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Abstract 
This paper deals with planning domains that appear in 
computer games, especially when modeling intelligent 
virtual agents. Some of these domains contain only actions 
with no negative effects and are thus treated as easy from 
the planning perspective. We propose two new techniques 
to solve the problems in these planning domains, a heuristic 
search algorithm ANA* and a constraint based planner 
RelaxPlan, and we compare them with the state of the art 
planners, that were successful in IPC, using planning 
domains motivated by computer games. 

 Introduction   
Though certain planning problems are assumed by the 
planning community to be easy for solving, these problems 
still appear in many practical applications. Hence it is 
useful to have efficient solving approaches for such “easy” 
problems. In this paper we will look at planning problems 
that appear in some computer games. These problems can 
be characterized as cumulative planning problems where 
actions have no negative effects. Finding a plan solving 
such a problem can indeed be done in polynomial time 
(Blum and Furst 1997) but it is more complicated to find 
the optimal plan (with the smallest sum of action costs). 
 There has been a huge progress in developing automated 
planners in recent years so the hope was that the best 
planners should be able to solve the above mentioned 
“easy” problems. However, our initial experimental 
evaluation showed that this is not the case. Hence we 
decided to develop specific planners for solving the 
cumulative planning problems to demonstrate that the 
planning technology is ready to solve such problems. The 
first planner we have developed belongs to the category of 
heuristic search planners, which is one of the most 
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successful approaches to automated planning in recent 
years, at least, if we measure the success via the results of 
International Planning Competition (IPC). The second 
planner exploits constraint satisfaction technology, which 
is not that successful in IPC. This planner was originally 
designed just for comparison with the heuristic search 
planner but as we will see later, it performs quite well. 
 The paper is organized as follows. We will first give the 
motivation for studying cumulative planning problems 
originated in computer games. Then we will describe two 
approaches for solving the planning problem till 
optimality, namely a heuristic search algorithm ANA* and 
a constraint-based planner RelaxPlan. Finally, we will 
experimentally compare these two solving approaches with 
three classical planners: LAMA 2011, SelMax, and Fast 
Downward: Stone Soup 1 (FDSS1). 

Motivation 
It is known that planners can be useful for extending 
capabilities of intelligent virtual agents (IVAs) and make 
them more realistic. The classical example of successfully 
used planning techniques is the videogame F.E.A.R. 
(Orkin 2006) that uses an ad-hoc STRIPS-like planner to 
plan actions for its IVAs. Another example is the video 
game Iceblox that can be played by off-the-shelf PDDL-
based planners (Bartheye and Jacopin 2008). 
 In this paper we focus on using planning techniques 
during the off-line validation of planning scenarios.  
Games played from the first or third person perspective, 
e.g., Hitman, Metro 2033, are usually split into multiple 
stand-alone scenarios that are played in a fixed sequence. 
Each scenario can usually be finished in several ways, in 
other words, there are multiple plans the player can adopt 
to fulfill the scenario. As game environments are getting 
increasingly more complex, designers may fail to realize 
that the scenario can be finished with simple plans, which 
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is a thing to avoid in game design, as players may bypass 
intended storyline, interesting content, or game events. 
Therefore, it is preferable to model every scenario as a 
problem domain that describes the environment as well as 
available player actions and then ask for “all” possible 
ways how to solve the scenario. The resulting plans can be 
reviewed and if an unintended solution is discovered, the 
designer can alter the environment to prevent adoption of 
such a plan. The described approach was used for instance 
in the context of Hitman (Pizzi et al. 2008). In this paper 
we adopted the idea of finding the shortest plan that may 
easily reveal if there are any unintended shortcuts. 
 Some games are sequential in terms that the state of the 
virtual environment does not reoccur or the reoccurrence 
does not bring anything new for the player and therefore it 
can be ignored. This means that the vast majority of player 
actions can be treated as irreversible, which allows 
modeling possible negative effects (and negative 
preconditions) of actions as positive effects (and positive 
preconditions) by creating new atoms prefixed with “not ”. 
This observation greatly simplifies planning problems as it 
brings the complexity of search for a satisficing solution 
from (possibly) EXPSPACE to PTIME. Briefly speaking, 
we can see the problem as a planning problem where 
actions have only “add” effects and no “delete” effects. A 
typical example is the game where the player collects keys 
to open doors and the doors stay opened indefinitely and 
the collected keys are never lost. Obviously it is enough to 
apply the action of opening particular doors (or collecting a 
particular key) at most once. This is the case of cumulative 
planning where the main problem is to decide whether or 
not a given action is part of the plan. 

