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Abstract 
In the present paper we propose an unsupervised attribute 
ranking method based on evaluating the quality of clustering 
that each attribute produces by partitioning the data into 
subsets according to its values. We use the Minimum 
Description Length (MDL) principle to evaluate the quality 
of clustering and describe an algorithm for attribute ranking 
and a related clustering algorithm. Both algorithms are 
empirically evaluated on benchmark data sets. The 
experiments show that the MDL-based ranking performs 
closely to the supervised information gain ranking and thus 
improves the performance of the EM and k-means 
clustering algorithms in purely unsupervised setting. 

 Introduction   
Attribute (feature) selection helps learning algorithms to 
perform better with noisy or irrelevant attributes, and 
improves their efficiency with imbalanced and sparse data. 
Attribute subset selection is computationally expensive and 
intractable in the worst case when it requires the exhaustive 
search of 2m attribute sets for m attributes. Therefore an 
approach often used in practice, called attribute weighting, 
is to assume that attributes are independent (although this 
rarely happens with real data) and evaluate not attribute 
sets, but individual attributes, rank them by relevance to 
the learning task and then pick a number of attributes from 
the top of the ranked list. 
 Attributes may be selected both in the presence 
(supervised setting) and absence (unsupervised setting) of 
class labels. Attribute selection is more popular in 
supervised learning and classification because labeled data 
allow the use of good evaluation measures for the quality 
of the selected attributes, which are usually based on the 
accuracy of predicting class labels. Thus the goal of 
supervised attribute selection is to find the smallest set of 
attributes that will maximize predictive accuracy. 
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 Unsupervised attribute selection is a difficult problem 
not only because it is hard to solve in the absence of prior 
knowledge (class labels), but also because it is generally 
not well defined. The definition that we are using here is 
based on the one provided in (Dy and Brodley 2004): 

The goal of feature selection for unsupervised learning 
is to find the smallest feature subset that best uncovers 
interesting natural groupings (clusters) from data 
according to the chosen criterion.  

As we take the weighting approach, we consider the 
problem of evaluating each attribute with respect to its 
ability to uncover interesting natural groupings in data. 
We measure the interestingness of these groupings by 
applying a clustering quality criterion to the clusters that 
each attribute produces by partitioning the data into subsets 
according to its values, similarly to the divide-and-conquer 
technique used in decision tree learning. For measuring the 
quality of clustering we use the Minimum Description 
Length (MDL) principle originally suggested by Rissanen 
(1978). In this paper we describe an efficient algorithm for 
MDL-based attribute ranking and a related clustering 
algorithm, which are empirically evaluated on benchmark 
data. 

Related Work 
There are two basic strategies for supervised attribute 
selection  wrapper and filter methods. The wrapper 
methods evaluate attributes by running learning algorithms 
to create prediction models and use the predictive accuracy 
of these models to measure the attribute relevance to the 
prediction task. The filter approaches directly measure the 
ability of the attributes to determine the class labels using 
statistical correlation, information metrics, probabilistic or 
other methods.  
 There are numerous approaches to supervised feature 
selection. We refer readers to (Liu and Motoda 2008) for a 
comprehensive coverage of the algorithms in this area. 
This book also includes a chapter on unsupervised feature 
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selection. A classification of methods for feature selection 
and a short survey of recent work in the area is provided in 
(Liu et al. 2010). It covers both supervised and 
unsupervised approaches. In general, however, the 
supervised methods are much more popular than the 
unsupervised ones. This is also the case with their practical 
implementations and availability in software systems. For 
example, the popular Weka machine learning suit (Hall et 
al. 2009) provides 17 attribute evaluation algorithms, 
which may be combined with 11 search methods, while no 
algorithms at all are available under the unsupervised 
category. Nevertheless, unsupervised attribute selection is 
an active research area, mainly focusing on the attribute 
evaluation techniques in the framework of clustering. The 
main reason for this is that clustering approaches provide 
evaluation measures that can be used in the wrapper 
framework (replacing predictive accuracy used in the 
supervised setting).  
 The basic idea of the wrapper approaches to 
unsupervised attribute selection is to evaluate a subset of 
attributes by the quality of clustering obtained by using 
these attributes. Devaney and Ram (1997) use the category 
utility function and the COBWEB conceptual clustering 
algorithm to evaluate subsets of attributes. Dy and Brodley 
(2004) explore the EM framework and use the scatter 
separability and maximum likelihood evaluation functions 
to find feature subsets. In (Mitra et al. 2002) an algorithm 
for feature selection is proposed that uses partitioning the 
data into clusters such that the features within the clusters 
are highly similar. A feature is selected from each cluster 
thus forming the reduced feature subset.  
 Filter methods are also studied in unsupervised learning. 
Many of those methods explore classical statistical 
methods for dimensionality reduction, like Principal 
Component Analysis (PCA) and maximum variance. (Note 
that PCA transforms the features instead of selecting a 
subset of the original ones.). Although the maximum 
variance criteria finds features that are useful for 
representing data, they may not be as useful for 
discriminating between data in different clusters. This idea 
is explored in (Deng 2010) to create an algorithm that 
selects the features that best preserve the multi-cluster 
structure of the data. 
 Another group of methods use information-based 
measures. A method called entropy reduction is proposed 
by Dash and Liu (2000). It measures the entropy in data 
based on a normalized distance between pairs of instances 
and evaluates attributes by the reduction of the entropy 
when the attribute is removed from data. This and other 
methods are empirically evaluated for the purposes of text 
clustering in (Liu et al. 2003). Most of the unsupervised 
methods discussed in this study use specific evaluation 
techniques related to the bag-of-words representation of 
text documents. This study also suggests that attribute 

