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Abstract

Similar to Bayesian networks, so-called OCF-networks com-
bine structural information encoded in a directed graph with
qualitative information expressed by ranking degrees of (condi-
tional) formulas. The benefits of such techniques are twofold:
First, the high complexity of the semantical ranking functions
approach is reduced substantially, and second, global ranks
are obtained from local information. However, in many prac-
tical applications, even the local rankings are only available
in parts, or not exactly in the format that is needed. In this
paper, we apply inductive reasoning methods like system Z "
or c-representations, to fill up missing values in the local con-
ditional tables. This allows the user to specify knowledge for
such OCF-networks in its most appropriate and reliable form
and leave the technical details to an inference engine.

1 Introduction

Uncertain and defeasible reasoning is often crucially based
on appropriate semantical frameworks like, e.g., probability
theory that allow for a rich and meaningful representation
of the problem domain under consideration while leaving
enough semantical room for handling exceptions and non-
monotonic phenomena. One of these frameworks is provided
by the theory of ordinal conditional functions (OCF) (Spohn
2012), also called ranking functions, that assign a degree
of disbelief to any possible world, Ranking functions have
become increasingly popular within the last decade, as they
are basically qualitative and more easily understandable than
probabilities but share some nice features with probabilities.
Most importantly, they provide proper interpretations for
(meaningful, non-material) conditionals (B|A) — If A then
plausibly B encoding a plausible relationship between their
antecedents A and consequents B.

However, the drawback of most semantical approaches
is their high complexity as query answering and inference
procedures have to take (basically) all models into account.
To make local computations considering only a subset of
all variables possible, graphical structures like Bayesian net-
works (Pearl 1989) have proved extremely useful. Usually,
they come along with a causal interpretation considering the
parents of a variable as its (common) causes. For OCFs, a
similar type of networks has been proposed in (Goldszmidt
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and Pearl 1996; Benferhat and Tabia 2010). In these ap-
proaches, analogous to Bayesian networks, OCFs are factor-
ized according to the structure of a graph, and local ranking
tables involving only a few nodes serve to construct a global
ranking function. Still, as in Bayesian networks, the local
ranking tables need full information of how plausible a literal
is given all configurations of the parents of the respective
variable. In many cases, only partial information is available
here, typically, the user is only aware of the plausibility of
a variable given each cause separately and cannot say much
about cases when some configuration of causes is present.
To fill up information, often external combination rules like
naive Bayes (Castillo, Gutiérrez, and Hadi 1997) are applied
which, however, do not take the semantical structure of the
problem under consideration into account.

In this paper, we propose methods to combine partial rank-
ing information in an intensional way in order to come up
with full local ranking tables so that the OCF-network and
hence the induced global ranking function can be completely
specified. The basic idea is to apply inductive conditional
reasoning mechanisms like system Z+ (Goldszmidt and Pearl
1991) and c-representations (Kern-Isberner 2004) locally to
find appropriate (complete) rankings for the respective sub-
graph, i.e., a node and its parents, and extract from this
semantical information the missing values in the local ta-
ble of the child node. Similar approaches have been pre-
sented for Bayesian networks by making use of the princi-
ple of maximum entropy (Lukasiewicz 2000; Paris 2005;
Schramm and Fronhofer 2005). Indeed, the maximum en-
tropy distribution is a probabilistic c-representation for the
given knowledge base (Kern-Isberner 2004), and for the OCF
framework, inferences based on c-representations have also
proved to satisfy all major properties of nonmonotonic rea-
soning (Kern-Isberner 2001). Therefore, we employ high
quality semantical methods to exploit the given partial infor-
mation in an optimal way.

The rest of this paper is organized as follows: After short
preliminaries in section 2 we recall ranking functions in sec-
tion 3. Then, in section 4, we introduce the systems to be used
for inductive conditional reasoning, namely System Z* and
c-representations. In section 5 we elaborate on the concept of
networks for ranking functions. We discuss why local ranks
may not be available in the needed format for all vertices in
the network and show how to solve this problem with the



presented approaches in section 6. Finally, we conclude in
section 7.

