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Abstract

One of the challenges for artificial agents is managing
the complexity of their environment as they learn tasks
especially if they are grounded in the physical world.
A scalable solution to address the state explosion prob-
lem is thus a prerequisite of physically grounded, agent-
based systems. This paper presents a framework for de-
veloping grounded, symbolic representations aimed at
scaling subsequent learning as well as forming a basis
for symbolic reasoning. These symbols partition the en-
vironment so the agent need only consider an abstract
view of the original space when learning new tasks and
allows it to apply acquired symbols to novel situations.

Introduction

The gap between the capabilities of biological and artifi-
cial learning systems is vast. Two aspects that contribute
to this are knowledge transfer and complexity management.
Biological systems form abstract, task appropriate represen-
tations of the environment. One theory for such concepts
is affordance theory (Gibson and Spelke 1983) which pos-
tulates that infants and other biological systems learn ac-
tion specific concepts, which simplify reasoning and acting.
This idea has received significant attention from affordance-
based robotics (Rome, Hertzberg, and Dorffner 2006).

Our approach to representation abstraction is to build
symbolic concepts that are semantically grounded in the en-
vironment aimed at generating an abstract feature set on
which the agent can learn. The power of symbolic concepts
stems from their ability to yield a compact representation of
important aspects of the environment. Knowledge grounded
in such concepts is often more general and applicable in new
situations, allowing transfer of strategies to novel domains.
Symbolic concepts grounded in the agent’s capabilities also
potentially form an efficient, expressive basis for commu-
nication. While this paper focuses on representational com-
pression, future work will also explore communication.

Knowledge transfer has been a topic of much research
(Taylor and Stone 2005; Marthi et al. 2005; Marx et al.
2005). Recent work has looked at skill hierarchies which
facilitate increasingly complex behavior (Asadi and Huber
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2007). This approach is centered on the learning framework
with only ancillary concern for representation.

Work by (Taylor, Kuhlmann, and Stone 2008) focuses on
physical knowledge in games. Feature sets are mapped from
one game to others. This transfer is useful but limited.

In contrast to previous work, we focus on a representa-
tional framework for grounded, functional symbols which
allow compression of raw features. The foundation of this
approach are policies, affordances, and goals. We use the
option framework (Sutton, Precup, and Singh 1999) to learn
policies, from which affordances and goals are constructed.

Since a symbol represents a single, abstract feature, the
dictionary is the set of acquired symbols and an instance of
an abstract feature set. In this context, managing representa-
tional complexity is an issue of managing dictionary size.

Affordances and Goals

Affordances and goals, along with corresponding policies,
are at the heart of symbolic representation. They facilitate
the creation of grounded, abstract features.

Functionality and Structure

Affordances and goals are represented by classifiers or func-
tions. They map a state region to a single, abstract feature or
to a probability distribution, forming an abstract feature set.
Decision trees are used here because they are transparent,
allowing easy analysis. However, the algorithm is indepen-
dent of the affordance/goal implementation. Future research
may require a different implementation but at this point, the
transparency of decision trees make them the best choice.

Conceptual Roles

Affordances and goals are here structurally similar but func-
tionally distinct. A goal is an indicator of success, allow-
ing the agent to determine if a policy’s objective is fulfilled.
In contrast, affordances are predictors of success, indicating
the probability that a policy will succeed from a given state.
Each symbol, or abstract feature, is grounded in the affor-
dance or goal used to generate it. This provides a mapping
between symbolic representation and semantic meaning.

Methodology

Figure 1 represents our approach to symbol formation.
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Figure 1: Symbol Generation. Processes are represented as
ovals, while data are represented as boxes

Policies are constructed on the current state representation
which initially consists of raw features. Once built, it is used
as input to the goal and affordance construction processes.
A policy goal is constructed first before a corresponding af-
fordance. Each affordance and goal results in the creation of
a new symbol which is appended to the agent’s dictionary.

A separate process examines the dictionary for common
sub-structures. Extracting such structures and creating cor-
responding symbols results in dictionary compression. Also,
the new symbols are not bound to a policy but represent en-
vironment features which, together with affordance and goal
symbols, generate new, abstract state representations.