Solving Cumulative Planning Problems 

As described in the previous section, we need to solve 
cumulative planning problems where actions have only 
positive effects. We use the classical propositional 
representation of planning problems so it means that no 
atom is ever deleted by executing the plan (atoms are only 
added). These problems are known to be solvable in 
polynomial time (Blum and Furst 1997). However, we 
attempt to find the shortest possible plan which is a 
problem that is NP-hard (the Set Cover Problem can be 
converted to the cumulative planning problem). 
 Though the assumed planning problems should be easier 
to solve than most problems from IPC, the initial 
experiments with the winning general planners from IPC 
showed that these planners have some difficulty with 
solving this type of problems. Hence we decided to 
implement specific planners for solving the cumulative 
planning problems to demonstrate that planning techniques 
can indeed be used to solve even large-scale planning 
problems in computer games. 

Heuristic Search – ANA* 
In classical planning, heuristic search is a common and 
successful approach to planning. For example, the winners 
of the latest IPC 2011, Fast Downward Stone Soup-1 
(Helmert et al. 2011) and LAMA 2011 (Richter et al. 
2011), are both heuristic search planners. The key 
components of a heuristic planner are the search algorithm 
and the heuristic estimators.  
Heuristics. In our approach for solving the cumulative 
planning problems we take an advantage of the significant 
research effort invested in developing delete-relaxation 
heuristics (Helmert and Domshlak 2009). For our purpose 
we have chosen the current state-of-the-art heuristic among 
them, hLM-cut (Bonet and Helmert 2010). Due to its 
technical complexity, we do not describe the heuristic here, 
but for the purpose of this paper we assume that we have 
an admissible heuristic for the cumulative planning 
problem that can be computed in polynomial time. 
Search algorithm. A* is a well-known search algorithm 
that always expands the most promising state. Given an 
admissible heuristic, A* is optimal, although for practical 
problems searching for the optimal solution tends to be 
computationally expensive.  Anytime Non-parametric A* 
algorithm (van der Berg et al. 2011) is an A*-based 
algorithm that performs the greediest possible search to 
improve the current best solution. We have adapted ANA* 
for the cumulative planning. 

