
Reformulating Planning Problems: A Theoretical Point of View

Lukáš Chrpa, Thomas Leo McCluskey and Hugh Osborne
Knowledge Engineering and Intelligent Interfaces Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa, t.l.mccluskey, h.r.osborne}@hud.ac.uk

Abstract

Automated planning is a well studied research topic
thanks to its wide range of real-world applications. De-
spite significant progress in this area many planning
problems still remain hard and challenging. Some tech-
niques such as learning macro-operators improve the
planning process by reformulating the (original) plan-
ning problem. While many encouraging practical re-
sults have been derived from such reformulation meth-
ods, little attention has been paid to the theoretical prop-
erties of reformulation such as soundness, complete-
ness, and algorithmic complexity. In this paper we build
up a theoretical framework describing reformulation
schemes such as action elimination or creating macro-
actions. Using this framework, we show that finding
entanglements (relationships useful for action elimina-
tion) is as hard as planning itself. Moreover, we design a
tractable algorithm for checking under what conditions
it is safe to reformulate a problem by removing primi-
tive operators (assembled to a macro-operator).

Introduction
AI planning (Ghallab, Nau, and Traverso 2004) deals with
the problem of generating a sequence of ground actions
given a set of operator schema. The actions may be gen-
erated in order to achieve a desired goal condition (“my
thirst is satisfied”) from some initial state, or to ground a
high level task (“make me a cup of tea”). In the former
area (goal achievement planning) many optimized planning
engines (Hoffmann and Nebel 2001; Richter and Westphal
2008) are now available which input the planning problem
in some variant of the language PDDL (Ghallab et al. 1998).
These planning engines are being used as black boxes in ap-
plications, where the interface to the engine is the problem
and domain model (referred to here as PDM) defined in the
language PDDL, and the solution plan generated is the out-
put. However, whereas specific PDMs can be solved very
efficiently using this setup, it is well known that AI planning
is intractable in general. Although current planning engines
are very refined, there is no guarantee that they will return a
solution in a reasonable length of time.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Often PDMs have their hidden specifics. For example,
in the well known BlockWorld domain we have operators
UNSTACK and PUTDOWN whose instances often ap-
pear successively in plans. Similarly, we can find out that
the operator STACK is used only for stacking blocks to
their goal positions. One general method that has been ex-
plored to alleviate this problem is to devise a means of re-
formulating the input PDM by taking into account its hidden
specifics, ensuring that the reformulated problem is much
more efficiently solved than the original. After a solution is
obtained, the output plan is transformed back to the orig-
inal formulation, to retain the black box property of the
planning engine. Creating macro-operators (Dawson and
Siklóssy 1977) is a well known approach to reformulation
which in some cases can speed up plan generation con-
siderably (Newton et al. 2007; Botea et al. 2005). More-
over Chrpa (2010) eliminates potentially useless primitive
planning operators replaced by a generated macro-operator,
however it might cause that some reformulated problems be-
come unsolvable. Another method is to eliminate actions
from the planning problem altogether, such as has been done
in recent work by discovering entanglements (Chrpa and
Barták 2009). While many encouraging practical results
have been derived from such reformulation methods, little
attention has been paid to the theoretical properties of refor-
mulation such as soundness, completeness, and algorithmic
complexity.

In this paper we build up a theoretical framework for
classical planning (deterministic, fully observable environ-
ments) on which to precisely define reformulation schemes,
and investigate the combination of macro-operator creation
and action elimination. Using this framework, we show
that finding entanglements (relationships that are useful for
guiding action elimination) is as hard as planning itself.
We go on to produce conditions for a combined macro-
operator creation and action elimination method that ensures
the soundness and completeness of the reformulation, and
show that the algorithm which operationalizes these condi-
tions is of polynomial complexity.

Preliminaries
PDMs can be represented in several ways. The set-theoretic
representation is based on propositional logic, therefore we
can define only planning problems (see definition below)

14

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference



suitable for certain situations. The classical representation is
based on first order (predicate) logic, therefore it is possible
to define planning domains (see below) suitable for certain
classes of planning problems.

