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Abstract

Social influence has no small effect on the preferences
and behavior of agents in a social space. Contrary to
rationality, we sometimes compromise our own needs
for those of others. Thus, social influence has impor-
tant implications in agent cognitive modeling for multi-
objective decision-making problems. Namely, where
these activities occur within a social context, the in-
tentional preferences or utility of an agent may be sub-
sumed, to a greater or lesser degree, by the influences of
other agents. In this paper, a socially-aware model pre-
dictive controller is proposed using a social influence
network theory and applied to a HVAC control prob-
lem. It transforms individual agent utility to socially-
influenced utility reflecting interagent influences due to
their existing relationships.

Introduction
Social influence has no small effect on the preferences and
behavior of individuals in a social space. Contrary to the
principle of rationality, we sometimes compromise our own
needs for those of others. Thus, social influence has im-
portant implications in agent cognitive modeling for multi-
objective decision-making problems. Specifically, where
decision-making occurs within a social context, the inten-
tional preferences or utility of an agent may be subsumed,
to a greater or lesser degree, by the influences of other
agents (Friedkin 1998). Further, where individual subsump-
tion happens among a close-knit group of agents, a central-
ity (a measure of importance based on the structure of the
network) related to the quality of its relationships will be ev-
ident. In short, an agent will alter its preferences about the
social space to favor the agents that are important to it.

This paper introduces a model of interagent social influ-
ences for a model predictive controller for a shared space re-
flecting the result of those influences. In effect, the controller
transforms the individual agent utilities using a transforma-
tion with explicit parameters for susceptibility and roles.
This model of social relationships is based on a mathemat-
ical model of consensus formation within a social influence
network theory (Friedkin 1998).
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Figure 1: Overview of the controller

This controller is illustrated in Figure 1 where the condi-
tions of the shared space are input to the utility of the agents.
In turn, this social influence network transforms each agent’s
raw utility into a socially-influenced utility. A model predic-
tive controller then determines the best control decision to
make based on that transformed utility.

This transformation is effected by the interagent influence
matrix. We set two parameters for each agent: susceptibil-
ity and role multipliers. While susceptibility is the degree to
which an agent is willing to compromise, role multipliers
allow the agent to assign influence to specific roles.

We show that the consensus formation equations of Fried-
kin’s social influence theory are suitable to transform in-
dividual utility for used in a model predictive controller.
Specifically, we demonstrate that the utility of the individ-
ual with the highest centrality dominates those of others.

To demonstrate the approach, we present the results of
simulations wherein a socially-aware model predictive con-
troller is used in a multi-objective decision-making process.
Stemming from research in intelligent environments (Mozer,
Vidmar, and Dodier 1997), these simulations approximate a
residential home using a comfort-based predictive controller
for its HVAC system. An occupying agent’s utility provides
input to the socially-aware controller which, in turn, makes a
control decision that modifies the thermal conditions inside
the home. The centrality of one agent (considered in the de-
pendent role) is varied by changing its parameters.

Note that the controller’s goal is to optimize transformed
utility. There is no guarantee of optimization of the underly-
ing utilities. Individual agents may compromise their prefer-
ences for the preferences of other agents.
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Background
Social influence network theory
Social influence network theory contains a formula for the
formation of consensus that ”describes a process in which
a group of actors weigh and integrate the conflicting in-
fluences of significant others - within the context of social
structural constraints” (Friedkin 1998). This is a form of
compromise where an agent’s opinion is influenced by the
opinions of other agents. We take the view here that opin-
ions are analogous to utility and can be represented by scalar
numbers as follows:

Let N agents share a space. Let X = [xik] be an N ×K
matrix of the exogenous factors of that space that influence
the agents. LetB = [bkm] be aK×M matrix of coefficients.
In essence, if X are the conditions of the shared space from
which an agent derives its utility, B is the set of weights
placed on those conditions. Y (t) = [y

(t)
im] is anN×M matrix

of M -dimensional preferences for N agents at time t. The
initial (at time 1) and influenced preferences at time t can
then expressed as:

Y (1) = XB (1)

Y (t) = AWY (t−1) + (I −A)Y (1) (2)

Here, Equation (2) describes the subsequent transforma-
tion of those opinions over time where A = [aii] is a diago-
nal weight matrix indicating the influence coefficient of each
agent, i, andW = [wij ] is the weight matrixN×N describ-
ing the influences of the agents on each other. The weight
wij indicates the influence of agent j on agent i. Equations
(3) and (4) constrain the weight matrix, while Equation (5)
describes a compromise relationship.