solveana(s0, Ac, Goal) 
 if not goal reachable(s0, Ac, Goal) then return ∅ 
 landmark actions ← find(s0, Ac, Goal) 
 plan ← ∅; G ← |Ac| 
 op ← {s0} // open queue 
 cl ← ∅ // closed list 
 while op ≠ ∅ & not arbitrary break do 
  s ← bestana(op); op ← op \ {s} 
  h(s) ← hLM-cut(s) 
  cl ← cl ∪ {s} 
  G ← min(G, g(s) + |relevant actions(s, Actions)|) 
  foreach a � applicable relevant actions(s) do 
   next ← π(s,a,landmark actions) 
   h(next) ← h(s) - cost(all applied actions) 
   if is solution(next, Goal) then 
    plan ← get plan(next) 
   else if not (next ∈ op & g(next) ≥ g(op.next)) and 
        not (next ∈ cl & g(next) ≥ g(cl.next)) then 
� � � � op�← op ∪ {next} 
   end if 
  end for 
 end while 
 return plan 
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Solver. The input of the algorithm is the initial state, the 
set of actions and the set of goal atoms. The output is the 
shortest plan found in the given time, or an empty set, if 
the algorithm did not find any plan. The algorithm is 
anytime; it can be terminated arbitrarily by breaking the 
main while-loop, in which case it returns the best complete 
plan it discovered. The initial step is a goal reachability 
check that decides reachability of the goal atoms in 
polynomial time. The next step of the algorithm is finding 
all landmark actions, which is easy in cumulative planning. 
 We initialize the open queue with the initial state, leave 
the closed list empty and set the value of the best known 
solution to be the total number of actions; since the goal is 
reachable, a plan that contains all the actions is a trivial 
solution. The main while-loop operates until all the states 
in the open queue have been explored or filtered out. Note 
that our queue automatically removes the states that cannot 
provably improve the best-known solution 
(g(s) + h(s) ����. In the first step of the iteration we find 
and remove the best state from the open queue according to 
the ANA* evaluation of states. At this point we find the 
heuristic value for the state according to hLM-cut, add it to 
the closed list and improve the upper bound for the best 
solution. The relevant action is an action that can be 
further added into the plan; in other words, it is an action 
whose effects were not yet achieved and at least one of its 
effects is either an unachieved goal or a precondition of 
another relevant action. Consequently, we can see that we 
can construct a plan by adding all relevant actions into the 
current plan, which gives us potentially a new reduction of 
the upper bound for the cost of the best solution. 
 The inner foreach loop expands the current state by the 
application of all the actions that are both relevant and 
applicable (their preconditions are satisfied in the current 
state). The first step of the cycle applies the transition 
function π, which is slightly different from the usual 
transition function; we first apply the chosen action a, then 
we try to apply the largest number of landmark actions we 
can. This way we exploit the fact that since a landmark 
action must be in every plan exactly once, it does not 
matter when we apply it; hence we can apply it the first 
time it is possible. Since computing hLM-cut is expensive, in 
this step we calculate the heuristic value for the new state 
from the value of the parent state by reducing the heuristic 
value of the parent state by the costs of all the actions that 
were applied in the previous step. Lucky we are, this does 
not affect admissibility, since in cumulative planning the 
application of an action cannot increase the heuristic value 
as it can in classical planning (by the application of an 
action we only increase the number of covered atoms, but 
we do not lose any). The concept of using a heuristic value 
of the parent state is known as deferred evaluation (Richter 
and Helmert 2009). Finally, if we have reached the goal, 
we record the plan, otherwise we add the state into the 

open queue unless there exists either the same state in the 
open queue with the same or better cost or the same state is 
in the closed list with the same or better cost. 
 Since we use an admissible heuristic, the algorithm is 
complete; we never discard a state, unless we have either 
the same state with a less costly partial plan or a complete 
plan whose cost is lower than the admissible estimate of 
the state. Further, all the actions applicable for each state 
are systematically explored. Therefore, the algorithm 
eventually finds one of the optimal solutions. 
 The algorithm is sound, which again comes from the 
admissibility of the used heuristic and the systematical 
exploration of all states that are pruned only once their 
lower bound exceeds the global upper bound. 