In a set-theoretic representation a planning problem is
a tuple Π = 〈P, S,A, γ, I,G〉. P stands for a finite set of
atoms (propositions), S ⊆ 2P stands for a set of states,
I ∈ S stands for initial situation (initial state), G ⊆ P
stands for goal situation. A is a set of actions, action a ∈
A is specified via its precondition (pre(a) ⊆ P ), negative
and positive effects (eff−(a) ⊆ P , eff+(a) ⊆ P ). An
action a ∈ A is applicable in a state s ∈ S iff pre(a) ⊆ s.
γ : S × A → S is a transition function, where γ(s, a) =
(s\eff−(a))∪eff+(a) if a is applicable in s, otherwise γ(s, a)
is undefined. γ∗ is the reflexive transitive closure of γ and
can be used for sequences of actions. A plan π is a sequence
of actions 〈a1, . . . , ak〉. A plan π is a solution of a planning
problem Π iff G ⊆ γ∗(I, π).

Unlike the set-theoretic representation where atoms and
actions refer to certain objects (e.g. on-a-b or stack-a-b),
the classical representation (Ghallab, Nau, and Traverso
2004) defines atoms as predicates (e.g. on(X,Y)) and plan-
ning operators (e.g stack(X,Y)) instead of actions. Vari-
able symbols (e.g. X,Y) can be substituted by constants
referring to certain objects (e.g. a,b). Hence atoms and
planning operators do not depend on a particular plan-
ning problem. Formally, a planning operator is a 4-tuple
o = (name(o), pre(o), eff−(o), eff+(o)), where name(o),
the name of the operator o, is an expression of the form
name(x1, . . . , xk) where name is called an operator sym-
bol, x1, . . . , xk are all of the variable symbols that appear in
the operator, and name is unique. pre(o), eff−(o) and eff+(o)
are generalizations of the preconditions, negative and posi-
tive effects of the set-theoretic action (instead of being sets
of propositions, they are sets of predicates).

In the classical representation a planning domain con-
sists of a set of predicates and a set of planning operators.
A planning problem is then specified by objects, initial and
goal situation. Obtaining the set-theoretic representation
from the classical representation is done by grounding of all
the predicates and planning operators.

Reformulation Scheme
There are many ways in which PDMs can be encoded. Some
of the encodings might be hard for planners while others
may not. For instance, Hoffmann (2011) shows how prob-
lem analysis of PDMs can shed light on how hard particu-
lar encodings of benchmark domains are. This leads to the
question of whether the encodings can be reformulated in
order to make the problem easier to solve.
Definition 1. Let PROBS be a set of planning problems. Let
PLANS = {π | π is a solution of any Π ∈ PROBS} be a
set of plans. A reformulation scheme for planning is a pair
of functions (probref, planref) defined in the following way:
• probref : PROBS → PROBS is a problem reformulation

function
• planref : PLANS → PLANS is a plan reformulation

function

The reformulation scheme (probref, planref) is sound if
π′ ∈ PLANS is a solution of probref(Π) ∈ PROBS, then
planref(π′) is a solution of Π ∈ PROBS.

The reformulation scheme (probref, planref) is complete
if it is sound and if Π ∈ PROBS is solvable (i.e., there
is a solution of Π), then probref(Π) ∈ PROBS is also
solvable. �

Composition of reformulation schemes do not affect
soundness or completeness (Chrpa 2011). The most com-
mon and well studied kinds of reformulation scheme are
adding macro-actions or eliminating some (unnecessary) ac-
tions (see below).