Underlying Policy and System Model

The initial set of policies are constructed on the raw fea-
ture space using Q-Learning on an MDP. Different tasks are
here learned by changing the reward function, R. Once ini-
tial policies are learned, these are leveraged as potential de-
cisions (options) using the formulation of SMDPs (Sutton,
Precup, and Singh 1999) where the state is represented by a
set of N features, each representing a variable that can take
on n values. Together they form the state space, S. This flex-
ible definition can accommodate raw and abstract features.
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Policy Construction

Once a new task is presented, a goal-based option is learned
on the current representation. Here, the option, O, is a pol-
icy, 7, which defines a mapping from states to actions, the
initialization states, Sy, where the policy can be initiated, the
termination states, S, which signal the end of policy exe-
cution and the goal states, S, which is a subset of S.

O7T = <777‘S’I7ST789> s Sg C Sr
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Goal and Affordance Construction

For each policy, a goal and affordance are built as decision
trees. A goal of policy 7 indicates the likelihood that a state
meets the goal criteria of the policy:

gt Si — Z Pr(s; = sg|si,m)
54E€Sy

where Pr(s’|s, ) indicates the probability that policy 7
initiated in state s terminates in state s’.

Discovering goal states is non-trivial (Digney 1996; Mc-
Govern and Barto 2001). For this paper we assume S, is
known. Given this, goal classifier training data is generated
by executing a policy, 7, and labeling the resulting terminal
states, s, according to their membership in S,. Once a goal
is constructed, an affordance is built which provides a map-
ping from the feature set to the probability of policy success.

Arisi—=R | 55— Z Pr(sg|si,m)
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Once constructed, affordances and goals act as symbols,
representing abstract state features. The symbolic feature set
allows the agent to reason without considering the raw fea-
tures and forms the foundation of the agent’s vocabulary.

The result of an affordance or goal can be discrete or con-
tinuous. Our current implementation constructs affordances
and goals as discrete classifiers. However, symbol learning
can also use continuous features (Papudesi and Huber 2006),
and future work will include continuous symbols.

Structure Extraction and Dictionary Compression

There is a correlation between dictionary size and complex-
ity of the feature set. Our approach is to find common sub-
structures that occur multiple times within the dictionary.
Representing symbols as decision trees imposes restric-
tions on potential sub-structures. First, any sub-structure
node must maintain its edges since we can not ignore po-
tential outcomes. Second, only non-leaf nodes are included
to facilitate use as a parameter. Categories in leaf nodes be-
come edge labels, leaving the construct intact and allowing
leaf nodes to be appended for use as an independent symbol.
There are many sub-structure identification approaches
(Holder, Cook, and Djoko 1994; Kuramochi and Karypis
2001). Given the small size of affordances and goals in
this paper, we use a brute force method. However, future
work will integrate a more efficient algorithm. The proposed
framework is indifferent to the method, provided the result-
ing structure meets the requirements. Once a sub-structure
has been found, its impact on dictionary size is evaluated.
Using decision trees, a symbol, ®, is formulated in graph
notation. The size of a vertex, vg, and an edge, es, are fixed:

Go = (Vp,Fs) , Ny, = size(vs) , Ng, = size(es)

Using this, we can calculate the size of each symbol, ®
and, by extension, the size of a dictionary, D.

size(®) = Ny, * |Va| + Ng, * |Es|
size(D) = Z size(D)

PeD



With the dictionary size we can calculate the impact of
a sub-structure. D’ is the dictionary after extraction of sub-
structure @ ;. The number of occurrences of @, is Ng__.

size(D") = size(D) — size(Pgs) * (No,, — 1)

The greater the difference between the size of D and D’,
the better the compression impact of @ .

Gripper Robot Example This example shows a simple
instance of sub-structure extraction. Our agent is a robot arm
with a camera. The environment contains dice which vary in
size and color and always have one side facing up.

(a) (b)

Figure 2: Affordances for Dispose Policies. (a) 6Disposable
(Number, Color, Size), (b) 1Disposable(Number, Color; Size)

The agent knows two policies, Dispose6 and Disposel,
with affordances shown in Figure 2. There is a hidden corre-
lation between size and color and the agent’s ability to lift it.
If size is no more than 10 and color is red, the die is "light”.
The underlying correlation is encoded in the affordance.

(a) (b) (©)

Figure 3: Dictionary Following Sub-Structure Extraction.
(a) "Light”, (b) Disposable6(Number, "Light”), (c) Dispos-
ablel(Number, "Light”)

The dictionary compression yields the symbols shown in
Figure 3. A sub-structure, labeled “Light”, was extracted
and 6Disposable and [Disposable became parameterized
symbols. The new symbol, "Light”, has some noteworthy
properties. The output from —red and > 10 is combined as
they yield the same results. The original structure is main-
tained to facilitate use in a context where —red and > 10
differ. When used as an independent symbol, however, the
external results are compressed, resulting in a binary feature.

