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Abstract 
Sparse distributed memory is an auto associative memory 
system that stores high dimensional Boolean vectors. Here 
we present an extension of the original SDM, the Integer 
SDM that uses modular arithmetic integer vectors rather 
than binary vectors. This extension preserves many of the 
desirable properties of the original SDM: auto associativity, 
content addressability, distributed storage, and robustness 
over noisy inputs. In addition, it improves the representation 
capabilities of the memory and is more robust over normali
zation. It can also be extended to support forgetting and re
liable sequence storage. 

 Introduction   

Sparse distributed memory (SDM) (Kanerva, 1988) is 
based on large binary vectors, and has several desirable 
properties. It is distributed, auto-associative, content ad-
dressable, and noise robust. Moreover, this memory system 
exhibits interesting psychological characteristics as well 
(interference, knowing when it doesn’t know, the tip of the 
tongue effect), that make it an attractive option with which 
to model episodic memory (Baddeley, Conway & Aggle-
ton, 2001; Franklin et al, 2005). Implementations of SDM 
are ongoing for various applications (e.g., Furber et al, 
2004; Meng et al, 2009; Mendes, Coimbra & Crisostomo, 
2009; Jockel, 2009). Several improvements and variations 
have been proposed for SDM; for example Ramamurthy 
and colleagues introduced forgetting as part of an unsuper-
vised learning mechanism (Ramamurthy, D'Mello & 
Franklin, 2006). The same authors also proposed the use of 
ternary vectors, introducing a “don’t care” symbol as a 
third possible value for the dimensions of the vectors 
(D'Mello, Ramamurthy & Franklin, 2005). Also Jaeckel 
(1989a, 1989b) proposed two variations of the original 
SDM, the selected coordinate design and the hyperplane 
design. Both designs modify the way that hard locations 
(see next section) are selected. These designs slightly im-
prove the signal to noise ratio of the memory. Furber and 
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colleagues (2004) created a combined version of the Jaeck-
el’s hyperplane design and a correlation matrix memory 
using sparkling neurons.  
 The original SDM uses binary vectors for both addresses 
and data, i.e. words. This usage results in several limita-
tions. First, real data is not always Boolean, making repre-
sentations using more than two values desirable. A possi-
ble solution is to use several dimensions of the word vec-
tors to represent one feature, but this approach does not fit 
very well with the structure of SDM. In the distance calcu-
lation, difference in any dimension weights the same as 
any other dimension, but if several bits, i.e. dimensions, are 
used to represent a single feature, the weight of the bits 
should not be the same.  
 Mendes and colleagues (Mendes, Coimbra & Crisosto-
mo, 2009) evaluated several binary encodings to use with 
SDM in robot navigation tasks, and reported their difficul-
ties and limitations. Using Natural BC coding some transi-
tions have Hamming distances that incorrectly reflect the 
difference between the features. For example, the Ham-
ming distance between seven (0111) and eight (1000) is 4 
instead of 1, which is desired. They also reported the per-
formance of the Gray code, which only partially mitigates 
this effect. The best solution that they proposed is to use a 
sum code, that is a base one code where, for example, 3 is 
represented as 111 and 5 as 11111. This coding substantial-
ly increases the dimensionality of the memory. Interesting-
ly, they report that grouping bits and processing them as 
integers produces excellent performance. However, their 
implementation diminishes some of the desirable proper-
ties of SDM. The extension proposed in this paper directly 
uses integers vectors, achieving similar performance but 
without the disadvantages reported by Mendes. 
 Another disadvantage of binary vectors is the loss of in-
formation due to the noise introduced into the representa-
tion by the normalization used in combining vectors. Vec-
tors can be summed up dimension by dimension (for this 
operation, vectors belonging to {-1; +1}n are used). This 
operation produces a vector belonging to ℤn. The normali-
zation process reduces the resultant to a vector that is also 
in  {-1; +1}n but with significant loss of information. See 
for example (Kanerva, 2009; Snaider & Franklin, 2011). 
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 Here we propose a new version of SDM, the Integer 
Sparse Distributed Memory (Integer SDM). This version is 
based on large vectors where each dimension has a range 
of possible integer values. The memory has properties sim-
ilar to the original one, noise robustness, auto-associativity 
and being distributed. In addition, this memory avoids the 
limitations imposed by binary representation, as described 
above. 