Action Eliminating Scheme
Reformulating a PDM to eliminate unnecessary actions is an
obvious way to try to reduce branching when searching for
plans.
Definition 2. Let (elim, id) be a reformulation scheme for
planning. Let id be a plan reformulation function such
that for every plan π id(π) = π (identity function). Let
elim be a problem reformulation function such that for ev-
ery planning problem Π = 〈P, S,A, γ, I,G〉 and Π′ =
〈P, S,A′, γ′, I, G〉 such that elim(Π) = Π′, A′ ⊆ A and
γ′ is defined on S × A′ and γ′ ⊆ γ. Then, we say that
(elim, id) represents an action eliminating scheme. �

Action eliminating schemes are sound but incom-
plete (Chrpa 2011). Obviously, if actions are eliminated the
problem may become unsolvable. If we eliminate unreach-
able actions (i.e., actions whose preconditions cannot be sat-
isfied in any step of the planning process) then completeness
is not affected. However, checking whether an action is un-
reachable in general is PSPACE-complete (we have to solve
a planning problem where the action precondition is a goal
situation).

Investigating whether an action can be removed from a
planning problem without affecting its solvability is also
PSPACE-complete. To prove this we can use the landmark
theory (Hoffmann, Porteous, and Sebastia 2004). Land-
marks are atoms which must be true at some point of
the planning process. Similarly action landmarks are ac-
tions which must be presented in every solution. Decid-
ing whether an atom is a landmark has been proved to
be PSPACE-complete (Hoffmann, Porteous, and Sebastia
2004). We can use this to prove PSPACE-completeness of
deciding an action landmark.
Proposition 1. Deciding an action landmark is PSPACE-
complete.

Proof. The problem of deciding an action landmark can be
reduced into the problem of deciding a landmark, which is
known to be PSPACE-complete. Let {a1, . . . , an} be a set
of actions such that for every 1 ≤ i ≤ n p ∈ eff+(ai).
Without loss of generality we assume that {a1, . . . , an} and
p are defined in some problem Π and no other action has p in
its positive effects. We modify the actions {a1, . . . , an} such
that we replace p in the positive effects by p′ (without loss of
generality we assume that p′ is not defined in Π). Then we
introduce a new action a′, where pre(a′) = eff−(a′) = {p′}

15



and eff+(a′) = {p}. a′ is an action landmark in the modified
problem if and only if p is a landmark in Π.

This result shows us that deciding whether an action can
be removed (in general) is also PSPACE-complete (we can-
not remove an action landmark).

Macro-action Scheme
We say that an action a1,...,k is a macro-action over the se-
quence of actions 〈a1, . . . , ak〉 if for every s ∈ S (in a given
problem) it holds that γ∗(s, a1,...,k) = γ(s, 〈a1, . . . , ak〉) or
both are undefined. Hence, macro-actions represent ‘short-
cuts‘ in the state space.

Definition 3. Let (macro, unfold) be a reformulation
scheme for planning. Let macro be a problem reformula-
tion function such that for every planning problem Π =
〈P, S,A, γ, I,G〉 and Π′ = 〈P, S,A ∪ Am, γ

′, I, G〉 (Am

is a set of macro-actions) such that macro(Π) = Π′, for ev-
ery a1,...,k ∈ Am such that a1,...,k is a macro-action over
the sequence of actions 〈a1, . . . , ak〉 (a1, . . . ak ∈ A) and
γ′ ⊇ γ (defined on S × (A ∪ Am)). Let unfold be a plan
reformulation function such that for every π′ and π such that
unfold(π′) = π it holds that every macro-action (from Am)
in π′ is replaced by the corresponding sequence of primitive
actions (from A) in π. Then, we say that (macro, unfold)
represents a macro-action scheme. �

Unsurprisingly, macro-action schemes are sound and
complete (Chrpa 2011). Macro-actions can be generalized
in the same way as (normal) actions, i.e. macro-operators
are a general form of macro-actions. Even though the re-
formulation scheme is defined using the set-theoretic rep-
resentation there is a straightforward relation to the clas-
sical representation (e.g. if a macro-operator is added into
the (classical) planning domain then in fact all its instances
(macro-actions) are added into the (set-theoretic) planning
problem).