2 Preliminaries

Let 3 = {Vi,...,V,} be a set of propositional atoms with
domains dom(V;) = {v;,v;} representing V; in its positive
resp. negated form for every V; € 3; for a specific outcome
of V;, we write v; € {v;,7;}. A literal is a positive or
negative atom. The set of formulas £ over X joined with the
symbols for tautology (T) and contradiction (L), with the
connectives A (and), V (or) and — (not) shall be defined in the
usual way. For A, B € £, we will usually omit the connective
A and write AB instead of AA B as well as indicate negation
by overlining, i.e., A means =A. The symbol = is used
for the material implication, i.e., A = B is semantically
equivalent to A V B.

Interpretations, or possible worlds, are also defined in
the usual way; the set of all possible worlds is denoted by
2. We often use the 1-1 association between worlds and
complete conjunctions, i.e., conjunctions of literals where
every variable V; € X appears exactly once.

A model w of a propositional formula A € £ is a possible
world that satisfies A, written as w = A. The set of all models
of A is denoted by Mod(A). A formula A is consistent if
Mod(A) # @. For formulas A, B € £, A entails B, written
as A |= B, iff Mod(A) C Mod(B), i.e., iff for all w € (2,
w = Aimplies w |= B. For sets of formulas .4 C £ we have
Mod(A) = (g Mod(A).

A conditional (B|A) with A,B € £ encodes a
defeasible rule “if A then wusually B” with the triva-
lent evaluation [(B|A)]. true iff wE AB (ver-
ification), [(B|A)]. = false iff w = AB (falsification)
and [(B|A)]., = undefined iff w = A (non-applicability)
(De Finetti 1974; Kern-Isberner 2001). The language
of all conditionals over £ is denoted by (£] £). Let
A ={(B1|A1),...,(BplAn)} C (£] £) be a finite set of
conditionals. A conditional (B|A) is rolerated by A iff there
isaworldw € Qsuchthatw = ABandw = A; = B;
forevery 1 < i < n. A is consistent iff for every nonempty
subset A’ C A there is a conditional (B|A) € A’ that is tol-
erated by A’ (Goldszmidt and Pearl 1996). We will call such
a consistent A a knowledge base and it shall represent the
knowledge an agent uses as a base for reasoning. Note that
the consistency of A implies that all propositional formulas
occurring in A are consistent.

3 Ranking Functions (OCF)

An ordinal conditional function (OCF, (Spohn 2012)), also
called ranking function, is a function x : {1 — Ng° with
k~1(0) # @ which maps each world w € Q to a de-
gree of implausibility k(w), i.e., if for two possible worlds
w,w’ € it holds that k(w) < k(w’) then w’ is believed
to be less plausible than w. Ranks of formulas A € £ are
calculated as k(A) = min {k(w) |w = A}. For conditionals
(B|A) arank is defined via x(B|A) = k(AB) — k(A), and
k = (B|A) if and only if K(AB) < k(AB), i.e., iff AB is
more plausible than AB. If x = (B|A) we call « a (ranking)
model of (B|A).
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Figure 1: OCF admissible to the penguin example given as
worlds stacked by their plausibility and in tabular form.

The OCF approach is an “order of magnitude abstraction of
probabilities” (Goldszmidt and Pearl 1996, §1) that provides
full semantics for conditionals. It does not rely on extensional
combination rules of values from a fixed scale of certainty
degrees, like, e.g., (Osseiran 2001).

Definition 1 (Admissibility of ranking functions) A rank-
ing function k is A-admissible iff k= (B|A) for all
(BJA) € A.

Figure 1 is an example for an OCF which is admissible
to the knowledge base A = {(f|b), (f|p), (b|p)}, the well-
known penguin-example encoding the rules “birds usually
fly”, “penguins usually do not fly” and “penguins usually
are birds”.

Definition 2 (Firmness) A formula A is believed in an OCF
k with firmness m, m € N,m > 1, (Spohn 2012), in sym-
bols k = A[m), iff k(A) > m, the same applies for con-
ditionals: a conditional (B|A) is believed with firmness m
(r |= (BlA)[m]), iff x(B|A) = m.

