

Knowledge Sharing Through Agent Migration

with Multi-Population Cultural Algorithm

Andrew W. Hlynka and Ziad Kobti
School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P4

hlynkaa@uwindsor.ca and kobti@uwindsor.ca

Abstract
This study presents a new method for knowledge
transfer in Multi-Population Cultural Algorithms
(MPCA) through agent migration. This agent-based
algorithm involves having individual agents using one
of multiple pre-defined knowledge algorithms to de-
termine behavior, and using the success of it and other
agents to decide on which knowledge algorithms to
use next. Two or more subpopulations with their own
knowledge algorithm are created. The agents work in
the same environment by only communicating with
agents within their own subpopulation, and with two
global belief spaces monitoring the effectiveness of
each subpopulation. Agents transfer between the sub-
populations regularly to further improve individual
success. We use the as test-
bed. Experimental results reveal the impact of indi-
vidual knowledge transfer on the target subpopula-

.

1. Introduction
Cultural Algorithms (CA) have been in use for many years.
Originally created as an extension of Genetic Algorithms
(Reynolds, 1994), they have since grown to incorporate
other evolutionary algorithmic structures (Lin, Chen and
Lin, 2009; Guo and Liu, 2011) as a basis to their frame-
work. The underlying idea is that evolutionary algorithms
generally focus on evolving a number of individuals over
time using previous iterations to achieve more successful
solutions to various problems, whereas CA add the idea of
cultural evolution in order to increase the speed and effi-
ciency of the algorithm
store knowledge gained during the runtime of the algo-
rithm and also influences the guidance of individuals in
addition to genetic evolution (Reynolds, 1994). The ways
belief spaces are used and the way knowledge is stored
within them can vary greatly, but five distinct types of

Copyright © 2013, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

knowledge have been accepted: normative (ranges of better
choices), situational (successful and unsuccessful instanc-
es), topographic (spatial patterns), historic (past occurrenc-
es), and domain (information and relationships regarding
domain objects) (Reynolds and Saleem, 2003). CAs have
been helpful for various optimization problems and real-
world applications (Reynolds, Rychtyckyj, Ostrowshi and
Schleis, 2003; Kobti, et al., 2006; Diagalakis and
Margaritis, 2002; Reynolds and Chung, 1996; Reynolds
and Sverdlik, 1994) as well as multi-agent simulations
(Reynolds, Kobti and Kohler, 2003; Nakhwal, et al., 2010;
Alami and Imrani, 2005).
 The definition of CA has been further expanded into a
new type of algorithm called Multi-Population Cultural
Algorithms (MPCA) (Guo, Liu and Cheng, 2012; Guo,
Cheng, Cao and Lin, 2010). The general idea is to have a
number of sub-populations, each using cultural and genetic
evolution to obtain better solutions. Existing implementa-

s-

to create new populations by taking the most successful in-
dividuals from the previous instance (Diagalakis and
Margantis, 2002; da Silva and de Oliveira, 2009). Other
implementations use a global belief space to extract
knowledge from more successful individuals of each sub-
population to share with all individuals, where the individ-
ual populations are in charge of their own evolution while
being influenced by this knowledge (Guo, Liu and Cheng,
2012; Raessi and Kobti, 2012). As optimization problems
are generally used for testing purposes, existing work on
MPCA focuses on using a belief space global to all sub-
populations in order to communicate and share knowledge
quickly. However, work has not been done to discuss the
potential outcome of MPCA where individual agents them-
selves influence the evolution of other sub-populations.
 Considering existing work -

-based MPCA (TAMPCA) is suggested. Unlike
previous work, individual agents are not taken from each
sub-population to update a global belief space itself, but to
swap places with each other, such that each subpopulation

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

70

and a foreign individual are introduced to each other. This
way, knowledge and the current solution the transferred
agent knows are communicated with other agents who may
not have had access to this information previously. This
can potentially alter the evolution process of the sub-
population. To best visualize this, sub-populations are each
given an unique algorithm defining a singular type of
knowledge to use during their evolution process. When
transfer-agents are introduced, their types of knowledge
used are communicated (as well as their current success),
in order to influence other agents accordingly. Each sub-
population contains its own global belief space shared with
all agents within its respective sub-population, which is
used to monitor knowledge types being used and to help
influence knowledge adaption to the agents. This proposed
algorithm demonstrates a more realistic approach to solve
problems, and more importantly, to create more realistic
social-based simulations.
 The rest of this paper describes the details of the
TAMPCA. The details of the problem environment used to
test this algorithm are given, followed by the results from
the experiments, and finally some concluding remarks.