Eliminating Actions by Entanglements
Chrpa and Barták (2009) introduced entanglements as a tool
for eliminating potential unnecessary actions. Entangle-
ments are relations between planning operators and initial or
goal atoms. For example, if operator UNSTACK is entangled
with predicate on (for deeper insight about BlockWorld do-
main, see (Slaney and Thiébaux 2001)), then the UNSTACK
operator is used only for unstacking blocks from their ini-
tial positions (i.e., only the corresponding instances can be
provided). The formal definition is provided below.

Definition 4. Let P be a planning problem, where I is an
initial situation and G is a goal situation. Let o be a plan-
ning operator and p be a predicate (o and p are defined in a
planning domain which is related to P ). Operator o is en-
tangled by init (or goal) with predicate p in planning prob-
lem P if and only if p ∈ pre(o) (or p ∈ eff+(o)) and there
is a plan π that solves P and for every action a ∈ π which
is an instance of o and for every grounded instance pgnd of
the predicate p it holds: pgnd ∈ pre(a) ⇒ pgnd ∈ I (resp.
pgnd ∈ eff+(a)⇒ pgnd ∈ G). �

The definition of entanglement can be extended to full en-
tanglement which applies not just to one problem only but to
a whole class of problems having the same planning domain.

We say that an action a (instance of an operator o) violates
the entanglement by init (resp. goal) with a predicate p if
an instance of p ∈ pre(a) is not in I (resp. an instance of
p ∈ eff+(a) is not in G).

In the language of reformulation schemes we deal with
a special case of an action eliminating scheme. Formally,
(ent elim, id) is an entanglement reformulation scheme
if (ent elim, id) is an action eliminating scheme and for
every planning problem Π ent elim(Π) is constructed in
such a way that if A is a set of actions in Π, then
A \ {a|a violates any entangement} is a set of actions in
ent elim(Π).

The entanglement reformulation scheme is sound because
it is a ‘special case‘ of an action eliminating scheme. Com-
pleteness of the entanglement reformulation scheme is given
directly from the definition of entanglement (see defini-
tion 4). However, the detection of entanglement is (in gen-
eral) PSPACE-complete which is proved in the following
theorem.

Theorem 1. Deciding an entanglement is PSPACE-
complete.

Proof. The proof of PSPACE-completeness of deciding en-
tanglements is done by reducing it to the problem of de-
ciding an action landmark, which is also PSPACE-complete
(see Proposition 1).

entanglement by init — Let Π be a planning problem and
a be an action defined in Π. Let o be a planning operator
which is a general form of a (i.e., a is an instance of o).
Let p be a predicate which has the same variable symbols
(arguments) as the operator o (without loss of generality
we assume that p is not defined in Π). We extend o in such
a way that we add p into pre(o). We create a planning op-
erator o′ such that o′ has the same variable symbols (ar-
guments) as the operator o, pre(o′) = eff−(o′) = ∅ and
eff+(o′) = {p}. We also extend the initial state by adding
all the instances of p but one that corresponds with the ac-
tion a (i.e., if Θ is a substitution such that oΘ = a then
pΘ is not added to the initial state). It can be seen that
if the extended operator o is entangled by init with p in
the extended Π then a is not an action landmark and vice
versa (in fact if this entanglement does not hold than a
must appear in every solution). The extended problem is
solvable even though a must be present in the solution
because in that case the corresponding instance of the ex-
tended omust be preceded by a corresponding instance of
o′ which gives the instance of pmissing in the initial state.

entanglement by goal — Can be addressed similarly as in
the entanglement by init case. In this case the operator o
is extended in such a way that we add p into eff+(o). We
put all instances but one (corresponding with a) into the
initial state as well as into the goal situation. In this case
o′ is not necessary because p is not in the precondition of
o thus the absence of an instance of p in the initial state
does not affect applicability of the corresponding instance

16



of o. It can be also seen that if the extended operator o is
entangled by goal with p in the extended Π then a is not
an action landmark and vice versa.