While the symbol here is binary, this is not a restriction
and symbols, in general, can be discrete or continuous.
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Linguistic Aspects of Symbolic Representations Affor-
dances, goals and policies represent potential means of
symbol grounding where new symbols generated via sub-
structure extraction are grounded in raw features. Policies
here are action phrases. Affordances and goals are similar to
noun phrases with an implicit subject. Given a dictionary as
described above, we can construct a sentence that takes the
form of an if-then statement: A; A 7T — gr.

Parameterization yields shorter sentences as the sentence
is constructed using symbolic rather than raw features.

6Disposable(N,C, S) A Dispose6 — 6Disposed
6Disposable(N,” Light”) N\ Dispose6 — 6Disposed

As shown in Figure 2, the uncompressed version of 6Dis-
posable requires three features. After compression, as shown
in Figure 3, 6Disposable requires only two parameters.

Shorter sentences improve reasoning as it implies less
complexity. Moreover, it has potential benefits for communi-
cation as the number of bits required for transfer is reduced.

Implementation

The approach is demonstrated in a simulation environment
with a robot arm and camera. Learning tasks revolve around
lift, move, and drop and the SMDP framework (Sutton, Pre-
cup, and Singh 1999) is used to build policies using Q-
Learning. Policies can then be used in higher level tasks.
As the agent learns new policies, affordances and goals
are generated and added to the dictionary. After each addi-
tion, the best common sub-structure is extracted, compress-
ing the dictionary and generating a new, abstract feature.

Raw Feature Set

Table 1 shows the raw feature set. Although the environment
has an arbitrary number of objects, agent perception is lim-
ited to three. This limitation will be lifted in future work.

Attribute Description Visual?
hue object color yes
type visual categorization yes
stack object top of stack? yes

weight object liftable? no
at agent currently at object? yes

Attribute Description

selected | which object is currently selected?
held which object is currently held?
finished has the agent finished?

Table 1: Object Features (Top), Global Features (bottom)

Primitive Actions and Policy Construction

Table 2 lists the agent’s primitive actions from which we
constructed three policy classes: lift, stack, and clean.
Within each policy class, we learn three policies: one gen-
eral instance targeting the first lift-able object, one targeting
a red object, and one targeting objects of type 1.
For each policy, affordance and goal classifiers are built.
Goal states are assumed to be known.



Action Description
find Reveals the next visible object
select Selects the next visible object
goto Move to selected object
pickup | Pickup the object at the current location
drop Drop the currently held object
finish Terminate learning task

Table 2: Primitive Actions

Training data for an affordance is generated using the pol-
icy and goal classifier by sampling terminal states of policy
executions from random starting points, resulting in a map-
ping from state to the probability of successful execution.
The implementation limits affordances to three classes, yes,
no and maybe, the last representing nondeterministic out-
comes. Future work will use a more detailed representation.

Dictionary Compression Results
We compressed the dictionary as shown in Table 3.

Bytes | Nodes + Edges
D 221296 2506
D’ | 194707 2089
D, | 8864 140

Table 3: Compression Results (N, = 3)

Symbol extraction yielded a reduction of 12% in dictio-
nary size and 16% in node/edge count. Extracted symbols
were typically around 100 elements.

Most Frequent Sub-Structure In addition to dictionary
compression, we also looked at sub-structures in the context
of object generalization. Figure 4 shows two very similar
structures. Sub-structure detection treats them as different
due to the difference in object id. To address this, we altered
the algorithm to treat all object ids as being the same object.

Objectl | feature hue

/ blue

Objectl ‘ Objectl

feature type feature type Objectl | feature type ‘

A,
Object2

Object2 | feature type ‘

feature type Object2 | feature type

Figure 4: "Light” for Object 1 (top) and Object 2 (bottom)
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Table 4 shows significantly improved results with this ap-
proach. This indicates that parameterized sub-structures can
yield improved compression and symbolic features.

Bytes | Nodes + Edges
D 221296 2506
D’ 170374 1696
Dy 944 16

Table 4: Compression for Generalized Object (Ng,, = 54)

Conclusion

As the complexity of learning tasks increase, the size of
the representational space grows. This paper proposes an
approach to managing representational complexity using a
symbolic feature representation generated via policies, af-
fordances and goals. Affordances and goals ground the sym-
bols that constitute the agents dictionary and generate an ab-
stract feature set for subsequent learning. Dictionary size is
managed through sub-structure extraction, which removes
redundancy. Extracted symbols form new abstract features.
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