Constraint-based Planner – RelaxPlan 
Classical constraint-based planners are based on the idea of 
translating the planning problem into a sequence of 
constraint satisfaction problems (CSPs) where the i-th CSP 
defines the problem of finding a plan of length i (Kautz 
and Selman 1992). This incremental approach is not 
necessary for cumulative planning problems where we are 
deciding “only” whether a given action is or is not part of 
the plan. Hence a single CSP can be used to describe the 
planning problem. This is similar to the original constraint 
model in the CPT planner (Vidal and Geffner 2004). 
Constraint Model. In the planning problem we have two 
types of objects: atoms and actions. We need to decide 
which actions will be in the plan and what the positions 
(levels) of actions will be in the plan. By selecting the 
actions we are also deciding which atoms will become true 
and where in the plan. Obviously, an action can be in the 
plan only if all atoms from its precondition become true at 
the levels before the level of the action. Similarly, an atom 
will become true only if some action having this atom 
among its effects is in the plan. Then the atom becomes 
true at the level of the action. Hence the levels define the 
partial ordering of actions in the plan. 
 The above observations lead to the following constraint 
model. For each action a we introduce a variable ActLevela 
describing the position of the action in the plan. Similarly, 
for each atom (predicate) p we introduce PredLevelp. If we 
have m actions and n atoms in the problem then the domain 
for the Level variables is {0,…, min(m,n)}. Obviously, 
there must be at least one action at each level and at least 
one atom must become true at each level (if no new atom 
becomes true at certain level l then all actions from the 
next level can be processed at level l too). Note that we 
allow parallel plans so it is possible to have more than one 
action at a given level. For atoms we also introduce 
variables specifying the action that makes the particular 
atom p true: PredActionp. The domain of this variable 
contains identifications of actions that have atom p among 
their effects. This is similar to the model from (Do and 
Kambhampati 2000). For the atoms that are true in the 
initial state we set PredLevelp = 0 and PredActionp = 0. 

407



Basically, there are two types of constraints connecting the 
actions with the atoms: 

 PredLevelp = ActLevelPredActiona
 

 ActLevela > max{ PredLevelp | p ∈ precond(a)} 

The first constraint says that the predicate becomes true at 
the level where the action giving that predicate is applied. 
The second constraint says that an action can be applied at 
the level following the level where all atoms from the 
action precondition are true. The action can also be applied 
later if it is applied at all. To distinguish whether the action 
is applied (it is a part of the plan) or not we introduce 
auxiliary variable GoalLevel specifying the level where all 
the goal predicates are true. Assume that G is a set of goal 
atoms, then GoalLevel = max{ PredLevelp | p ∈ G }. Any 
action applied before or at the GoalLevel is part of the plan 
which is indicated by the Boolean variable Ba: 

 Ba = 0 ⇔ GoalLevel < ActLevela. 

These Boolean variables also define the objective function 
to be minimized (action cost can also be added): 

 Obj = Σa Ba. 

Search Strategy. We applied the backward planning 
approach so we start with the set G of goal atom(s) and for 
each goal atom in this set we try to find an action having 
this atom among its effects (this action determines the 
atom). When this action is decided, its preconditions are 
added to the set of goal atoms and the process is repeated 
until the set of goal atoms becomes empty. To ensure that 
the predicates are not repeatedly added to G we filter out 
from G those predicates that have already been processed. 

solve(Goals) 
 Goals ← filterGoal(Goals) 
 if Goals = ∅ then return true 
 g ← selectGoal(Goals) 
 Actions ← domain(PredActiong) 
 while Actions ≠ ∅ do 
  a ← selectAction(Actions) 
  PredActiong ← a 
  if solve(Goals \ {g} ∪ precond(a)) then return true 
  un-assign PredActiong 
  Actions ← Actions \ {a} 
  PredLevelp < ActLevela     // C1 
 end while 
 return fail {remove constraints C1} 

The goal atom is selected from the set G of goal atoms 
using the first-fail principle (variable selection in a CSP). 
In particular, we prefer atoms with the smallest number of 
possible determining actions (the domain of variable 
PredAction is the smallest one). In case of tie, we prefer 
atoms that appear later in the plan (the minimal value in 
the domain of variable PredLevel is maximal among all the 
atoms). Formally, we select the goal atom: 