The previous theorem in fact says that deciding entangle-
ment is as hard as planning itself. On the other hand in some
domains such as BlockWorld we believe that some entan-
glements (e.g. UNSTACK with on) can be found in a poly-
nomial time. Nevertheless, entanglements can be ‘detected‘
by an approximation such as that in Chrpa and Barták (2009)
which despite incompleteness produced very promising re-
sults.

Removing Primitive Operators Replaced by
Macro-operators

Chrpa (2010) introduced the idea of removing primitive
operators which are replaced by a created macro-operator.
Using the definitions above means that the reformulation
scheme is composed from the macro-action scheme and ac-
tion eliminating scheme. However, we know that the action
eliminating scheme is incomplete and checking whether a
problem loses completeness or not after being reformulated
is in general PSPACE-complete.

Macro-actions are in fact ‘shortcuts‘ in the state-space and
removing the primitive actions may be that the intermediate
state might become unreachable or the goal might become
unreachable from the intermediate state. For illustration let
s0, s1 and s2 be states and a1 and a2 be actions such that
γ(s0, a1) = s1 and γ(s1, a2) = s2. Introducing a macro-
action a1,2 (over the sequence 〈a1, a2〉) gives a direct con-
nection from s0 to s2. The question is in what conditions
we can remove actions a1 and a2 without breaking com-
pleteness. If there are reversible actions (inverse actions) for
a1 and a2 (condition 1 of Proposition 2), then s1 remains
reachable, and the completeness is not affected. If there are
not we must somehow ‘bypass’ s1 (condition 2 of Proposi-
tion 2). We must not start or end in s1 (i.e., s1 must not be
an initial state, and if neither s0 nor s2 is a goal state, then
nor can s1 be one). If there is another action a applicable in
s1, then to ensure completeness there must be an alternative
action a′ resulting in the same state as the application of a
in s1 which is applicable in s0 (see (a,b) in Figure 1) or s2
(see (c,d) in Figure 1). Similarly we must find an alternative
actions for actions which leads to s1 (for illustration assume
reverse directions for a and a′ in Figure 1).

Proposition 2. Let Π = 〈P, S,A, γ, I,G〉 be a planning
problem. Without loss of generality we assume that a1, a2 ∈
A and a1,2 6∈ A. Let a1,2 be a macro-action over the se-
quence 〈a1, a2〉. Let A− = {a1, a2} be a set of actions.
We assume that one the following conditions holds for every
triple of states s0, s1, s2 ∈ S such that γ(s0, a1) = s1 and
γ(s1, a2) = s2.

1. There are actions a′1, a
′
2 ∈ A such that

{a′1, a′2}∩ A− = ∅, γ(s2, a
′
2) = s1 and γ(s1, a

′
1) = s0.

2. s1 6⊆ I ∧ (G ⊆ s1 → (G ⊆ s0 ∨ G ⊆ s2)) and for every
a ∈ A \ A− and s ∈ S \ {s1, s2} such that γ(s1, a) = s

Algorithm 1 Algorithm for detecting completeness of re-
moval of the primitive operators replaced by a new macro-
operator.
Require: Planning domain Σ, macro-operator o1,2, primi-

tive operators o1, o2
1: if There are operators o′1 and o′2 such that they are in-

verse to o1 and o2 then
2: return true
3: end if
4: create templates of S0, S1, S2 {see the text for details}
5: if S1 can be instantiated to an initial state then
6: return false
7: end if
8: if S1 can be instantiated to a goal state while S0 or S2

cannot then
9: return false

10: end if
11: for all o 6= o2 applicable in S1 do
12: if application of o in S1 leads towards S0 then
13: continue
14: end if
15: find o′ 6= o1 applicable in S0 or S2 such that applica-

tion of o′ in S0 or S2 has the same result that applica-
tion o in S1 {see the text for details}

16: if o′ does not exist then
17: return false
18: end if
19: end for
20: for all o 6= o1 applicable in some state template S such

that application of o leads towards S1 do
21: find o′ 6= o2 applicable in S such that application of

o′ leads towards S1 {see the text for details}
22: if o′ does not exist then
23: return false
24: end if
25: end for
26: return true

(resp. γ(s, a) = s1, s 6= s0) it holds that s = s0 or
there is an action a′ ∈ A \A− such that γ(s0, a

′) = s or
γ(s2, a

′) = s (resp. γ(s, a′) = s0, s 6= s0 or γ(s, a′) =
s2).