Sparse Distributed Memory 

Being based in the structure and behavior of the original 
SDM, it is better to describe Integer SDM using concepts 
from that original. In this section, we first briefly describe 
the components of SDM that are similar to those used in 
Integer SDM.  For more information about SDM, both lei-
surely descriptions (Franklin, 1995, pp. 329-344) and high-
ly detailed descriptions (Kanerva 1988) are available. 
 SDM implements a content addressable random access 
memory. Its address space is of the order of 21000 or even 
more. Both addresses and words are binary vectors whose 
length equals the number of dimensions of the space. An 
important property of such high dimensional spaces is that 
two randomly chosen vectors are relatively far away from 
each other, meaning that they are uncorrelated.  In our ex-
ample, we will think of bit vectors of 1,000 dimensions. To 
calculate distances between two vectors in this space, the 
Hamming distance is used. To construct the memory, a 
sparse uniformly distributed sample of addresses, on the 
order of 220 of them, is chosen. The number of addresses 
selected to construct the memory is denoted by m. These 
addresses are called hard locations. Hard locations are the 
units of storage of the memory. Only hard locations can 
store data. For this purpose, each hard location has coun-
ters, one for each dimension. To write a word vector in a 
hard location, for each dimension, if the bit of this dimen-
sion in the word is 1, the corresponding counter is incre-
mented. If it is 0, the counter is decremented. To read a 
word vector from a hard location, we compute a vector 
such that, for each dimension, if the corresponding counter 
in the hard location is positive, 1 is assigned to this dimen-
sion in the vector being read, otherwise 0 is assigned.  
 A hard location can store several words but as a combi-
nation of them. In order to be able to reconstruct the origi-
nal word, many hard locations participate in the storing and 
retrieving of any single word of data. To read from an ad-
dress in SDM, the output vector is a composite of the read-
ings of several hard locations. To determine which hard lo-
cations are used to read or write, an access sphere is de-
fined. The access sphere for an address vector is a sphere 
with center at this address, enclosing, on average, a propor-
tion p of the memory’s hard locations; in our example 
0.1% is used. To write a word vector in any address of the 
memory, the word is written to all hard locations inside the 
access sphere of the address. To read from any address, all 
hard locations in the access sphere of the address vector are 
read, and a majority rule for each dimension is applied. 

 In general, the SDM is used as an auto-associative 
memory, so the address vector is the same as the word vec-
tor (but see Snaider & Franklin, 2011). In this case, after 
writing a word in the memory, the vector can be retrieved 
using partial or noisy data. If the partial vector is inside a 
critical distance from the original one, and it is used as ad-
dress with which to cue the memory, the output vector will 
be close to the original one. This critical distance depends 
on the number of vectors already stored in the memory. If 
the process is repeated, using the first recovered vector as 
address, the new reading will be even closer to the original. 
After a few iterations, typically less than ten, the readings 
converge to the original vector. If the partial or noisy vec-
tor is farther than the critical distance away from the origi-
nal one, the successive readings from the iterations will 
rapidly diverge. 

Integer Sparse Distributed Memory 

The structure of Integer SDM is similar to that of SDM. 
The words and addresses used by Integer SDM are large 
vectors of integers, i.e. vectors with a large number of di-
mensions. The possible values for each dimension are in a 
defined integer range. For example, the range of values can 
be [-8, 7] or [0, 15]. Any range of values is possible. For 
simplicity, we will work with ranges with 0 as lower bound 
and r - 1 as upper bound. There is no limit for the size of 
the range. However, the storage requirement increases pro-
portionally with the size of the range. More formally, Inte-
ger SDM works within multidimensional space with vec-
tors 𝑣 ∈ ℤ𝑟𝑛, where n is the number of dimensions of the 
space and r is the size of the range of values for each di-
mension. The dimensions of the space follow modular 
arithmetic, i.e. the values wrap around after r. The greatest 
possible value for a dimension is r - 1 and the next value 
after r - 1 is 0.  
 Integer SDM is composed of hard locations. As in SDM, 
a small, uniformly distributed, fraction of all possible ad-
dresses  𝑎 ∈ ℤ𝑟𝑛 are chosen for the addresses of the hard lo-
cations. Each hard location has a fixed address and coun-
ters, resembling the structure of SDM. However, Integer 
SDM has a different arrangement of counters: each dimen-
sion has r counters, one for each possible value in that di-
mension. We define ci as the group of counters correspond-
ing to the dimension i, and ci