0 ≤ wij ≤ 1 (3)∑
j

wij = 1 (4)

wii = 1− aii (5)

The first term of Equation (2) forms the norm of the
group. The revised opinion is the weighted sum of the norm
at that timestep and the agent’s initial opinion represented
by the second term. These relative weights are determined
by the coefficient of the social influence for each agent, aii.
Thus, each agent’s own opinion is accorded some weight
at this level, though its opinion is also accounted for in the
norm.

Thermal comfort and control
The primary goal of HVAC (Heating, Ventilating and Air
Conditioning) is to create an environment that is comfortable
for its occupants. Thermal comfort is studied in psychology
as an attempt to understand individual occupant responses
to the physical environment. When considering a thermal
comfort neutrality as the physiological state where heat gen-
eration and heat dissipation are equal, a thermal comfort re-
sponse is then seen as the psychological response to devia-
tion around that state. How this is measured is still an active
research topic, but a standard is readily available in the en-
gineering field.

Notably, the prevalent standard measure of thermal com-
fort is the ASHRAE-scale based on a Predicted Mean Vote
(PMV) (ASHRAE 2004). The PMV indicates the expected
thermal comfort sensation of a large group of people on a
scale ranging from -3 to +3 reflecting sensations of cold and
hot, respectively. A neutral thermal comfort score on this
scale (PMV = 0) is from a combination of environmental and
individual factors for which no change is desired. The fac-
tors contributing to the comfort response of the individual
are given as four environmental variables (relative humid-
ity, mean radiant temperature, ambient air temperature,air
velocity) and two personal variables (metabolic rate and
clothing levels). This is discussed briefly in (Liang and Du
2005) and a full treatment may be found in (ASHRAE 2004;
Fanger 1970).

Model predictive control

The term model-based predictive control (MPC) refers to a
range of strategies designed to optimize a control policy by
maximizing some utility function. These strategies can be
summarized by three components. These are the prediction
model, the objective function and the process of obtaining
the control law (Camacho and Bordons 2004).

(Mozer, Vidmar, and Dodier 1997) describes a model
predictive controller which forms the objective function in
terms of occupant discomfort and an energy cost both mea-
sured in dollars:

J̄u =

t0+k∑
t=t0+1

e(ut) + m̄u(xt) (6)

where e is the energy cost and m is the ”misery” of the oc-
cupants in dollars. These are described by their respective,
underlying models. The model predictive controller then
makes predictions about all the possible control policies over
a receding, finite window of time. Executing the first control
decision, the models are updated and the cycle repeated.

At each time step in a discrete control scenario, the opti-
mal control policy is found by maximizing a utility function
informed by prediction models over a finite-horizon. The
first control action is then executed, the models updated, and
the optimal policy recalculated.

Driven by industry, the application of MPC controllers is
found to be used in a number of areas dominated by man-
ufacturing process control (Qin and Badgwell 1997). How-
ever, given the simplicity of the approach, it is suitable for
other scenarios such as HVAC control. Indeed, the use of an
MPC controller for HVAC control is also shown in (Mozer,
Vidmar, and Dodier 1997; Freire, Oliveira, and Mendes
2008; Hamdi and Lachiver 1998; Lei, Hongli, and Cai
2006). Notably, Friere (Freire, Oliveira, and Mendes 2008)
investigates the use of PMV as a cost function in the HVAC
control scenario. Also, (Mozer, Vidmar, and Dodier 1997;
Freire, Oliveira, and Mendes 2008) investigate optimization
of both thermal comfort and energy cost generally using
MPC.
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Methodology
Problem formulation
(Mozer, Vidmar, and Dodier 1997) formulated an HVAC
control problem as a balance between an optimal setpoint
and energy cost. In contrast, the problem is devised here as
a set of divergent objectives combined into a consensus de-
cision reflecting the effect of social influence. These objec-
tives are individually modeled as the utility of each agent
and combined using an influence network. This section de-
scribes modifications to Friedkin’s consensus formation as it
is included into a model predictive controller.