Let Π′ = 〈P, S, (A ∪ {a1,2}) \ A−, γ′, I, G〉 be a planning
problem (γ′ is defined according to the definitions of action
eliminating and macro-action scheme). If Π has a solution,
then Π′ has also a solution.

See (Chrpa 2011) for a proof of proposition 2
In this paper we exploit Proposition 2 in order to create a

tractable algorithm for finding complete reformulations in-
volving macro-operators and action elimination. Proposi-
tion 2 is the basis for Algorithm 1 which tests whether it
is safe to remove primitive operators replaced by a macro-
operator. If the algorithm returns true then it is safe (i.e.,
if the reformulated problem is unsolvable then the original
one is unsolvable too). If the algorithm returns false then the
reformulated problem may no longer be complete.

The algorithm first checks if the removed operators have

17



s0

s1a1

s

a’

s2
a2

a

s0

s2
a1,2

s1

s

a’

a

(a) (b)

s0 s1
a1

s

a s2

a2

a’
s0

s1

s2

a1,2

s

a

a’

(c) (d)

Figure 1: Replacing primitive actions (a,c) by a macro-action (b,d). Removed primitive actions are visualized by a dotted line
in (b,d).

inverses (Line 1). Informally, an operator is an inverse
of another if it reverses the changes of the other opera-
tor. Formally, o is inverse to o′ if eff−(o) = eff+(o′),
eff+(o) = eff−(o′) and pre(o′) ⊆ eff+(o)∪(pre(o)\eff−(o))
(pre(o) is determined analogously). Finding inverse oper-
ators to o1 and o2 (Line 1) obviously covers all situations
where instances of o1 and o2 are involved which satisfies
condition 1 of Proposition 2. Creating templates of states
(see Line 4) is done as follows. State templates are of
the form S = 〈S+, S−〉 where S+ contains atoms that
must be included in the state and S− contains atoms that
must not be included in the state. For S0 it must hold that
S0 ⊇ pre(o1,2), therefore S+

0 = pre(o1,2) and S−0 = ∅. For
S1 it must hold that:

S1 ⊇ eff+(o1) (1)

S1 ∩ eff−(o1) = ∅ (2)

S1 ⊇ pre(o1) \ eff−(o1) (3)
S1 ⊇ pre(o2) (4)

Then S+
1 = eff+(o1) ∪ pre(o2) ∪ (pre(o1) \ eff−(o1)) and

S−1 = eff−(o1). S2 is created according to (1)-(3) (analo-
gously to S1 except (4)) but instead of o1 we use o1,2. A
state template S1 can be instantiated to an initial state I if
there is a ground substitution Θ such that S+

1 Θ ⊆ I and
S−1 Θ ∩ I = ∅. If S1 can be instantiated to I (Line 5), then
obviously condition 2 of Proposition 2 is broken. A state
template S1 can be instantiated to a goal state (G stands
for a goal situation) if there is a substitution Θ such that
S+
1 Θ ∩ G 6= ∅ and S−1 Θ ∩ G = ∅. Hence, an instance

of S+
1 must provide at least one goal atom (obviously atom

instances from S−1 must be disjoint to goal atoms) to be con-
sidered as a potential goal state. One might suggest that
even if the instance of S+

1 does not provide any goal atoms,
then there might be an instance of S1 which is the goal state.
However, in this case we can simply find out that an instance
of S0 must also be a goal state because all the atoms which
might not be available in S0 are added by an instance of o1
which are listed in S+