(v) as the counter correspond-
ing to dimension i and value 𝑣 ∈ {0, … , 𝑟 − 1}. The pro-
cedures to read from or write to the memory are similar to 
the ones used for SDM.  
 To read or write a word w, first the access sphere of the 
address is determined. The distance used here is an exten-
sion of the Euclidean metric. The distance between two 
vectors is defined as: 

𝑑(𝑢, 𝑣) =  √∑(∆𝑖)2
𝑖

 

 
where:  ∆𝑖= min(𝑚𝑜𝑑𝑟(𝑢𝑖 − 𝑣𝑖), 𝑚𝑜𝑑𝑟(𝑣𝑖 − 𝑢𝑖)) 
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 Since each dimension in the space follows modular 
arithmetic, each dimension is like a circle and there are two 
possible paths in dimension i between the values ui and vi. 
Notice that �i is the smaller length of these two paths. 
 The radius of the access sphere is defined in such a way 
that on average it encloses a small proportion p of the total 
number of hard locations m. The access sphere encloses pm 
hard locations. This value p is also the probability of acti-
vation of one hard location, i.e. the probability of one hard 
location participates in one particular reading or writing 
operation. For writing the word w in the memory, the coun-
ters of every dimension of each hard location in the access 
sphere are updated using the following rule: 
 

𝑐𝑖(𝑣) 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ⇔  𝑣 = 𝑤𝑖 
 

where wi is the value of the dimension i of the word w. No-
tice that only one counter out of r of each dimension of 
each hard location in the access sphere is incremented. 
 To read from the memory, first the hard locations in the 
access sphere are determined. Then the counters of each 
value of each dimension of all hard locations in the access 
sphere are summed up: 
 

𝑠𝑖(𝑣) =  ∑ 𝑐𝑖(𝑣)
𝐻𝐿 ∈ 𝐴.𝑆.

 
 
where si

(v)  is the sum of the counters for dimension i and 
value v. Finally, for each dimension a majority rule is ap-
plied among the values: 
 

𝑧𝑖 = 𝑖𝑑𝑥(𝑣) 𝑜𝑓 max(𝑠𝑖(0). . 𝑠𝑖(𝑟−1)) 
 
where zi is the value of dimension i of the output vector. 
This vector z can be used as an address to read again from 
the memory, iterating in the same way that was described 
for the original SDM. 
 The fidelity of the memory, i.e. the probability of re-
trieving a written word, is better than the original SDM. 
This improvement in the fidelity is due to the more precise 
storage in each hard location. Suppose the stored value for 
dimension i of word w is k, that is wi = k. To incorrectly 
read wi from memory, at least one of the sums si

(v) for the 
incorrect values (v � k), must be greater than si

(k). The val-
ue of the sums for incorrect values is due to the contribu-
tion of other words written in the memory that share some 
of the same hard locations used to store w. Assuming the 
other words written in the memory are uniformly distribut-
ed in the space1, the noise produced by the interference of 
these written words is distributed in r possible values. This 
diminishes the expected value and variance of the si

(v) for v 
� k. Then the probability of having at least one si

(v) > si
(k) is 

                                                 
1This assumption is reasonable to give an estimation of the capacity of the 
memory. However, the memory can store vectors even if they are not uni
form distributed, but the capacity will be diminished. See (Kanerva, 1988) 
for a similar analysis for SDM.  

less than in the original SDM for the same number of 
words stored in the memory. This increment in the fidelity 
of the memory also increments its capacity: more words 
can be stored before the effect of interference is noticed. 
This compensates for the additional requirements of 
memory storage of this memory compared to SDM.  
 The complexity of the reading (or writing) operation of 
the memory is O(mn + prmn). The first term corresponds 
to the calculation of the distance from w to each hard loca-
tion, and the second term corresponds to the reading (or 
writing) of the counters in the hard locations. Since pr << 
1, the first term dominates. Since the number of hard loca-
tions m can be large, the implementation could be slow. 
However, the algorithm is easily parallelizable to be exe-
cuted in multithreading or SIMD (e.g. using GPUs) archi-
tectures. Moreover, other methods to activate the hard lo-
cations, instead of the access sphere, were studied for 
SDM, and can be used with Integer SDM also. See for ex-
ample (Jaeckel, 1989a, 1989b). These alternatives would 
greatly reduce the time complexity of the algorithm. 