Socially-aware Model Predictive Controller
The basic model predictive controller is modified by chang-
ing the model of agent utility. Specifically, raw utility is
transformed into socially-influenced utility according to
Equation (8). The agent entity can be generalized as any en-
tity that 1) shares the social space, 2) is impacted by control
decisions on that space, 3) has some utility related to the
state of that space. While this obviously may include peo-
ple, this definition allows us to include other agents such
as HVAC equipment. For example, an air conditioner is im-
pacted by control decisions in that such decisions may cause
the device to consume energy. Energy usage could then be
considered as the utility function for that agent. In contrast to
(Mozer, Vidmar, and Dodier 1997), the aggregate objective
function can be simplified as a weighted sum of the utilities.

Social Space
The context for the control scenario is called the social
space. Latané and Liu (Latané and Liu 1996) define so-
cial space as ”an intersubjective matrix of psychological dis-
tances based on physical and social reality that provides a
framework constraining how people are influenced by each
other.” In the example scenario of an HVAC control prob-
lem, the social space is defined by shared use of a physical
location or environment (e.g. a residential home). It can also
be defined by a shared fiscal responsibility for the energy use
incurred by running the HVAC equipment.

Social agents
Social agents are those agents which jointly occupy a social
space along one or more defining dimensions. In this work,
agents have the following characteristics:

Occupancy An agent either occupies the social space at
time t or it does not. In the HVAC problem, an agent away
from the physical space at a given point in time will not be
affected by any control decisions affecting the space in that
time step. In Equation (8) below, occupancy is represented
by a diagonal matrix B(t) where:

b
(t)
ii =

{
1 agent i occupies the space at time t
0 otherwise (7)

Susceptibility Susceptibility is defined in two ways. First,
each agent may be more or less susceptible to the influences
of the group norm. This is a form of compromise between
one’s own utility and the utility of other group members. It

is defined here for the group of agents as the matrix A such
that 0 < aii < 1 and aij = 0, i 6= j.

Role multipliers Role multipliers are a convenient way to
handle different classes of relationships. We assume that a
relationship with one agent may be different than a relation-
ship with another agent. It is also assumed that an agent’s
self-weight changes depending on some quality of the rela-
tionship. To simplify this, we assume that relationships fall
into groups or roles. Each role then scales the effect each
alter agent in that relationship role will have on the agent.

Role Multiplier
peer 0.25

dependent 1.0
caregiver 0.25

Table 1: Sample Multiplier Settings

Agents represent each role as a scalar multiplier. Table 1
provides an example set of role multipliers. Theoretically,
each agent could model roles individually. For the present,
we assume that all agents use the same role multipliers.

Raw utility In this paper, a distinction is made between
the raw utility of each agent and the socially-influenced util-
ity. A raw utility function maps the conditions of the shared
space to a set of preferences for a given agent. Here we de-
note the raw utility of the agents as vector ~x such that each
agent’s utility occupies the corresponding row’s value.

Individual preferences are encoded into this character-
istic. Any variances between individuals regarding utility
based on the conditions of the shared space but independent
of other agents occupying this space are therefore handled
by the agent’s raw utility function.

Socially-influenced utility Socially-influenced utility, on
the other hand, represents the preferences of the individual
when taking other agents into consideration.

To relate these to the mechanism from social influence
network theory, the raw utilities of all the agents in a social
space are considered as the initial opinion, x in Equation
(1). We revise Wquations (1) and (2) to reflect the interre-
lated social influences for a single time-step. These equa-
tions are then combined into a single form by substituting
B~x for Y (1), because we assume that social influence is en-
tirely internal to the agent. Therefore, the focus is on the
relationships and each agent’s internal cognition about its
relationships.

Y ′ = AWB~x+ (I −A)B~x (8)

The influence network is represented by the weight ma-
trix, W , according to the constraints given in (3), (4) and
(5). As shown, this matrix can be used as a transformation
function transforming a vector of individual utilities to a vec-
tor of utilities representing the effect of the influence of the
relationships between the individual.