selection can improve the quality and efficiency of text 
clustering.  
 There is a third, embedded approach that lies between 
the wrapper and filter approaches. In (Guan et al. 2011) 
feature selection and clustering are incorporated in one 
algorithm. Their method is based on a hierarchical beta-
Bernoulli prior combined with a Dirichlet process mixture 
and allows learning both the number of clusters and the 
number of features to retain. 
 Our approach falls in the framework of wrapper 
approaches. It is similar in spirit to the one described in 
(Mitra et al. 2002), which uses an information compression 
measure to create clusters with highly similar features and 
selects a feature from each cluster. However we partition 
the data into clusters using the natural splitting created by 
the attribute values, similarly to the divide-and-conquer 
technique used in decision tree learning. As we use MDL, 
our approach may be traced back to the classical work by 
Quinlan and Rivest (1989). They use MDL to select the 
attributes that partition the dataset during the process of 
creating a decision tree, however in the presence of class 
labels. There are clustering approaches that use MDL for 
clustering model evaluation. These approaches differ in the 
specific MDL encoding scheme and in the way clusters are 
generated. In (Kontkanen et al. 2005) MDL is used to 
evaluate grouping of data items that can be compressed 
well together, so that the total code length over all data 
groups is optimized. Thus an efficient compression 
indicates underlying regularities that are common to all 
members of a group, which in turn may be used as an 
implicitly defined similarity metric for the purposes of 
clustering. In (Lai et al. 2009) a distance based clustering 
technique using MDL for evaluating clusters is proposed. 
Our approach also uses MDL for clustering model 
evaluation. It is based on a simple and efficient encoding 
scheme and creates clusters by using the divide-and-
conquer technique of decision tree learning.  

MDL-based clustering model evaluation 
Clustering may be seen as searching for patterns or finding 
regularity in data. We consider each possible clustering as 
a hypothesis H that describes (explains) the data D in terms 
of frequent patterns or regularities. Then we apply the 
MDL principle to evaluate the possible hypotheses. 
Formally, we have to compute the description length of the 
data L(D), the hypothesis L(H), and the data given the 
hypothesis L(D|H). The interpretation of L(H) and L(D) is 
the minimum number of bits needed to encode (or 
communicate) the hypothesis and the data respectively, 
while L(D|H) represents the number of bits needed to 
encode D if we already know H. The latter term makes a 
great deal of sense if we think of H as a pattern that repeats 
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in D
all its occurrences, rather we encode only the pattern itself 
and the differences that identify each individual instance in 
D. Thus the more regularity in data the shorter description 
length L(D|H). In addition, we have to balance this term 
with the description length of H itself, because it will 
greatly depend on the complexity of its pattern. For 
example, if H describes the data exactly (H includes a 
pattern for each data instance) then L(D|H) will be 0, but 
L(H) will be large, in fact equal to the description length of 
the data itself L(D). In terms of clustering this means a set 
of singleton clusters equivalent to the original data set. We 
can also put all data instances in one cluster. Then H will 
be empty and L(H)=0, but L(D|H) will include the code 
length of every single data instance thus making 
L(D|H)=L(D). This suggests that the best hypothesis 
should minimize the sum L(H)+L(D|H) (MDL principle), 
or alternatively maximize L(D)-L(H)-L(D|H) (information 
compression principle). 
 The key to applying MDL is to find an encoding scheme 
for the hypotheses and the data given the hypotheses. The 
encoding should be the same for both, because we are 
adding code lengths and want to keep the balance between 
them. One simple scheme used for this purpose is based on 
the assumption that hypotheses and data are uniformly 
distributed and the probability of occurrence of an item out 
of n alternatives is 1/n. Thus the minimum code length of 
the message informing us that a particular item has 
occurred is equal to log2 1/n = log2 n. To compute this, 
given a particular description language we need to count 
all possible hypotheses and data instances given each 
hypothesis. Hereafter we use the attribute-value 
description language with nominal attributes, which allows 
us to compute easily discrete probabilities and code length 
by using attribute-value pair counts. 
 Let us consider a data set D and a set T containing all 
(different) attribute-value pairs in D, i.e.                   , where 
X is a data instance (a set of attribute-values). We define 
the description language as all subsets of T. Let us also 
consider a clustering of the data into n clusters 
{C1,C2 Cn}. The hypothesis H producing this clustering 
is defined as a set of rules Ri, each one covering 
(explaining) the instances in cluster Ci and assigning to 
each of them cluster label i. Ri can be represented by the set 
Ti of all (different) attribute-value pairs that occur in the 
instances from cluster Ci: 