So (BJA) is believed in & iff k(B|A) < x(B|A), hence
if K(AB) < k(AB) and, following the above definition,
believed with firmness m if K(AB) + m < k(AB).

Note that « = A[m] iff k | (A|T)[m], so (plausible)
formulas can be considered as a special case of conditionals.
Hence, we will focus on conditional knowledge bases in this
paper, keeping in mind that such knowledge bases may also
contain plausible propositions. Moreover, we presuppose
m > 1 in this paper since x = (B|A)[m] should imply in
particular k |= (B|A). Nevertheless, the case m = 0 is
interesting but requires further considerations as we might
have K(AB) = k(AB), or k |= (B|A). In order to keep the
technical details as clear and simple as possible, we leave the
case m = 0 for future work.

A ranking function is admissible with respect to a knowl-
edge base R = {(B1|A1)[mi], ..., (Bn|A4,)[my,]} of con-
ditionals annotated with a firmness values (k = R) iff
k = (B|A)[m)] for every (B;|A;)[m;] € R.

For the networks to be considered in this paper, we will
need a notion of independence regarding ranking functions.
We recall the results of (Spohn 2012) on this behalf.

Let A,B,C be disjoint sets of variables. A is k-
independent of B given C, written A, B|C iff
k(ablc) = k(alc) + k(b|c) — which is equivalet to pos-
tulating x(a|bc) = k(alc) — for all complete conjunctions
a,b,c built over A,B,C, resp. For notational convenience,




we will also write, e.g., x(A|B) in equations holding for all
complete conjunctions a, b built over sets of variables A, B.

4 Inductive conditional reasoning

Let R = {(B1]A1)[m1],...,(Bn|A4y)[my,]} be an anno-
tated knowledge base. Taking all admissible ranking func-
tions into account yields quite a weak inference from R. A
popular approach to obtain informative inferences from R is
realised by selecting a “best” ranking model of R that can be
used for further inferences.

In the following, we recall two approaches to obtain such a
“best” ranking function for inductive model-based inference,
namely System Z+ and c-representations.

A well known approach to compute a ranking
function given a firmness-annotated knowledge base
R = {(Bi|A)[mu], ..., (BalAn)[my]} is System Z*
(Goldszmidt and Pearl 1991). Different from System Z
(Pearl 1990), no layer model of conditionals is calculated
but the conditional’s firmness is taken into account when
computing a conditional’s Z-value in an iterated process.
We start by determining the set of conditionals Ay which
are tolerated by the whole knowledge base. According to
section 2, A consists of all conditionals (B|A)[m] € A
with the property that there is a world w such that w = AB
and w = (A; = B;) for each (B;|A;)[m] € R These
conditionals get a Z-value identically to their firmness, i.e.,
Z(B;|A;) = m, for all (B;|A;) € Ag. We set up a set
RZ to RZ = Ap. In the iteration step we start with an
index variable j = O set up a set of worlds {2; which solely
falsify conditionals in /R Z and verify at least one conditional
outside of RZ. These worlds get a temporally Z-value
assigned which is

ky(w)= max {Z(B;|A;)|lw = A;B;} + 1.

(Bi|Ai)ERZ
From ; we take a world w* with the smallest x7-
value, that is, a world w* such that w* is a world with
Ky(w*) = min,eq, {ky(w)}. Conditionals (B;|4;) ¢ RZ
which are verified by the world w* are given a Z-value
of Z(B;|A;) = k% (w*) +m; and added to RZ, j is incre-
mented and the iteration starts again until RZ = A.

If the original knowledge base R is consistent we will
find a world w with w | AB for every conditional
(B|A)[m] € R. This world either does not falsify any condi-
tional (B;|A;)[m] € R, then (B|A) is an element of A, or
there is a conditional (D|C)[n] € R withw = C'D, but then,
w is chosen as one of the worlds €2, at a time after (D|C')
was added to RZ.

