPARQL, namespace prefixes omitted):

SELECT ?Team_L ?Points_L ?TD_L WHERE {

?G type NFLGame .

?G gameLoser ?Team_L .

?G teamFinalScoreInGame ?SS_L .

?SS_L type NFLGameTeamSummaryScore .

?SS_L teamScoringAll ?Team_L .

?SS_L pointsScored ?Points_L .

?SS_L touchdownCompleteCount ?TD_L .

FILTER(?TD_L >= 2) }

This query corresponds to query “NFLGame-2TDs+” in
Tables 1 and 2. An answer graph instantiating this query
counts as correct if a matching graph exists in the ground
truth. For a match to count, only nodes instantiating query
output variables need to match (e.g., ?Team L, ?Points L,
?TD L), internal variables such as the game event ?G or
score object ?SS L are treated as anonymous skolems. Du-
plicate correct answers that might come from different sto-
ries reporting on the same game are counted only once.
Missing any aspect of the answer graph will render the an-
swer incorrect, there is no partial credit.

Experimental Results
To evaluate our system, we first run it in a baseline con-
figuration without explanation, and then with story expla-
nation inference turned on. For the baseline, game winners
and losers reported by the IE engine are simply linked to-
gether and taken at face value (we use the IE engine’s high-
est confidence results only). All other inference having to
do with game dates, locations, home/away teams, overtime,
game types, etc. is identical to the full version.

With story explanation turned on, the system tries to de-
termine first whether a document is a single or multi-game

report. Only if a document is likely a single-game story will
it attempt to do full story explanation, since, due to the cur-
rent lack of a good document segmentation approach, story
explanation gets confused on multi-game documents. For
multi-game reports, it will behave identical to the baseline
version. In our test corpus, 44 out of the 110 documents are
determined by the system to be single game stories, and 33
as multi game stories with about three games on average (but
a maximum of 12). This classification is of course noisy,
since it is based on IE engine output.

English paraphrases for five test queries presented to the
system in RDF are shown in Table 1. Evaluations of query
results are summarized in Table 2. For four out of the five
queries the story explanation system produces a signifi-
cant improvement in query f -score. The most representative
query in the evaluation set for our purposes is NFLGame-
scores, since (1) it has a large enough number of answers
in the test corpus to be statistically meaningful, and (2) its
results can be read off directly from a successful game story
explanation. Moreover, while the IE engine is fairly good
in finding game outcomes and their associated teams, it of-
ten gets mixed up about the respective winning and losing
teams due to the highly variable and metaphorical language
used to describe game outcomes (e.g., “Denver again proved
inhospitable to the Chiefs, as the Broncos pounded them 30-
10...”). In those cases additional constraints from plays de-
scribed in the story can be exploited by the story explanation
mechanism to correct IE errors or omissions.

Queries such as NFLGame-date and NFLGame-OT-win
benefit from story explanation due to the additional oppor-
tunities to link up game time or date specifications. For
example, in the one positive result for NFLGame-OT-win,
story explanation connects the following field goal to the fi-
nal game outcome: “Vinatieri found enough solid footing to
kick a 24-yard field goal with 19 seconds left in overtime”.
Since IE extracted the appropriate temporal link connecting
the field goal to a temporal expression signifying overtime,
it can infer that the corresponding game outcome (linked by
story explanation) occurred in overtime as well.
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For the NFLGame-2TDs query, the gold standard anno-
tations were very conservative, since annotators were not
allowed to make inferences about touchdowns scored and
only annotated explicit mentions such as “won by two touch-
downs.” This led to a disproportionate number of false pos-
itives reported, since both systems would make such in-
ferences when warranted from intermediate events or final
scores (e.g., a score of 24 has a 0.905 probability to include
at least two touchdowns). To compensate, we manually in-
spected false positives and supporting provenance and re-
classified them as true where warranted. The improvement
of 4.6% is based on a revised gold standard including now
44 true answers. A more accurate estimate of true answers
is 51 (based on a 70% increase in true positives after in-
spection), and a revised improvement of 5.5% is reported in
parentheses. The other queries did not rely on inferences by
annotators and did not need any gold standard corrections.

These improvements are especially significant, since only
about 20-30% of all games are reported on in single-game
documents. For the rest, no story explanation is attempted. In
general, recall improves with some degradation of precision
possible. This is to be expected given the somewhat simplis-
tic heuristics for story segmentation and event reordering.

Related Work
How to use knowledge and inference to facilitate language
understanding has been researched since the early days of
AI (e.g., (Schank 1975)). Similarly, that abduction plays an
important role in interpretation has been clear at least since
Hobbs’ seminal paper (1993). Only more recently, however,
have these approaches been evaluated on naturally occur-
ring texts at scale. For example, the work of Harabagiu et al.
(2003) on answer mining and Ovchinnikova et al. (2011) on
textual entailment. In these works, abduction is only used
at the sentence level, while our system performs abductive
interpretation across a whole story, which requires different
segmentation and reasoning techniques to make it tractable.
Moreover, our system identifies and closes gaps (implicit
facts) which can then be queried, while a QA system such
as Harabagiu’s only identifies answers explicitly mentioned
in text. Roth and Yih (2007) formulate a linear program-
ming approach for global inference and constraint reason-
ing. However, they only apply it to individual entity and re-
lation detection tasks as opposed to assembling whole story
explanations. Our approach would benefit from more so-
phisticated document classification and segmentation tech-
niques as developed in the IR community (e.g., (Sun et al.
2007)) which would allow us to apply explanation to a larger
portion of documents. Moreover, it requires a significant
amount of manually coded domain knowledge, and we are
currently investigating how approaches such as (Chambers
and Jurafsky 2009) could be used to learn some of the req-
uisite knowledge automatically.

Conclusion
We presented a new abductive story-level inference ap-
proach to support machine reading applications. Our ap-
proach generates the best story-level interpretation for the

entities and relations generated by a state-of-the art infor-
mation extraction engine based on background knowledge
and a set of story explanation rules. This process can fill
gaps of missing or implicit information and counteracts er-
ror compounding for queries that involve multiple relations.
We applied our approach to a domain of sports news arti-
cles and demonstrated that it significantly improves relation
extraction and question answering performance on a set of
complex questions in this domain.
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