Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

A Heuristic for Hybrid Planning with Preferences

Pascal Bercher and Susanne Biundo
Institute of Artificial Intelligence
Ulm University, D-89069 Ulm, Germany
firstName.lastName @uni-ulm.de

Abstract

In this paper, we introduce an admissible heuristic for hybrid
planning with preferences. Hybrid planning is the fusion of
hierarchical task network (HTN) planning with partial order
causal link (POCL) planning. We consider preferences to be
soft goals — facts one would like to see satisfied in a goal
state, but which do not have to hold necessarily.

Our heuristic estimates the best quality of any solution that
can be developed from the current plan under consideration.
It can thus be used by any branch-and-bound algorithm that
performs search in the space of plans to prune suboptimal
plans from the search space.

Introduction

In real-world planning, for example, when assisting human
users in their everyday life (Biundo et al. 2011), plans are
often of different quality depending on the specific user car-
rying out the plan. In many application contexts, there is
therefore the need to specify a quality measure that reflects
the different needs and preferences of different human users.
In this setting, a planning problem is augmented with a set
of preference formulas. The goal is to find a solution to the
planning problem that satisfies the preferences to the largest
possible extent.

Planning with preferences has attracted increased atten-
tion with the development of PDDL3 (Gerevini and Long
2005), the language for the fifth International Planning
Competition (IPC-5). In PDDL3, preferences are either soft
goals or plan constraints. The former are non-mandatory
conditions that should hold in the final state produced by a
solution, whereas the latter are non-mandatory constraints
on the state trajectories induced by a solution. In this paper,
we focus on solving planning problems with soft goals.

We are concerned with solving hybrid planning prob-
lems (Kambhampati, Mali, and Srivastava 1998; Gerevini
et al. 2008; Biundo et al. 2011; Geier and Bercher 2011) fa-
voring those solutions which satisfy the preferences to the
largest extent. The hybrid planning paradigm is particu-
larly well suited for solving real-world planning problems,
as it fuses ideas from classical planning with those of hier-
archical planning: many real-world problems are inherently

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

120

hierarchical. However, parts of the domain might be non-
hierarchical and could be modeled more adequately in the
classical state-based paradigm. Hybrid planning fuses both,
in that it allows for the specification of an initial task net-
work and of compound tasks as in hierarchical planning, but
also enables the arbitrary insertion of tasks to support open
preconditions as in classical planning.

Problem Setting

Our formalization of hybrid planning fuses hierarchical task
network (HTN) planning (Erol, Hendler, and Nau 1994)
with partial order causal link (POCL) planning (McAllester
and Rosenblitt 1991).

A hybrid planning problem is given in terms of an initial
task network. Task networks can contain primitive tasks,
which correspond to classical planning operators, and com-
pound tasks, which represent high-level activities. Both
primitive and compound tasks show preconditions and ef-
fects. However, only primitive tasks specify state transi-
tions. Compound tasks are abstract specifications of stan-
dard solutions for their preconditions and effects. For every
compound task the domain model holds several decompo-
sition methods mapping that task to some pre-defined task
network which “implements” its desired effect and requires
the specified precondition. A solution is then a refinement
of the initial task network which consists only of primitive
tasks and is executable in the classical sense.

More formally, a hybrid planning problem II is a tu-
ple (7, Te, M, C, Sinis, TN,) consisting of the following
components. The set 7, contains the primitive task schemata
and 7. contains the compound ones. Task schemata are tu-
ples t = (prec,add,del) consisting of a precondition, an
add-, and a delete list; the latter two are also referred to as
effects. The precondition and effects are sets of positive lit-
erals and depend on the parameters v(t). M is the set of
available decomposition methods, each being a tuple (¢, TN)
mapping a compound task schema ¢ € 7. to a task network
TN. C'is the set of available constants and P denotes the set
of all possible ground atomic propositions using constants
from C.. Then, s;,; € 27 is the initial state, ¢ C P is the goal
description and TN;,; is the initial task network. Please note
that we encode the initial state and the goal description as the
effect and the precondition of an artificial start and end task,
respectively. A task network is a tuple (7, <,V,CL) and

consists of the following components. 7' is a set of tasks,
where each task [:¢ € T consists of a (partially) instantiated
primitive or compound task schema ¢ and a label [to dif-
ferentiate between multiple occurrences of ¢. < is a partial
order on 7', V' is a set of variable constraints, and CL is a set
of causal links. A causal link I’ —, [€ CL indicates that
the precondition literal ¢ of I:t € T is an effect of I":t' € T
and is supported this way.