2. Transfer-Agent Multi-Population Cultur-
al Algorithm

The structure of this TAMPCA is simplified to best exam-
ine its properties and reasons of its results. All agents in the
algorithm are divided into two populations, each contain-
ing an equal number of agents. Note that more than two
populations may be considered in other examples. Each
agent contains its own knowledge within itself (it own in-
dividual , collected based on which
knowledge type is being used. Each population contains its
own global belief space that keeps track of values related
to each type of knowledge used in the population along
with its effectiveness. A global master program keeps track
of all the agents within the populations, and transf
agents between each population when required. The algo-
rithms required to run each defined type of knowledge is
stored explicitly within each agent, but a variable defines
which knowledge algorithm each individual agent uses
during the experiment.
 This implementation of the TAMPCA gives the two sub-
populations each a specific type of knowledge defined
from the five main types of knowledge in CA: topographic
and situational knowledge. Topographical knowledge is
defined by giving each agent a range of values in the space
that are defined as a good potential space for better solu-
tions. A range is initialized as the largest possible range the
problem allows at the start. Agents use their own experi-
ence and intersections with other ranges saved by other
nearby agents in order to further focus their ranges to ideal
areas. If a concise range still returns poor results (that is,

the poorest known possible result for the problem at hand),
then the range is initialized again to be as large as possible

again to evolve the range. Situational knowledge has each
agent look directly at nearby agents and compare fitness
values from them with itself. If a nearby agent is perform-
ing better than the current performance of the agent, then
the agent will move towards the better agent, otherwise the
agent will move randomly for other nearby better solu-
tions. Note that many other types of knowledge algorithms
can easily replace these for other implementations.
 Since agent communication is important for this imple-
mentation in order to influence other agents, an agent
communicates with other agents within a certain range of
itself in order to further improve its knowledge. The agents
do not communicate with agents outside their sub-
population, however: the two sub-populations run within
the same environment, yet do not influence each other (i.e.
the individual agents check the subpopulation each nearby
agent belongs to before communicating). This is to en-
hance the notion of reviewing the effects new knowledge
may have on a population when agent-immigration occurs.
 Every n iterations (in our case, n = 10) of the experi-
ment, we update the belief space for each sub-population,
and also update which knowledge type each agent should
use. This is done through a master program, which takes
the knowledge type and instance fitness value at that mo-
ment from each individual agent, passing it to the global
belief spaces for use in each population. Each global belief
space contains two real numerical values, each represent-
ing the likelihood of each knowledge type being the better
for agents to use in future iterations. The two values are be-
tween 0 and 1, where both values together add up to 1.
When updated, the global belief space takes a numerical
value from the fitness values of all agents within a sub-
population, and saves their sum representing their respec-
tive knowledge types they represent. When all agents have
updated the belief space, there should be a large sum for
both types of knowledge, representing their success and
adaption in the population where greater values suggesting
greater adaption or success. The two sums are then divided
by their total sum, creating two new values between 0 and
1 that represent the influence ratio of each knowledge type.
If all agents within a sub-population are using the same
type of knowledge (as they are at the beginning of the al-
gorithm), only the one type of knowledge adds to its nu-
merical influence value in the global belief space, conse-
quently returning an influence value of 1. But if other
agents immigrate to this population with different
knowledge types, the belief space will be updated with a
greater change respective to the fitness value of that agent
in comparison to other agents in the population.
 During the transfer of agents in TAMPCA, a master
program randomly chooses a number of agents from each
sub-population to be transferred without any notion as to
whether or not the swapping agents were ideal agents with

71

better fitness in their original populations. Every iteration
where the belief space for each population is updated, the
agents and the corresponding knowledge type they use are
also updated. For the purpose of further improving realism
in this algorithm for use in social system models, three po-
tential methods to decide the new knowledge function used
are defined, one of which will be randomly chosen when
required. First is that if no change occurs, the agent contin-
ues the knowledge type that it had been previously using
(this represents how many individuals are resistant to any
change over time). Second is that each agent will look to
the global belief space, a theoretical sub-conscious that
helps the agent converge to use a type of knowledge that

values as dynamically chosen by the two ratio values in the
belief space) which single knowledge type is to be used.
The third is a similar method to the second, but each agent
only looks towards agents close enough for communication
to create similar weighted values for p-
proach for choosing a new knowledge type to use. These
three different methods for choosing which knowledge to
use can be altered in future implementations not to be
equally likely to occur, but to be more or less likely based
on time passed or past choices.