At each interval, the weight matrix W is updated. While
susceptibility and role multipliers remain constant, the num-
ber of occupants of each role changes over time. W is
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Figure 2: Influence Network

updated through the exponential function in Equation (9).
Though any function could be used here we make the as-
sumption that the rate at which self-weight changes is expo-
nential in relation to the number of related agents in a given
role and the quality of the relationship roles.

wii = e−k
∑H
u∈H munu (9)

where H is a set of relationship roles. The function param-
eters are k, m and n, where m is a multiplier for each rela-
tionship role h and n is an N -dimensional vector describing
the number of agents in relationship role h opposite agent i.
The parameter k scales the effects of other agents globally.
This represents the individual susceptibility of the agent to
social influence. At k = 1.0, the agent is fully influenced by
each individual term given in the sum. Agents that are not
influenced by others have k = 0.

Once the self-weight is calculated, influence can then be
distributed to the other agents. Equation (10) takes the re-
maining influence and distributes it according to their role.

wij = (1− wii)

(
mv∑

h∈H mhnh

)
(10)

where v is the relationship role of agent j vis-a-vis agent i.

Example
Consider a network with three agents; two agents (1 and 2)
are peers of each other and the other agent (3) is the de-
pendent of the first two. This simulates two adults with a
dependent child in the HVAC problem.

Assuming k1 = 1.0, self-weight for agent 1 can be set as
follows:

w11 = e−1.0×((1.0×1)+(0.25×1))

= 0.29

Given (1 − wii) =
∑

j 6=i wij , the remaining 0.71 is dis-
tributed to the other agents according to (10). This main-
tains the constraints given in (3), (4), (5). Assume the same
weights for agent 2.

Let k3 = 0.0 give the susceptibility for agent 3. Trivially,
the self-weight for this agent will be 1.0 with none allocated
to agents 1 and 2. This results in the weight matrix, W , in
Table 2.

Agent 1 2 3
1 0.29 0.14 0.57
2 0.14 0.29 0.57
3 0.00 0.00 1.00

Table 2: Example Weight Matrix

Figure 2 illustrates the distribution of influence between
the agents. The network centrality can be calculated as the
sum of the weights on the outgoing influences. The caregiver
agents (Cg) both have centrality of 0.43, while the dependent
agent (Dep) has a centrality of 2.14. In effect, changes in the
dependent agent’s utility will have a larger influence on the
aggregate utility.

Experiments
Model Predictive Control
In short, the outdoor space model provides the exogenous
input for the system in terms of external weather conditions.
The thermal space model then simulates the movement of
heat through building walls resulting in an ambient indoor
temperature. Utility functions for the individual agents then
give a response to the temperature measured in terms of
comfort (on a [0,1] scale). These are combined into a group
utility as a weighted linear sum across all agents. The con-
troller maximizes that utility over a finite horizon. The first
control action of the optimal policy is implemented. Finally,
the predictive models are updated and the next interval re-
peats the process.

Predictive Models The social space is conceptualized
as a single-room having walls and ceiling with consistent
thermal resistance/capacitance. It is represented as ambi-
ent indoor temperature with a heat transfer equation. As
in (Mozer, Vidmar, and Dodier 1997), the transfer of heat
through the walls is modeled by a first-order approximation.
This is given by Equation (11).

ĥu(t) = ĥu(t− 1)e
−60δ
RC + (RQu(t) + g)

(
1− e

−60δ
RC

)
(11)

This gives a prediction of the indoor temperature at time
t. Parameters, R and C are respectively the resistance and
capacitance factors. The equation is quantized by the inter-
val size, δ. Finally, the current control decision (1 for heat,
0 for off, -1 for cool) is given by u while g is the outdoor
temperature.

Occupancy is represented in the present work using a
schedule-based model. For this report, each person agent
was given a daily period of not occupying the physical space
that randomly ranged between 4 and 12 hours.

Agent utility is represented differently based on agent
type. This work distinguishes the agents as either person
agents or thermal plant agents. Person agents are impacted
by the effects of the thermal environment and provide utility
in terms of thermal comfort. Thermal plant agents affect the
thermal environment and provide utility in terms of energy
usage. Both utilities are scaled to the [0,1] interval.
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Thermal comfort utility is derived using fuzzy logic to
map indoor temperature to a PMV score. This is a rough
approximation of the method used in (Hamdi and Lachiver
1998) which provides a fast calculation of that score for on-
line usage in HVAC controllers.