 Ri: If X Ti Then X Ci 

Assume that there are k different attribute-value pairs in the 
description language (k = |T|) and ki different attribute 
value pairs in each cluster Ci (ki = |Ti|). Then, representing 
the left-hand side of the rule is equivalent to selecting ki 
attribute-value pairs out of k possible. The number of 
choices for this selection is equal to the number of ki-

combinations of k elements. The right-hand side of the rule 
represents the selection of one out of n cluster labels. Thus 
the code length of each rule is 

 n
k

k
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i
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and the code length of the hypothesis H is 
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The description length of the data given the hypothesis 
L(D|H) is also a sum of the corresponding MDL terms 
applied to the rules: 
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To define L(Ci|Ri) we need to estimate the probability of 
occurrence of each instance X in Ci. Let |X| = m (the 
number of attributes in our language). Knowing Ri means 
that we know the set of attribute-value pairs Ti representing 
the rule (i.e. they have already been communicated). Then 
the occurrence of each X in Ci is equivalent of selecting m 
attribute-value pairs out of ki (ki = |Ti|). Thus the message 
about the occurrence of all data instances in Ci has the 
following description length: 
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The minimum description length of hypothesis H is 
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The function L(k,ki,m,n) computes the MDL of rule Ri, but 
the parameters k, ki, m, n are derived directly from the 
given clustering {C1,C2 Cn}. In fact, we introduced the 
hypothesis H and the rules Ri only to justify our encoding 
scheme. So, we may assume that this function actually 
computes the MDL of cluster Ci and the sum in (1) 
computes the MDL of the given clustering. 
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Illustrative Example 
 

1986) shown in Table 1. For the purposes of clustering we 
ignore the class (attribute play) and the ID attribute (used 
only to identify instances), which leaves four attributes 
(m=4) with 3, 3, 2, and 2 values each.  Thus we have a total 
of 10 attribute-value pairs (k=10). 
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ID outlook temp humidity windy play 
1 sunny hot high false no 
2 sunny hot high true no 
3 overcast hot high false yes 
4 rainy mild high false yes 
5 rainy cool normal false yes 
6 rainy cool normal true no 
7 overcast cool normal true yes 
8 sunny mild high false no 
9 sunny cool normal false yes 
10 rainy mild normal false yes 
11 sunny mild normal true yes 
12 overcast mild high true yes 
13 overcast hot normal false yes 
14 rainy mild high true no 

 Table 1.  