By this we get an associated Z-value Z(B;|A;) for all the
conditionals in R and from these values we obtain a ranking
function kz which is defined as

{ 0 iff w does not falsify any (B;|4;)

max {Z(B;|A;)} otherwise.
wi=(AiBi)
Note that, differently from the original approach (Gold-
szmidt and Pearl 1991), for v [ (B|A)[m] we re-
quire K(AB) +m < k(AB), but presuppose m > 0 and

ey

Kz(w)
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Table 1: Ranking function x{ obtained with minimal c-
representation and (without explicit demonstration of the
algorithm) SystemZ™ for the penguin-example.

W

b
KRw)| 31 6 3 0 1 0
kzw)| 4 1 7 7 0 1 0

therefore set £ z(w) = max 4 5,){Z(Bi|A;)} instead of
kz(w) = maxw#(AiE){Z(B”Ai)} + 1.

The framework of c-representations (Kern-Isberner 2001)
generates ranking functions g for knowledge bases R that
are R-admissible and are based on the conditionals in the
knowledge base and their structure, solely. In this section,
we will recall this approach briefly.

Definition 3 (c-Representation)

A c-representation (Kern-Isberner 2001) of a knowledge
base R = {(B1|A1)[ma], ..., (Bn|An)[mu]} is defined as
an OCF of the form

KR (W) k; € Ng

i:17 UJ‘:AZEI'

where the values r; are penalty points for falsifying condi-
tionals and have to be chosen to make k%, R-admissible, i.e.
forall 1 <i < nit holds that K |= (B;|A;)[m;] which is
the case iff (Kern-Isberner 2004), (cf. definition 2):

K K
7 A —min % / )
wEA;B; |wEA;B,;

A minimal c-representation is obtained by choosing k;
minimally for all 1 < i < n. Note that there may be several
different (minimal) c-representations for a knowledge base.

i#]

K; >m; + min
w\:AjEj

wl=A;B;

Example 1 (c-represented penguins) We use the penguin
example to illustrate how this framework works, so let

R ={(f[D)[1], (f [p)[2], (blp)[2]}. For the & values of a
c-representation we get, according to inequality (2),

k1 > 1+ min{k,,0} — min{0} =1
Ky > 2+ min{k; , ks } — min{0}

Kg > 2+ min{k; , ks } — min{0}

=2+ min{k] , k3 }

=2+ min{x; , K, }.

This leads to a minimal c-representation for A with k] =1,

Ky = K = 3 and the resulting ranking function k{ shown
in table 1.

5 OCF Networks

In this section, we elaborate on the concept of networks for
OCeFs. First approaches that make crucial use of the idea of
causality have been presented in (Goldszmidt and Pearl 1996;
Benferhat and Tabia 2010). However, like in Bayesian net-
works, causal interpretations are not mandatory for such



networks although they support appropriate modellings of
the problem domain. More importantly, it is the idea of con-
ditional independence that provides the basis for factorizing
OCFs, i.e., for local representations of global ranking func-
tions. So, we prefer to develop the approach of OCF networks
in full analogy to Bayesian networks (as far as possible), mak-
ing assumptions underlying the works (Goldszmidt and Pearl
1996; Benferhat and Tabia 2010) explicit.

Let ' = (V,€) be a directed, acyclic graph (DAG)
with a set of vertices V {V1,...,V,} and a set
of edges £ C V x V. We define the parents of a
vertex V, pa(V'), as the direct predecessors of V (i.e.,
pa(V) ={V'|(V',V) € £}) and the descendants of V,
desc(V), as the set of vertices V’ for which a path from
V to V' exists in €. The set of non-descendants of V is
nd(V) =V \ (desc(V)U{V}Upa(V)).

To connect a DAG with ranking information we define an
OCF-Network as follows:

Definition 4 (OCF-Network) A directed, acyclic graph
I'=(%,&,{kv}ves) over a set of propositional atoms %
is an OCF-network if each vertex V' € X is annotated with
a table of local rankings rv (V|pa(V')) with (local) rank-
ing values specified for every configuration of V and pa(V'),
such that ming {k(0|pa(V'))} = 0 for every configuration of
pa(V'). The local rankings must be normalized, i.e.,

min ) wy (V(w)[pa(V)(w))

Vex

=0, 3

where V(w) resp. pa(V)(w) indicates the outcome
v € dom(V') with w |= v resp. the configuration p of the
variables in pa(V') with w |= p.