argmin{ (s,-k) | s = size(PredActioni), k = min(PredLeveli), 
i ∈ Goals}, 

where size(X) is the size of the domain of X and min(X) is 
the minimal value in the domain of X. 
 When the goal atom p is selected we need to decide the 
action determining this goal (value selection in a CSP). We 
prefer actions, which are already in the plan, to actions that 
have not been decided yet. In case of tie, we prefer actions 
that may appear earlier in the plan, that is, actions with the 
smallest minimal value in the domain of variable ActLevela. 
Finally, in case of tie, we prefer actions with the smallest 
number of preconditions. When action a is selected it is 
assigned to the variable PredActionp and the atoms from 
the precondition of a are added to the set of goal atoms. As 
there may be more actions, which give atom p, this step 
introduces a choice point. In case of backtracking and 
before assigning another action to PredActionp we post a 
constraint PredLevelp < ActLevela to ensure that action a 
will not give atom p in the alternative search branch (the 
option where a gives p has already been explored). 
 The reader may notice that we instantiate only the 
variables PredAction. This can be done thanks to 
maintaining consistency of inequality constraints “<” that 
discovers infeasibilities such as A < B < C < A, that is a 
cycle of actions. Hence if we decide which actions are 
giving which atoms we guarantee that there exists some 
allocation of actions to levels that forms a parallel plan. 
 Note finally that optimization is realized using the 
standard branch-and-bound approach. In particular, when 
procedure Solve finishes we set Obj ← min(Obj) which 
moves (via constraint propagation) all non-used actions 
after GoalLevel, that is, outside the plan. The value of Obj 
is then used as a bound when continuing search and 
looking for the solution with a smaller value of Obj. 

Experimental Results 

To compare the presented planning techniques we 
generated random problems modeling the problems from 
computer games as discussed in the introduction. The 
problems can be characterized by parameters (n, m, i, j). 
We generate a planning graph with n action layers where 
each layer contains 1 to m actions (random distribution) 
and each action has i positive preconditions (randomly 
selected atoms from the previous state layers) and j 
positive effects (randomly generated atoms including those 
from the previous state layers). Only the actions in the first 
layer contain a single precondition – a special atom start 
that forms the initial state. The last action layer contains at 
least one action that has a single effect goal. The task is to 
select the smallest number of actions that form a plan 
achieving the goal atom. Figure 1 shows the structure of 
the used planning graph. Though this type of domains 
seems very restricted; it suffices to model many planning 
problems appearing in computer games. 
 We generated 432 instances of random planning 
problems with the number of action layers (n) ranging 
from 1 to 204. For most problems we used 10 actions per 
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layer (m), with the exception of a few selected 
configurations for which we generated instances with 1 to 
20 actions per layer. For all generated actions we randomly 
selected 1 to 3 atoms as preconditions and 2 to 3 atoms as 
effects. All planning problems were generated using the 
standard PDDL syntax. 

 

Figure 1. Planning graph structure used in the experiments. 

 The experiments ran on Intel Xeon CPU E5335 2.0 GHz 
processor with 8GB RAM under Ubuntu Linux 8.04.2 
(Hardy Heron). The ANA* planner was implemented in 
Java 1.6, the RelaxPlan planner was implemented using the 
clpfd library of SICStus Prolog 4.2.0. Because of the big 
number of tested problem instances, the time limit for 
solving a single planning problem was set to 5 minutes. 
 In order to evaluate the performance of the introduced 
new planners we decided to compare them to the three 
state-of-the-art domain-independent planners that were 
successful in IPC 2011. Namely, as we were interested in 
finding optimal (shortest) plans, the obvious choice was 
the winner of the sequential optimal track, Fast Downward: 
Stone Soup 1 (FDSS1) (Helmert et al. 2011), which uses a 
portfolio of selected successful planning techniques, such 
as BJOLP (Big Joint Optimal Landmark Planner) 
(Domshlak et al. 2011), LM-cut (A* with the landmark-cut 
heuristics) (Helmert and Domshlak 2009), or M&S-bisim1 
and M&S-bisim2 (A* with two different merge-and-shrink 
heuristics) (Nissim et al. 2011). Each ingredient of the 
portfolio is then assigned a given amount of time limit 
based on its performance using the method described in 
(Helmert et al. 2011). Both the selected techniques and 
their assigned time are derived based on the experiments 
with the planning domains used for the IPC. However, 
since we were interested in solving the cumulative 
planning problems, we felt the urge to compare the 
performance also with a planner whose parameters were 
not derived based on the IPC domains. Therefore we chose 
the third best-performing planner from the IPC 2011 (the 
second place was taken by yet another variation of the 
FDSS planner), the SelMax planner, which combines two 
state-of-the-art admissible heuristics using an online 
learning approach (Domshlak et al. 2011). Finally, we used 