Let us compute MDL({C1,C2}), where C1 = {1, 2, 3, 4, 8, 
12, 14}  and C2 = {5, 6, 7,  9, 10, 11, 13}. These clusters 
are obtained by splitting the data by using the values of the 
humidity attribute  high in C1 and normal in C2. The sets 
of attribute-value pairs occurring in each cluster are: T1 = 
{outlook=sunny, outlook=overcast, outlook=rainy, 
temp=hot, temp=mild, humidity=high, windy=false, 
windy=true}, T2 = {outlook=sunny, outlook=overcast, 
outlook=rainy, temp=hot, temp=mild, temp=cool, 
humidity=normal, windy=false, windy=true}. Thus k1 = 
|T1| = 8 and k2 = |T2| = 9, k = 10, m = 4, and n = 2. Plugging 
these values in formula (2) gives: 
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Thus MDL({C1,C2})=102.55 bits. Also, MDL(C1) < 
MDL(C2), which shows that C1 exhibits more regularity 
than C2  as it has fewer number of attribute-value pairs. 
Similarly we evaluate the remaining attributes and rank 
them accordingly: temp  101.87, humidity  102.56, 
outlook  103.46, and windy  106.33. This ranking 
reflects the quality of clustering that each attribute 
produces and is a good measure of attribute relevance for 
clustering and classification.  

Efficient Implementation 
Algorithm 1 shows our implementation of MDL attribute 
ranking. The key to the efficiency of this algorithm is in 
the computation of   , the number of attribute values in 
cluster   . We compute it by using a set    for each 
value j of each attribute    , collecting the values of all 
attributes     (              ) so that the sum of the cardinalities 
of      over l  produces the value of    . Updating these sets     
is the basic computational step in the algorithm, which 
occurs       times for each instance. When implemented by a 
hash table, this step takes a constant time. Thus the overall 

time complexity of the algorithm is             , where n is the 
number of instances, and m is the number of attributes. Its 
space complexity is               , where p is the maximal num-
ber of values an attribute can take. 

 
1. Denote: 
 m = number of attributes. 
 ijx = the thj value of attribute iA . 

 }|{ XxXC ijij , where X  is a data instance. 

 in = the number of values of attribute iA . 

2. Let l
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5. Order attributes by )( iAMDL  
 
 Algorithm 1. MDL-Ranker 

The algorithm has two basic advantages  it is linear in the 
number of instances and incremental in terms of 
processing instances. Each data instance is processed only 
once (in step 3) and there is no need to store it after that. 
This eliminates the need of storing the entire data set in the 
memory and allows processing of very large data sets. Our 
Java implementation is able to process the trec data set (see 
Table 2) with 13195 attributes and 3204 instances in 3 
minutes on a 3GHz Intel-based PC. 

MDL-based Clustering 
Our hierarchical clustering algorithm (Algorithm 2) splits 
the data using the values of the top MDL ranked attribute 
and then applies recursively the same technique to the 
resulting clusters. At each split based on attribute A it 
computes the sum of the compression Comp(A) = L(D)-
L(H)-L(D|H) in the resulting subclusters. Starting from the 
root this sum initially increases at each split indicating an 
increase in the quality of the hypotheses describing the 
subclusters. If at some level of the tree the sum starts to 
decrease (indicating that no better clustering can be found) 
the algorithm forms a leaf of the clustering tree. 

l
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Function MDL-Cluster(D) 

1.  Choose attribute )(minarg ii AMDLA  

2.  Let A  take values nxxx ,...,, 21  

3.  Split data n

i iCD
1

, where }|{ XxXC ii  

4.  If n

i iCCompAComp
1

)()(  then stop. Return D. 

5.  For each ni ,...,1   Call MDL-Cluster(Ci) 

Algorithm 2. MDL-Cluster 

Experimental Evaluation 
We evaluate our algorithms on the data sets summarized in 
Table 2. The first four are text classification data, which 
are very sparse, have a larger number of attributes than 
instances, and also varying number of class labels. The 
reuters-2class and reuters-3class data sets are extracted 
from reuters by using the instances of the two and three 
largest classes. The rest of the data sets are popular 
benchmark data, which we downloaded from the Weka 
project website (Hall et al. 2009). We also use the Weka 
Data Mining system for discretization of the numeric 
attributes of the iris and ionosphere data sets, for 
information gain attribute ranking, and for the EM and k-
means clustering experiments. Java implementations of our 
algorithms along with all data sets are available at 
http://www.cs.ccsu.edu/~markov/DMWsoftware.zip. 