The local ranking information in I" can be used to define
a global ranking function s over X by applying the idea
of stratification (Goldszmidt and Pearl 1996): A ranking
function « is stratified relative to an OCF-network I" iff

r(w) =Y wv(V(w)pa(V)w)),

vex

“

for every world w. With this stratifiction, given the tables
of local rankings, we can generate a stratified OCF by for-
mula (4). Condition (3) ensures that ~ is indeed an OCF.

Example 2 As an illustration we use the penguin example
already presented in example 1 with a graph set up ac-
cording to (Goldszmidt and Pearl 1996) and local condi-
tional ranking values calculated as conditional ranks from
the ranking function given in example 1 shown in figure 2,
i.e, kp(B|P) k(B|P), kp(F|BP) k(F|BP) and
kp(P) = k(P).

Conversely, given a DAG T" with vertices 3 and an OCF &
over X such that each vertex V' € X is xk-independent of its
non-descendants given its parents, we obtain a stratification
of « relative to I'. This is stated in the following proposition;
the proof is straightforward.
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B|P | rp(B|P) F|PB | rr(F|PB)
blp 0 flop 2
blp 2 e flop 0
blp 0 flop 0
bp 0 flop 0
P | kp(P) flbp 3
Er—— bp 0

@ olf:

A 1| o
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Figure 2: Network of the penguin-example.

Proposition 1 Let ¥ be a propositional alphabet and
I' =(%,&) beaDAG. Let ¥ = {V1,...,V,,} be enumerated
such that for each V; € ¥ we have pa(V;) C {V4,...,Vi_1}.
Let k be an OCF over 3 such that V L, nd(V') | pa(V') for
all V€ X. Then it holds that

n

> wVilpa(V)).

i=1

K(Vl,...,vn) (5)

Hence, a ranking function that implements the conditional
independence assumptions of a network I" can be stratified
relative to I

Note that OCF-networks differ from Ceteris-Paribus-
Networks (Boutilier et al. 2004), since there is no notion
of stratification in CP-networks.

6 Intensional Combination

OCF networks and stratifications are most valuable concepts
for practical applications of the ranking framework as they
help to cut down the complexity of full semantical infor-
mation. However, one often has also to struggle with the
problem of incomplete information, i.e., only some (condi-
tional) relationships between variables can be expressed with
sufficient reliability. Typically, experts are quite certain about
stating relationships between variables and each of its causes,
or between variables and special configurations of its parents.
In these cases we first have to fill in missing values in the lo-
cal ranking tables by somehow exploiting the partial explicit
information before being able to apply the OCF networks
approach.

Hence we aim at calculating the local table of ranking
values v (V|pa(V')) exploiting the available knowledge as
well as possible and use inductive inference mechanisms like
c-representations and System Z* on local knowledge. From
these local ranking functions, we can easily read the missing
tabular values for V" and fill up the complete local tables. In
this way, given values are combined in an intensional way,
i.e., based on local semantical information, as opposed to
using extensional combination functions like min or noisy-or.

More precisely, the procedure for filling in missing values
in the ranking tables is as follows:

Let a DAG T' = (X, &) over X be given, and for each
V € %, let Ry be a local conditional knowledge base con-
taining statements of the form (0| A)[m] where A is a formula
involving only the parents of V. For example, R might have
the form Ry = {(0|0;)[my,]|Vi € pa(V)}.



In cases where Ry is not a complete conditional ranking
table, do the following:

1. Consider Ry
Y ={V}Upa(V).
2. Compute an OCF ky over ¥’ from Ry by using an in-

ductive conditional reasoning method, like system Z+ or
c-representations (cf. section 4).

as a knowledge Dbase over

3. Compute from ~y complete ranking tables ry (V|pa(V))
for every configuration of V" and pa (V).

If System Z™ or c-representations are used to complete local
tables, then it can be shown that (3, £, {kv }vex) is an OCF-
network.