Experiments and Results 

 Several simulations were performed to test the percent-
age of errors in the output words. We used an Integer SDM 
with 100,000 hard locations and a word length of 1,000 
dimensions, where r = 16 (i.e. range: [0  15].) We used a 
probability of activation p = 0.001, that corresponds to a 
radius of the access sphere of 188. The size of the memory 
(i.e. number of hard locations) was chosen to have enough 
hard locations in the access sphere for each read or write to 
support the desired properties of the Integer SDM, but to 
be as small as possible so as to limit the number of reads 
and writes required to perceive the effects of loading the 
memory. A total of 5,000 random vectors were stored in 
the Integer SDM. The vectors were also preserved in a 
separate database so they could be used as cues or com-
pared with the retrievals from the Integer SDM.  
 The simulation was performed in four stages. In each 
stage, one hundred vectors were randomly selected from 
the set of 5,000 stored vectors, and the memory was cued 
using these vectors with some amount of noise, that is with 
some number of randomly selected dimensions that were 
changed from the original. The amount of noise changed in 
each stage was: 5, 10, 20, and 30 percent respectively. In 
stages 1 and 2, 100% of the vectors were retrieved. Stage 3 
had only one retrieval error, and stage 4 produced 65% 
correct retrievals. The same experiment using the Manhat-
tan distance had similar results: 100% of the vectors cor-
rectly retrieved in stages 1, 2, and 3, and 65% in stage 4. 
The graceful degradation in the performance shown in the-
se experiments is similar to the one observed in the original 
SDM (Kanerva, 1988). 
 Another experiment demonstrated the generalization 
characteristics of the memory. Figure 1a. depicts twelve 
gray scale (16 levels) images of 33 x 33 pixels each. For 
each image, one vector of 1,089 dimensions representing 
the information of the image was stored in the memory. 
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Each of these vectors was saved in the memory only once. 
The memory used for this experiment is similar to that 
used in the previous experiment. It has 100,000 hard loca-
tions with addresses of 1,089 dimensions, r = 16 and p = 
0.001. The memory was then cued using the new vector 
corresponding to figure 1b. The image of the output vector 
displayed in figure 1c, which is not in the training set ei-
ther, is the result of the interference of the stored vectors. 
Based on this and other characteristics of the memory, In-
teger SDM is a good candidate to model various memories 
in cognitive architectures (Ramamurthy & Franklin, 2011).  

Conclusions 

Here we have presented a new version of SDM, the Integer 
SDM, that overcomes the limitations of the original SDM 
resulting from its use of binary vectors. This memory pre-
serves the desirable, biologically inspired, properties of the 
original. It is also noise robust, auto-associative and dis-
tributed. It degrades gracefully when the memory ap-
proaches its maximum capacity. It is also able to generalize 
patterns due to interference of several similar vectors. The-
se properties make Integer SDM a good candidate for 
modeling episodic memory in autonomous agents. 
 The integer representation has several advantages over 
the binary one. The encoding of values is simpler, avoiding 
undesirable effects of other encodings (Mendes, Coimbra 
& Crisostomo, 2009; Jockel, 2009), and it diminishes the 
effect of normalization when several vectors are combined, 
for example in the storing and retrieval of sequences 
(Snaider & Franklin, 2011).  
 Integer SDM is compatible with other improvements al-
ready studied for SDM, such as the forgetting mechanism 
(Ramamurthy, D'Mello & Franklin 2006). Other designs of 
activation of hard locations, like Jaeckel’s selected coordi-
nate design (1989a), can also be implemented with this 
memory. Another extension, which we have already im-
plemented, applies the same concepts as in Extended SDM 
(Snaider & Franklin, 2011; Snaider & Franklin, in press) 

that dramatically improve the capability for storing se-
quences. 
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Figure 1. Generalization and pattern formation. a: Images corre
sponding to the training set vectors. b: Image of the vector used 
as a cue. c: Image corresponding to the output vector using (b) as 
cue. Vectors of images (b) and (c) are not in the training set (a). 
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