Every solution TN' = (1", <', V', CL’) of II must fulfill
the standard POCL solution criteria (Younes and Simmons
2003) of having no unsupported preconditions and causal
threats. These criteria ensure that every linearization of 7’
that respects <’, V/, and CL' is an executable task sequence
that transforms the initial state into a state satisfying the goal
description. In addition, all tasks in 77 must be primitive
and TN’ must be a refinement of TN;,,;; w.r.t. decomposition
of compound tasks and the insertion of tasks, causal links,
ordering- and variable constraints.

In addition to the planning problem, we are given prefer-
ences as a set of ground facts Pref C P which denote op-
tional planning goals. We can hence assume Pref N g = ().
Each preference p has an associated weight w(p), which is
interpreted as a “violation value” and depreciates a given so-
lution TN by the respective weight if p does not necessarily
hold in all final states produced by TN (which we denote by
TN £~ p). More formally, the quality (metric) of a solution
TN is defined by m(TN) 1= 3 p.s witn 7wiep (P). Then,
a solution TN, is preferred over a solution 7N, if and only
if m(TNy) < m(TN3).

Preference Heuristic for POCL Planning

In this section we describe our heuristic that can be used to
estimate the final quality of the current task network under
consideration.

In a first step, we transform a given hybrid planning prob-
lem II with the current task network TN = (T, <,V,CL)
under consideration into a relaxed classical planning prob-
lem II’, such that II’ has a solution if TN can be developed
to a solution of IT. Furthermore, any solution of II’ contains
all primitive tasks of TN and respects its constraints. Us-
ing this reduction, we reduce the problem of calculating a
heuristic value for a task network to the problem of calculat-
ing a heuristic value for the initial state of the transformed
planning problem. In the second step, we build a planning
graph until is has “leveled off” (i.e., until a fixed point is
reached) and use the mutex relations still present in the last
fact layer. The heuristic thus shows close relationship to
the h2 heuristic (Haslum and Geffner 2000), the heuristic
implicitly used by the planning system GRAPHPLAN (Blum
and Furst 1997).

For the sake of simplicity, we assume that V' binds every
variable to a constant ¢ € C, i.e., TN is ground.

Domain Transformation

In this section, we show how to transform a hybrid planning
problem II with a current task network 7N under considera-
tion into a classical planning problem II’, s.t. each solution
of II’ is a refinement of TN w.r.t. its primitive tasks. Al-

121

though we are going to use the transformed classical plan-
ning problem II" for calculating an estimate of the best so-
lution quality of the original hybrid planning problem II,
we can ignore the hierarchical components of II (i.e., com-
pound tasks and decomposition methods) without “loosing
solutions” or sacrificing admissibility. This is due to the fact
that compound tasks do not directly contribute to the satis-
faction of facts like the primitive tasks do — they can be
regarded as additional constraints, since they need to be de-
composed using only the available decomposition methods.
Ignoring the hierarchical components of II is hence just a
relaxation.

The main idea behind the domain transformation is to
augment the set of available task schemata by an additional
copy of all tasks that occur in 7N and to alter the initial
state and goal state description, s.t. any solution of the trans-
formed problem must contain these tasks with exactly the
same ordering as present in 7N. For the remaining, i.e., non-
additional, task schemata we perform a delete-relaxation
for efficiency reasons: ignoring their delete lists improves
the speed of building the planning graph, which is done in
the second step (see next section) based on the transformed
planning problem. However, the additional task schemata
cannot show any relaxation, because their effects are the
only available information about the current task network.
Planning systems that perform progression update the initial
state as the generated sequence of tasks increases. In our
case, the initial state remains always the same — it is just
the current task network that changes. Hence, the additional
task schemata encode the information about the progression
of the search and consequently should not be relaxed. Re-
laxing these task schemata would correspond to relaxing
the current state in a progression search. Thus, let IT =
(Tp, Te, M, C, Sinit, TNinit, g) and the current task network
to refine be TN = (T', <, V, CL). The transformed classical
planning problem is then given by II' = (77,C, s},..1,4")
and defined as follows.

T’ contains additional copies of the task schemata
used by TN as well as all task schemata from II,
but with ignored delete lists. More formally, 7' :=
delete-relax(T,) U encode(TN) with delete-relax(T,) :=
{(prec,add,) | (prec, add, del) € 7,} and encode(TN) con-
taining the fresh copies of the task schemata used by 7N. For
every task [:t in T', encode(TN) contains a modified version
of its task schema ¢, s.t.:

e cvery task schema t’ in encode(TN) is used by exactly one
task of every solution of IT’, and

e the tasks of every solution of IT" which use the task
schemata in encode(TN) are ordered in the same way like
their corresponding tasks in 7N.