1 . For state templates S0 and S2 we
have to add an additional condition, i.e., S+

0 Θ ⊇ S+
1 Θ ∩G

(analogously for S2). This is because we must be sure that
if the instance of S1 is the goal state, then the instance of
S0 or S2 is the goal state as well. We can also see that the
additional condition means that atoms in S+

1 contributing to
the goal state have already been in S+

0 or are not removed

from S+
2 . Hence, if the test (Line 8) fails, then condition 2

of Proposition 2 is broken.
Applicability of an operator in a state template is checked

in a similar way to checking if it can be instantiated to the
goal state but in this case the substitution is unground (i.e.,
does not provide constants). If there is an unground substitu-
tion Θ such that S+

1 Θ∩pre(o) 6= ∅ and S−1 Θ∩pre(o)Θ = ∅,
then o is applicable in S1 (these substitutions will henceforth
be assumed when we compare unground sets of atoms). If
o 6= o2 can be applied in S1 (Line 11), then the result of the
application S is constructed according to (1)-(3) and we also
have to move all unchanged atoms (atoms which do not ap-
peared in effects of o) from S1. If S+ ⊆ S+

0 and S− ⊇ S−0 ,
then the application of o in S1 leads towards S0 (Line 12).
If so, then according to Proposition 2 (condition 2) the exis-
tence of o does not affect completeness. Otherwise we have
to find an operator o′ 6= o1 applicable in S0 or S2 that leads
towards S. To be sure that o′ is really applicable in the state
templates S0 and S2 we must strengthen the condition of op-
erator applicability in such a way that S+

0 ⊇ pre(o′) (analo-
gously for S2). Constructing S′ as a result of application of
o′ in S0 or S2 is done analogously to the construction of S.
If S′+ ⊇ S and S′− ⊆ S−, then we can say that the applica-
tion of o′ in S0 or S2 has the same result as application of o
in S1. If such an operator o′ does not exist, then condition 2
of Proposition 2 might be broken.

Checking whether an application of an operator o 6= o1
in a state template S leads towards the state template S1

(Line 20) is done as follows. It must hold that S+ ⊇
pre(o), S+ ⊇ S+

1 \ eff+(o) and S− ⊇ S−1 \ eff−(o). Let S′
be a state template created according to (1)-(3) (o is applied
in S). If S+

1 ∪ S′− = ∅, S−1 ∪ S′+ = ∅ and S+
1 ∪ S′+ 6= ∅,

then the application of o leads towards S1. We have to find
an operator o′ 6= o2 applicable in S (i.e., pre(o′) ⊆ S+)
such that it leads towards S0 or S2 (Line 21). Let S′′ be a
state template created according to (1)-(3) (o′ is applied in
S). To be sure that the application of o′ really leads towards
S0 or S2 it must hold that S+

0 ⊆ S′′+ (analogously for S2).
If such an operator o′ does not exist, then condition 2 of
Proposition 2 might be broken.

Because Proposition 2 requires reachability of S2, then
we must be sure that if S1 is reachable then S2 is reachable
as well. If pre(o2) ⊆ eff+(o1) then if o1 is applicable (leads
towards S1) then o2 is applicable as well (leads towards S2).
If S1 is not reachable then neither o1 nor o2 is applicable,

18



therefore removing them cannot break completeness.
It can be seen that the complexity of the Algorithm 1 de-

pends quadratically on the number of planning operators.
If o1 is not about to be removed, then we can modify the
algorithm by omitting Lines 8-19 (i.e., the goal check and
applicability of another operator on S1 check), because S1

remains reachable from S0. If o2 is not about to be removed,
then we can modify the algorithm by omitting Lines 5-7 and
20-25 (i.e., the initial state check and checking if any op-
erator (except o1) leads towards S1), because S2 remains
reachable from S1.