Data Set Instances Attributes Classes 
reuters 1504 2887 13 
reuters-3class 1146 2887 3 
reuters-2class 927 2887 2 
trec 3204 13195 6 
soybean 683 36 19 
soybean-small 47 36 4 
iris 150 5 3 
ionosphere 351 35 2 

 Table 2. Data sets used for evaluation 

Attribute Ranking 
In this experiment we compare the MDL ranking with one 
supervised (InfoGain) and two unsupervised ranking 
approaches. The first unsupervised approach is similar to 
the MDL approach  it evaluates the quality of clustering 
produced by splitting the data by the attribute values using 
the sum of squared errors. The second approach, called 
entropy reduction, is described in (Dash and Liu 2000). It 
evaluates each attribute by the reduction of the entropy in 
data when the attribute is removed. To compare the 
rankings we use the average precision measure known 
from information retrieval, which is defined as follows: 
 
  

   

where D is the set of all attributes and Dq  the set of 
relevant attributes. The set Dq contains the attributes 

the Naïve Bayes classifier with Linear-Forward-Selection 
search. The index of ri represents the rank of the attribute 
in the ranking produced by the algorithm that we evaluate. 
The results from this experiment are shown in Table 3. The 
MDL ranking outperforms the two unsupervised ranking 
algorithms and in some cases gets closer to the supervised 
InfoGain method. The latter is an additional advantage of 
MDL as it does not use the class information, which is 
essential for InfoGain. Thus the closeness to the InfoGain 
performance is an indication of the consistency of class 
labeling with the natural groupings of instances based only 
on attribute-value patterns 
and ionosphere have well separated classes).  

Data set | Dq | InfoGain MDL Error Entropy 
reuters 15 0.3183 0.1435 0.0642 0.0030 
reuters-3class 10 0.3948 0.1852 0.1257 0.0027 
reuters-2class 7 0.5016 0.2438 0.1788 0.3073 
trec 14 0.4890 0.2144 0.0637 0.0010 
soybean 16 0.6265 0.5606 0.3871 0.4152 
soybean-small 2 0.6428 0.3500 0.0913 0.1213 
iris 1 1.0000 1.0000 1.0000 0.3333 
ionosphere 9 0.6596 0.5041 0.2575 0.4252 

Table 3. Average precision of attribute ranking 

Clustering 
Table 4 shows the results from clustering the data sets by 
using the MDL-Cluster, EM and k-means algorithms. As 
all data sets are labeled we evaluate the accuracy of 
clustering by the classes-to-clusters measure used in the 
Weka system (Hall et al. 2009). It  comparison to the 

embership specified by the class attribute 
and is computed as the total number of majority labels in 
the leaves divided by the total number of instances. The 
Weka implementations of EM and k-means are used with 
the default settings for all parameters except for the 
number of clusters (set to the known number of classes) 
and the random number generator seed (three different 
seeds are used and the accuracy results are averaged).  

Data set 
EM k-Means MDL-Cluster 
Acc. 
(%) 

No. of 
Clusters 

Acc. 
(%) 

No. of  
Clusters 

Acc. 
(%) 

No. of     
Clusters 

reuters 43 6 31 13 59 12 
reuters-3class 58 3 48 3 73 7 
reuters-2class 71 2 61 2 90 7 
trec 26 6 29 6 44 11 
soybean  60 19 51 19 51 7 
soybean-small 100 4 91 4 83 4 
iris 95 3 69 3 96 3 
ionosphere  89 2 81 2 80 3 

 Table 4. Classes to clusters evaluation accuracies 
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Attribute Selection 
In this experiment we rank the attributes by using the 
MDL-Ranker and InfoGain algorithms and then run EM 
and k-means with decreasing number of attributes selected 
from the top of the ranked lists. By measuring the classes-
to-clusters accuracy we compare the performance of each 
one of the two clustering algorithms on the data sets with 
MDL ranked attributes and with InfoGain ranked 
attributes. Some of the results are shown in Figures 1 4. 
Due to lack of space we include only the results from the 
large text data sets and one graph with EM results as they 
are similar to those from k-means. 
 
 
 
 
 
 
 

Figure 1. EM accuracy with reuters data 
 
 
 
 
 
 
 

Figure 2. k-means accuracy with reuters data 
 
 
 
 
 
 
 
 

Figure 3. k-means accuracy with reuters-3class data 
 
 
 
 
 
 
 
 
   Figure 4. k-means accuracy with trec data 

Conclusion 
In this paper, we introduced an MDL-based  measure that 
evaluates clustering quality and presented algorithms that 
use this measure for unsupervised attribute ranking and 
clustering. We evaluated the MDL clustering algorithm on 

benchmark data and showed that it outperforms the EM 
and k-means algorithms on most of them. The experiments 
with attribute selection showed that the MDL-based 
ranking without class information performs closely to the 
InfoGain method, which essentially uses class information. 
Thus, our approach can improve the performance of 
clustering algorithms in purely unsupervised setting.  
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