For the first property, let [:t € T" be a task in the task net-
work TN. The additional task schema ¢’ is an extension of
t s.t. it contains the additional precondition —/ and the ad-
ditional effect [, where [is a new nullary predicate symbol.
Since we use the STRIPS formalization, in which no nega-
tive preconditions are allowed, we use two mutually exclu-
sive facts [and not-I to encode [and —[. Now, every so-
lution can contain every task that uses a task schema from

encode(TN) at most once. To ensure that it is contained ar
least once, we also alter the goal description to contain the
fact [for every primitive task /:¢ € T'. For the second prop-
erty, let [;:t; € T and ¢} be the corresponding encoding in
encode(TN). Then, ¢} has an additional precondition [; for
every primitive task [;:t; € T that has to be ordered before
l;:t; wrt. < and CL. Thus, we get:

encode(TN) := {encode(l:t) | Al:t € T, s.t. t € T},
with encode(l:(pre, add, del)) :=
(pre U {not-1} U{l" |I' <lorl —, 1€ CL},
add U {l},
del U {not-1})

The new initial state is defined by s},;; = Sinit U
{not-l | 3l:t € T, s.t. t € T,}; it contains the information
that no task of 7N was inserted, yet.

The new goal description is defined by ¢’ := gU{l | Jl:t €
T, s.t. t € T,} and encodes that every solution must contain
the tasks in 7.

Concerning the computational complexity of the transfor-
mation, note that the delete-relaxation of our transformation
has to be performed only once for the planning problem II,
whereas the construction of s, ,,, ¢’, and the calculation of
encode(TN) has to be done for each current task network 7N.
This transformation runs in O(|TN|); however, an incremen-
tal domain transformation will clearly reduce the necessary
effort.

Heuristic Calculation

In this section, we describe how our heuristic uses the trans-
formed domain model IT" described in the last section to cal-
culate an admissible estimate of the metric function m. We
call our heuristic h?h, as it fuses ideas from the k2 heuristic
with delete relaxation.

GRAPHPLAN builds a directed, layered planning graph
containing fact and task nodes. Each layer contains only
nodes of one of those types; the layers alternate between fact
and task layers, starting with fact layer 0, which is the initial
state, followed by task layer 0, which contains all tasks ap-
plicable in that state. More generally, a task layer at level
1 contains all tasks applicable to the fact layer at level 1.
GRAPHPLAN calculates binary symmetric mutex relations
between facts inside the same layer and between tasks inside
the same layer. The former indicates that two facts cannot
be true at the same time, whereas the latter indicates that
two tasks can not be executed in an arbitrary order leading
to the same successor state. Blum and Furst have shown that
the fact layers monotonically increase, whereas the mutex
relations monotonically decrease. Thus, the planning graph
construction of GRAPHPLAN eventually terminates with a fi-
nal fact layer containing some mutex relations. Given a task
network 7N, our heuristic uses this final fact layer to esti-
mate the best quality of any solution obtainable by refining
TN.

Given a hybrid planning problem II and a task network
TN, let I = (T, C, Sinit, g) be the transformed classical
planning problem. Then, we build the planning graph start-

122

ing in s := s;n:. Let layer C P be the fix point layer pro-
duced by calling GRAPHPLAN in s and let mutex C P x P
be the set of its symmetric mutex relations. For the sake
of readability, we divide the final fact layer into four pair-
wise disjunctive sets: layer = Iy U Ly, U, UL,
l, := layer N g is the set of goal facts in the final layer,
Lym := layern{p € Pref | 3m € mutex,p € m,mNl, # 0}
is the set of all preferences in the final layer which are mu-
tex so some goal fact. Analogously, [, -, := layer N {p €
Pref | 3m € mutex,p € m,m N1, # 0} is the set of all
preferences for which there is no goal fact which it is mu-
tex with. Finally, [, := layer \ Pref \ g is the set of all
remaining facts in that layer.