Example
As an example how Algorithm 1 works we choose the
well known BlockWorld domain. We have four operators
UNSTACK (unstacking the (clear) block from another block
and leave it hanging on the gripper), STACK (stack the
block currently hanging on the gripper onto another (clear)
block), PICKUP (picks the (clear) block from the table and
leave it hanging on the gripper) and PUTDOWN (puts the
block currently hanging on the gripper on the table). If
we create a macro-operator UNSTACK-PUTDOWN and re-
move the primitive operators UNSTACK and PUTDOWN,
then we can see that there still remain PICKUP and
STACK, inverse operators to the removed ones. Therefore,
the test on Line 1 is successful. If we then create a macro-
operator PICKUP-STACK and remove the primitive opera-
tors PICKUP and STACK, then the first test (Line 1) fails (no
inverse operators exist). Passing the tests (Lines 5 and 8) is
conditioned by the fact that no block must be hanging on the
gripper in the initial or goal situation (we can see that there
is only one atom in S+

1 which refers to a situation in which
a block is hanging on the gripper, this atom is not presented
in S+

0 or S+
2 ). Similarly, we can see that there is no operator

applicable in S1 or leading towards S1. Therefore, the com-
pleteness is not broken (if no block is required to be hanging
on the gripper in the initial or goal state).

Conclusion
In this paper we have formally defined the idea of reformu-
lation schemes and their properties of soundness and com-
pleteness. Reformulation schemes are a general way of
defining a reformulation on a PDM and setting up its “recov-
ery” via a function that transforms the output plan into the
original PDM formulation. We have defined action elimina-
tion and macro composition as two important types of sound
reformulation scheme, and have shown that selecting partic-
ular action elimination choices using the relationship of en-
tanglement is at least as hard as planning itself. Further, we
used the theoretical framework to investigate a more com-
plex reformulation scheme based on a combination of both
macro-creation and action elimination. We introduced such
a complete reformulation scheme via Proposition 2, and rig-
orously derived an operational form of the proposition in the
form of an algorithm with low order polynomial time com-
plexity.

Our future work will involve implementing and empiri-
cally evaluating Algorithm 1 using benchmark domains, and

using any insights gained to discover further general refor-
mulation schemes with guaranteed completeness, in order
to improve the efficiency of AI planning engines. Another
interesting topic for future work is inspired by the exam-
ple (applying the Algorithm 1 in BlockWorld domain). We
found out that we can remove primitive operators if and only
if no block is hanging on the gripper in the initial or goal po-
sition. It requires some sort of reasoning which can tell us in
which cases and why removing primitive operators causes
loss of completeness. Such an information might be helpful
for development more sophisticated reformulating schemes
(for instance combination of macro-operators and entangle-
ments).

References
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Chrpa, L., and Barták, R. 2009. Reformulating planning
problems by eliminating unpromising actions. In Proceed-
ings of SARA 2009, 50–57.
Chrpa, L. 2010. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review 25(3):281–297.
Chrpa, L. 2011. Theoretical aspects of using learning tech-
niques for problem reformulation in classical planning. In
Proceedings of PlanSIG, 23–30.
Dawson, C., and Siklóssy, L. 1977. The role of preprocess-
ing in problem solving systems. In Proceedings of IJCAI
1977, 465–471.
Ghallab, M.; Nationale, E.; Aeronautiques, C.; Isi, C. K.;
Penberthy, S.; Smith, D. E.; Sun, Y.; and Weld, D. 1998.
Pddl - the planning domain definition language. Technical
report.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search (JAIR) 22:215–278.
Hoffmann, J. 2011. Analyzing Search Topology Without
Running Any Search: On the Connection Between Causal
Graphs and h+. The Journal of Artificial Intelligence Re-
search (JAIR) 41:155–229.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of ICAPS 2007, 256–263.
Richter, S., and Westphal, M. 2008. The lama planner using
landmark counting in heuristic search. In Proceedings of the
sixth IPC.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119–153.

19