3.
In order to test the TAMPCA, a common but simple opti-
mization problem is used in order to visualize effects and
performance during this
problem refers to an environment that is made up of sever-
al cones or hills, each with varying heights. The algorithm
is used to search for a maximum height within the envi-
ronment. Knowledge specific to the problem domain

in height towards a local peak, are also utilized in the pre-
defined knowledge algorithms in order to further improve
the results to appear more relevant.

100x100 matrix of integers, consisting of numbers from 0
(ground level, worst) to 20 (highest peak, best). These in-
teger numbers represent cone (hill) patterns, where ground
levels increase slowly (o
peak, before dropping again. 20 cones (of varying heights,
only one of which is at maximum height of 20, some over-
lapping each other) are randomly placed to create the map
that is used in this experiment. Each sub-population is giv-
en 100 agents, each randomly placed around the environ-
ment. The TAMPCA will run for 100 iterations without
agent-transfer to see how each population converge to their
own local maximum values. Transfer occurs every 100 it-
erations, such
1, 5, 10, 25, and 50) are transferred between the sub-

populations. This is repeated to examine the effects of con-
tinued transfer for 500 iterations as each population tends
to converge again before these transfers repeat. Ultimately,
results may be expected to show a final convergence where
one successful knowledge type becomes dominant over the
other. Figure 1 shows a visual representation of the prob-
lem domain in this experiment, with an indicator of the
highest peak (the darker spots), and Figure 2 shows the

Figure 1 - Domain Map at Beginning of Experiment

Figure 2 - Domain Map at End of Experiment

72

same area by the end of the experiment test, where indi-
vidual agents have converged to peaks of varying heights.

The results of this experiment will focus on three things:
the influence weight values given to each knowledge type
in the belief spaces in the populations, the number of indi-
vidual agents in each population which actually use each
type of knowledge (which may be closely related to the be-
lief space weight values), and the fitness values of the pop-
ulations at each iteration of the algorithm (taken as the av-
erage height of all the agents within each population). The
results are analyzed to see the effects each population had
on each other during the transfer of agents, and whether or
not improvement occurs, and if so, to what degree does it
occur.

4. Experiments and Analysis
To begin, we run tests with no transfer of agents, allowing
a better comparison for future tests where transfer of
agents occurs. Figure 3 shows the results of the algorithm
without any transfer, from the population using only topo-
graphic knowledge, taken from an average of multiple
tests. Figure 4 shows the results of the algorithm without
any transfer, from the population using only situational
knowledge, taken from an average of multiple tests. The
average of all the tests is plotted in each graph, as well as
the best and worst examples from the tests taken (to give
an indication of the range difference in the results). The
average heights can reach a maximum of 20, the maximum
height in this environment.
 As the graphs suggest, situational knowledge is more ef-
fective in this problem domain. Situational knowledge
converges quickly to a desirable solution, with little differ-
ence in the tests. Topographic knowledge was more erratic
in its tests, taking longer to converge, and reaching values
comparable to situational knowledge in only the best cases.
This is a good testing ground for this particular experiment,
as knowledge types with varying results is desired to pro-
duce more interesting results when transfer of agents oc-
curs. One might predict that situational knowledge will be-
come dominant over time, and that use of topographic
knowledge will eventually die out. Also, results after mul-
tiple transfers might be expected to reach up to the level
achieved by the better of the two knowledge types, in this
case, situational knowledge. Of course, knowledge type
use in these sub-populations is constant when no transfer
of agents occur, and so data regarding that is not recorded
here. Some researchers in the field of optimization might
cringe at the sight of less than perfect results in a long pe-
riod, but remember that the entire population is being eval-
uated here: while some agents do indeed find the ideal so-
lution (the highest peak), others get stuck at lower peaks,

and are too far from ideal agents to communicate this dif-
ference. These experiments are for the success of the popu-
lation when agents work together, not simply to find the
best solutions in the quickest time.
 Having results to compare with, the experiment is re-
peated with a transfer of 1 agent from each sub-population,
transfer occurring every 100 iterations during the timeline.
For this test, the average run of the algorithm gives an in-
teresting conclusion: Figure 5 shows that the transfer of
agents to population 2 results in a slight change to the pop-

, despite that the knowledge-agent being
migrated is the weaker of the two knowledge types. Popu-
lation 1 shows a faster increase than without this transfer
from the second population. Also, the fair success of sub-

 situa-
tion knowledge becomes more popular in population 1,
although the original topographic knowledge type is still
used more often.