Data
To demonstrate the suitability of this approach to the MPC
scenario, it suffices to show that the preferences of agents
with greater weighted centrality dominate the social space.
In this application, this means the more important an agent
is (i.e. greater centrality), the more comfortable it is. To
demonstrate, three simulations using different configura-
tions of susceptibility were run. Each simulation consisted
of thirty trials. Between each trial, the thermal comfort and
occupancy profiles for each agent were varied randomly.

Common Configuration Parameters
Some parameters were commonly used across all configu-
rations. Firstly, all simulations used three agents in a social
network whose relationships are described by Table 3. Also,
each agent used the role multipliers shown in Table 1. Fi-
nally, for all simulations, the dependent agent’s susceptibil-
ity parameter is set to zero for all simulations.

Agent 1 2 3
1 self peer dependent
2 peer self dependent
3 caregiver caregiver self

Table 3: Agent Relationships

Each trial consists of 52,560 decision points (i.e. every
10 minutes for 12 months). At each decision point, external
temperature was used as input and the following output was
captured:

1. internal temperature
2. control decision (off, heat, cool)
3. agent’s occupancy status
4. agent’s raw utility
5. agent’s influenced utility

Exogenous Data
External temperature data was provided by NOAA data files
for Fayetteville, Arkansas (NOAA-NCDC 2011). Median
temperature was 17.4◦C, minimum was −13.0◦C and the
maximum was 43.0◦C.

Results
The section provides the daily mean values for each decision
point index across all thirty trials.

Configuration 1
For configuration 1, the agents in the caregiver roles had sus-
ceptibility parameter set to 0.0 (k = 0.0). The recorded data
is shown in Table 4 and Figure 3.

Agent Mean Utility Std Dev (-) Std Dev (+)
1 0.11 0.06 0.01
2 0.10 0.04 0.02
3 0.07 0.02 0.02

Table 4: Configuration 1 results
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Figure 3: Simulation results for configuration 1

Configuration 2
For configuration 2, the agents in the caregiver roles had sus-
ceptibility parameter set to 0.5 (k = 0.5) while the depen-
dent agent remained at k = 0.0. The recorded data is shown
in Table 5 and Figure 4(a).

Agent Mean Utility Std Dev (-) Std Dev (+)
1 0.04 0.02 0.02
2 0.07 0.03 0.01
3 0.04 0.02 0.01

Table 5: Configuration 2 results

Configuration 3
For configuration 3, the agents in the caregiver roles had sus-
ceptibility parameter set to 1.0 (k = 1.0) while the depen-
dent agent remained at k = 0.0. The recorded data is shown
in Table 6 and Figure 4(b).

Discussion
Importance in the social space is derived from the self-
weight of the agent. We use the susceptibility parameter and
role multipliers to set that weight. The results shown above
indicate that as caregiver agent susceptibility increases, its
centrality increases and therefore its utility decreases. Fur-
ther, the daily averages increase for the dependent agent as
the caregivers give more influence to it by increasing sus-
ceptibility.
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Figure 4: Agent utility results for configurations 2 (a) and 3 (b)

Agent Mean Utility Std Dev (-) Std Dev (+)
1 0.10 0.04 0.02
2 0.11 0.05 0.01
3 0.02 0.00 0.01

Table 6: Configuration 3 results

This work has focused on the framework for a HVAC
scenario but it could be generalized to other control prob-
lems where a controller makes decisions on a shared, social
space. Other such controllers include recommender systems
for shared spaces such as media playlists.

Further, susceptibilities could be abstracted more to pro-
vide a robust and flexible system for parameterizing dif-
ferent susceptibilities to different exogenous inputs. In this
way, the utility of each agent could be more thoroughly de-
scribed in the formalisms presented in Friedkin’s consensus
formation, rather than outside the system. That is to say that
an agent may also be more or less susceptible to the effects
of the different dimensions of the social space. For this work,
we assumed this susceptibility to be handled by the function
generating the utility. However, this could also be handled
by the matrix B by setting 0 < bij < 1 accordingly.

Finally, this work provides a platform for learning the pa-
rameters from some form of feedback from the agents. Ex-
ploration of this goal would require extending the cognitive
model of the agent in the simulator to provide appropriate
feedback to the socially-aware controller. A full, human-
based study would also serve the purpose.
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