LAMA 2011 planner (Richter et al. 2011), the winner of 
the sequential satisficing track of IPC 2011. 
 Table 1 summarizes the results of our experimental 
evaluation. As it can be seen, out of the 432 tested 
instances the existing state-of-the-art optimal planners, 
FDSS1 and SelMax, managed to solve 233 and 235 
planning problems, respectively, without providing any 
sub-optimal solutions for the unsolved problems. This fact 
was the reason to include also the LAMA 2011 planner to 
our experiments, which managed to provide a 
(sub-)optimal solution for all tested instances, however, 
only 64 of them were solved optimally. Nevertheless as the 
column Total Cost shows, LAMA 2011 found many 
optimal plans, just the proof of optimality was missing. On 
the other hand, the first of the newly proposed planners, the 
ANA* planner, solved 241 planning problems, while 
providing a sub-optimal solutions for all but one testing 
instance. The clear winner of our experiments is the 
RelaxPlan planner, which solved optimally 313 problems 
and moreover it also provided sub-optimal solutions for all 
of the instances. Also, it required the least amount of time 
necessary to finish the computation. Though ANA* 
reached the best total cost of found plans, the differences 
between the three best planners are only tiny, which is 
interesting especially for LAMA 2011 that provided the 
guarantee of optimality only in 64 cases, as opposed to 
RelaxPlan which solved optimally 313 instances. 
 

Planner Solved Optimally 
Solved 

Total 
Cost  

Total 
Time  

FDSS1 233 233 - 30.58h 
SelMax 235 235 - 17.66h 
LAMA 2011 432 64 17768 30.88h 
ANA* 431 241 17681 16.70h 
RelaxPlan 432 313 17756 11.51h 
 
Table 1. Planner performance comparison for solving 432 
random cumulative planning problems. 

 Figure 2 depicts the difference between the times needed 
to optimally solve the planning problems. For clarity we 
only include data for ANA*, RelaxPlan and SelMax 
planners (the SelMax planner exhibited the best 
performance out of the three existing planners). 
 As it can be seen, the new planners not only provide the 
combined advantages of modern satisficing and optimal 
planners, but also greatly outperform them when solving 
cumulative planning problems. 

Conclusions 

Computer games and digital entertainment provide many 
challenges for artificial intelligence and in particular for 
planning. Though some planning problems in these areas 
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seem easy, for example the cumulative planning problems, 
the current state-of-the-art planners have some difficulties 
to solve them. Hence we proposed two new planners for 
solving the cumulative planning problems. These planners 
are not fine-tuned regarding the implementation but they 
are still beating the best planners from IPC when applied to 
specific planning problems appearing in certain computer 
games. So far we did a somehow restricted experimental 
study but the results naturally raise a more general question 
– whether the IPC domains examine the planners well in 
relation to the problems appearing in practice. We left this 
question un-answered, but the results from this paper 
suggest that there is indeed a gap between academic 
planning techniques and close to real-life problems. 
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Figure 2. Comparison of runtimes (logarithmic scale) for generated cumulative planning problems. X axis represents 432 planning 
problems sorted by ANA* solving time (RelaxPlan solving time is used for sorting when ANA* exceeded the time limit), Y axis represents 
the runtime in milliseconds required to solve a given planning problem optimally. For the cases when time out (set to 5 minutes) occurred 
we used the value of 1.000.000 to depict them, in order to visually separate such cases from the optimally solved instances more clearly. 
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