Figure 6 shows results of several tests of the experiment,
examining the performance of each population for transfers
of 1 agent, 5 agents, 10 agents, 25 agents, and 50 agents.

Figure 3 - Population 1 (Topographic) with no agent transfer

Figure 4 - Population 2 (Situational) with no agent transfer

73

 As Figure 6 shows, performance seems to vary based on
the number of agents being transferred. With 1 agent trans-

ferred every 100 iterations, better improvement does occur
in population 1, and even occurs slightly in population 2.
During this, the original knowledge types are still domi-
nant in their respective groups. With 5 agents being trans-
ferred, population 1 reaches convergence more quickly, but
both populations 1 and 2 seem to hover at a point no larger
than the best that either reached originally, and even some
decrease in performance occurs when knowledge influ-
ences come closer together in population 1. With 10, 25
and 50 agents being transferred, convergence in population
1 increases rapidly to meet the level of success of popula-
tion 2, while population 2 actually decreases each time by

n-
fluence accepts situational knowledge fairly quickly,
whereas population 2 does not have topographic
knowledge overcome it, although neither fully accepts one
over the other in these last three experiments. However, as
the knowledge influence values become similar in both
sub-populations, success in both becomes similar as well.
The combined success of both populations increases as
they both converge to similar success values, but the two
populations themselves do not increase together.

5. Conclusion
In these experiments, two sub-populations using different
types of knowledge were used in a multi-population cultur-
al algorithm, and then individual agents from both were
transferred between each other to examine results. This
was tested for transferring 1%, 5%, 10%, 25% and 50% of
the populations. Overall performance was evaluated as
well as effects on knowledge acceptance.

The test where 1% of each population was transferred
appears to be the only situation where increase in success
in both sub-populations occurs. Other tests with larger
samples from each population transferred offered poorer
results, ending with success equal to (or even less than)
what the sub-population had originally started with. The
weaker of the two knowledge types lost most of its influ-
ence in both populations with larger samples of transferred
agents, and the population starting with this weaker
knowledge would consistently see improvement by accept-
ing the other knowledge. The second population, however,
saw some decrease as it was tainted by a lesser knowledge,
but not by as large a degree.

The interesting result comes from the test with 1% of the
populations transferred, as an increase occurred in perfor-
mance. The only other noticeable difference is that this test
also kept the original knowledge types for each sub-
population dominant within their groups, only letting new
immigrant individuals have a slight influence within the

. This might be due to the nature of
the solutions found by each sub-population: as the
knowledge types were originally different, the solutions

Figure 5 - Population 1 (top) & 2 with transfer of one agent

Figure 6 - Population 1 (top) & 2 with transfer of agent(s)

74

were as well. Thus, agents randomly chosen to be trans-
ferred may be the more successful agents in its original
population, and their knowledge is lost after the transfer.
However, the first test claims that the immigrant individual
may offer knowledge or a solution that is better than those
existing without taking too much away from the previous
population, and through slow evolution the other agents
decide whether or not to move towards these new solutions
and knowledge methods, or stay at their original place.

The results from this experiment may suggest that social
systems, in general, benefit from slow improvement and
evolution as opposed to quick and sudden change. Such a
bold conclusion isn't especially clear, but this experiment
does show that algorithms that are not guaranteed optimal
success every time can benefit from other algorithms that
happen to perform better during that run. A small transfer
of agents among multiple populations may lead to a slight
improvement with better consistency than one alone. If
true, such ideas would be beneficial towards more complex
social simulations to improve evolution, and also towards
potential new methods in optimization solutions where
multiple appropriate algorithms exist (although time was
not a considered factor in these experiments).These results
would need to be proven further with testing new
knowledge algorithms to compare, and testing within new
domains of varying definitions and goals.