First of all, we can define h?, (s) := oo if g # I, (or,
equivalently, g Z layer) or if there is a mutex relation
m € mutex with m C [, since in these cases the goal for-
mula can not be satisfied. Preferences which do not appear
in layer can be used to increase h% (s), as they can not be
satisfied even by delete-relaxed tasks. Furthermore, all pref-
erences in /,,, can never be satisfied, as they are mutex to
goal facts. The only non-trivial case is handling the mutexes
between preferences in /,-,,. We know that certain pairs
of preferences cannot be true at the same time, but we do
not know which set of preferences do — or do not — neces-
sarily hold in a final state. The idea is to calculate all sub-
sets of preferences in /, ., which cannot be true at the same
time and choose the one which leads to the best plan qual-
ity. Formally, let b : [, -, — {T, L} be a truth assignment
of the preferences in [, -, which respects the mutex rela-
tions; i.e., if {p,p’} € mutex, then either b(p) = —b(p’) or
b(p) = b(p’) = L. Since we use this assignment to calculate
a non-overestimation of the metric m, b needs to minimize
the sum Zpelpﬁm,b(p)=L w(p). Putting it all together, we

get:
hop(s) = Y wlp) + min Y w(p)
p€ Pref and PElLy,—m and
(pélayer or pElyy) b(p)=L

(&) (2)

Whereas the summation term (1) can clearly be calculated
in linear time w. r. t. the size of Pref, term (2) turns out to be
much harder.

Theorem 1. The calculation of summation term (2) is NP
hard w.r.t. the size of 1, .

We prove this by a reduction from the weighted minimum
vertex cover problem:

Proof. Let G = (V,E) be a graph with a weight w(v)
for each v € V. Then, the minimum weighted ver-
tex cover is a set V' C V, such that for each edge
{v,v'} € E, at least one of the vertices v,v" is in V’
and the weighted sum ., w(v) is minimal. If we set
lp—m =V and mutex := F, itis easy to see that the value of
ming Y- e =1 w(p) is also the value of the minimum
weighted vertex cover. As the minimum weighted vertex
cover problem is a generalization of the NP complete vertex
cover problem (Karp 1972), in which there are no weights

and the decision problem is whether there is a vertex cover
V' of size at most k, NP hardness follows. O

Please note that the size of this NP hard subproblem is
bounded by the number of preferences. Hence, solving it
will probably not dominate the runtime of the heuristic cal-
culation. As a second observation, please note that the NP
hardness of our heuristic comes with the prize of admissi-
bility together with high accuracy. One could easily drop
this term or use approximations to achieve an admissible,
but less accurate, heuristic.

Related Work

Our work is closely related to that of Baier et al. (2009).
They solve classical planning problems with soft goals via
heuristic search using a state-based branch-and-bound algo-
rithm. Among others, they propose the Best Relaxed Metric
Function (B) for pruning. B basically reduces to the same
idea like our h?, heuristic; the main difference is that it
takes a state as input rather than a task network: starting
in the current state, it builds the relaxed planning graph us-
ing tasks with delete relaxation until it reaches the final fact
layer. Due to the absence of negative effects this graph does
not show any mutex relations. B is then the metric value m
evaluated in the last fact layer.'

The idea of encoding a task network into a planning prob-
lem was also already addressed (Ramirez and Geffner 2009;
Alford, Kuter, and Nau 2009), but neither for hybrid plan-
ning problems, nor for partially ordered task networks, nor
was it used for heuristic calculation in the context of POCL
planning, which is one of our main contributions.

Summary

We have proposed an admissible heuristic for hybrid plan-
ning with preferences that allows to estimate the final qual-
ity of the current task network under consideration. Its core
idea is to reduce the problem of calculating a heuristic value
for a task network to the problem of calculating a heuristic
value for a state. The actual heuristic calculation is based
on a planning graph which is used for a relaxed reachability
analysis.

Acknowledgements

This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References

Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A small amount of domain knowledge can
go a long way. In IJCAI 2009, 1629-1634.

"To be precise, B is defined as the minimum of the metric m
evaluated in each fact layer. These two definitions differ from each
other only in the case where violating a preference can increase m
which is not the case in our setting.

123

Baier, J. A.; Bacchus, F.; and Mcllraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Al 173:593-618.

Biundo, S.; Bercher, P.; Geier, T.; Miiller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on Al plan-
ning. Cognitive Systems Research 12(3-4):219-236. Special
Issue on Complex Cognition.

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. A7 90:281-300.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In AIPS 1994, 249-254.

Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In IJCAI 2011, 1955-1961.

Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. Technical report, Dep. of Electronics for
Automation, University of Brescia, Italy.

Gerevini, A.; Kuter, U.; Nau, D. S.; Saetti, A.; and Wais-
brot, N. 2008. Combining domain-independent planning
and HTN planning: The duet planner. In ECAI 2008, 573—
5717.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS 2000, 140-149.

Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In AAAI 1998,
882-888.

Karp, R. M. 1972. Complexity of Computer Computations.
chapter Reducibility Among Combinatorial Problems, 85—
103.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In AAAI 1991, 634-639.

Ramirez, M., and Geffner, H. 2009. Plan recognition as
planning. In IJCAI 2009, 1778-1783.

Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. JAIR 20:405-430.