Also worth mentioning is the possibility of this method
of testing being used to find ideal combinations of algo-
rithms to perform well under certain problems. In this ex-
periment, two defined algorithms were used by individual
agents, but not at the same time by any individual. The al-
gorithm performed poorly when the influences of each
knowledge type were changed too drastically, but subtle
changes may lead to a better combination to use from the
start of the algorithm to provide better results. If potential
solutions to a problem could be broken up into smaller al-
gorithms that could be assigned to individual agents, an al-
gorithm such as TAMPCA could be used to quickly find a
good estimate on how they should best be distributed
among the agents for efficiency and accuracy. This is only
a hypothesis, however, and requires testing to prove any
merit.

Future work will involve testing these experiments on
new problem domains with new knowledge types, includ-
ing testing the effectiveness with using TAMPCA to simu-
late these situations. This may further lead to studies in be-
havior in natural societies, and help development in studies
regarding complex social systems through artificial model-
ing.

Acknowledgments
This work was partially supported by a research grant from
NSERC Discovery.

References
Reynolds, R. G. 1994. An Introduction To Cultural Algorithms.
Wayne State University, Detroit, MI.
Lin, C. J. and Chen, C. H. and Lin, C. T. 2009. A Hybrid of Co-
operative Particle Swarm Optimization and Cultural Algorithm
for Neural Fuzzy Networks and Its Prediction Applications, In
IEEE Transactions on Systems, Man, and Cybernetics 55-68,
IEEE.
Reynolds, R. G., and Saleem, S. 2003. The Impact of Environ-
mental Dynamics on Cultural Emergence. Oxford University
Press.
Reynolds, R. G., and Kobti, Z., and Kohler, T. 2003. Robustness
in Coupled Human/Natural Systems in the Northern Prehispanic
Southwest, Sante Fe Institute/Oxford Studies in the Sciences of
Complexity.
Reynolds, R. G., and Rychitychj, N., and Ostrowshi, D. 2003. Us-
ing Cultural Algorithms in Industry, In Proceedings of the Swarm
Intelligence Symposium 187-192, IEEE.
Kobti, Z., and Snowdon, A. W., and Rahaman, S. and Dunlop, T.,
and Kent, R. D. 2006. A Cultural Algorithm to Guide Driver
Learning in Applying Child Vehicle Safety Restraint, In IEEE
Congress on Evolutionary Computation 1111-1118, IEEE.
Guo, Y., and Liu, D.., and Cheng, J. 2012. Multi-population Co-
operative Cultural Algorithms. Springer-Verlag, Berlin
Hiedelberg.
Guo, Y., and Cheng, J., and Cao, Y., and Lin, Y. 2010. A novel
multi-population cultural algorithm adopting knowledge migra-
tion. Springer-Verlag, Berlin, Hiedelberg.
Diagalakis, J. G., and Margaritis, K. G. 2002. A multipopulation
cultural algorithm for the electrical generator scheduling problem.
In Mathematics and Cimputers in Simulation 293-301. Elsvier
Science.
Silva, D. J. A., and Oliveira, R. C. L. 2009. A Multipopulation
Cultural Algorithm Based on Genetic Algorithm for the MKP. In

th Annual conference on Genet-
ic and evolutionary computation 1815-1816, ACM, New York,
NY
Kobti, Z., and Raessi, M. R. 2012. A Knowledge-Migration-
Based Multi-Population Cultural Algorithm to Solve Job Shop
Scheduling, In Proceedings of the Twenty-Fifth International
Florida Artificial Intelligence Research Society Conference 68-
73, North America.
Reynolds, R. G., and Chung, C. J. 1996. A Testbed for Solving
Optimization Problems Using Cultural Algorithms. Wayne State
University, Detroit, MI.
Nakhwal, A. 2010. Agent Modeling in Decision Support System:
A Case Study in a Base Hospital System. Unviersity of Windsor,
Windsor, ON.
Alami, J. and El Imrani, A. A. 2005. Cultural Algorithms for Air
Traffic Conflict Resolution Problem. University of Sciences, Mo-
rocco.
Guo, Y., and Liu, D. 2011. Multi-population Cooperative Particle
Swarm Cultural Algorithms. In Seventh International Conference
on Natural Computation 1351-1355, Shanghai.
Reynolds, R. G., and Sverdhik, W. 1994. Problem Solving Using
Cultural Algorithms. In Proceedings of the First IEEE Confer-
ence on Evolutionary Computation 645-650, IEEE.

75