Example 3 As an illustration, we modify an example from
(Goldszmidt and Pearl 1996, Benferhat and Tabia 2010): A
car starts (S = s) if the battery is charged (B = b) and
the fuel tank is full (F = f). If either the battery is dis-
charged (B = b) or the fuel tank is empty (F = f), the
car does not start (S = 3); additionally, if, for some rea-
son, the headlights have been left on overnight (H = h),
the battery is discharged. We assume to know that it is very
implausible to have left the headlights on (kg (h) = 15)
and usually the tank is not empty (kp(f) = 10). We also
know that if the headlights have been left on, the battery
is plausibly discharged (kg (b|h) 4) but if the head-
lights have been switched off, the battery usually is charged
(kp(blh) = 8). Unfortunately, we do not know the ranking
values at vertex S. However, we know it is very implausible
Sfor a car with an empty battery to start, i.e. kg(s|b) =12,
and even less plausible that a car without any fuel will start,
i.e. ks(s|f) = 15, so the knowledge base of our concern is
Rs = {r1 = (5b)[12],r2 = (5|f)[15]}. The OCF network
to this situation is shown in figure 3. In this situation, we
search for a local ranking function on S, B, F' from which
we can obtain the missing ranks of vertex S given all its
parents. This can be achieved by using inductive conditional
reasoning, i.e., by applying the methods presented in sec. 4.

First, we apply System Z. We compute the partition A
of tolerated conditionals for the approach of System Z+ and
we find that all conditionals belong to Ay. Therefore we can
assign to each conditional the Z-value of its firmness in R
and get Z(r1) = 12 and Z(ry) = 15. We then set up a table
indicating verification/falsification of the conditionals in R g
for each configuration of the local variables B, F' and S, and
associate with them the ranks according to equation (1). So
we obtain the local OCF k%(BF'S) shown in table 2.

With the verification/falsification rows of tablee 2 we
can set up the inequations needed to calculate the c-
representation of the knowledge base according to equa-
tion (2). Here we obtain

k1 > 12+ min{0, k5 } — min{0, x5 } =12

Ky > 15+ min{0, k] } — min{0,x] } =15
and in this way the minimal c-representation kS (BF'S) given
in the rightmost column of table 2.

We notice that here by using the minimal c-representation
we are able to distinguish between the configurations b f s
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H ‘ KH(H)

h 15

h 0
B|H | kp(B|H)
blh 4
blh 0
blh 0
B 8

Figure 3: Problem description of the car example: local
ranking values kg(S|BF) for S are unknown but partial
information on the rankings of S is given according to Rg.

Table 2: Verification/falsification behaviour of configura-
tions given the local car start knowledge base Rg and lo-
cal ranks calculated using System ZT (I{g ) and minimal
c-representation (k).

BFS  verifies  falsifies kZ(BFS) rk%(BFS)
bfs — — 0 0
bfs — — 0 0
bfs — o 15 15
bfs o — 0 0
bfs — ry 12 12
bf3 r1 — 0 0
bfs — r1,72 15 27
5?? 71,72 — 0 0

and b f s whereas this is not the case if we use the values
calculated with System Z.

For these values we set up the local condi-
tional ranking values for S|BF by calculating
KZ(5|bf) = kZ(3bf) — KZ(bf) for the System Z* approach
and K5 (8|bf) = kG ($bf) — kG (bf) using c-representations,
respectively, which we list in figure 4. Note that in this ex-
ample we have coincidentally k% (bf) = 0 and k%(bf) = 0.
With these local ranking tables we can construct the two
(global) ranking functions k7 (with System Z") and k. (with
c-representations) by means of stratification given in table 3.

In general, c-representations process conditional depen-
dencies more accurately, as can be seen from table 2 when
comparing the respective values for b f s. This leads to locally
establishing the conditionals (b|fs) for the c-representations
but not for System Z7. In the global picture, the difference
becomes even more apparent when considering the condi-
tionals (b|hf s) —if the fuel tank is empty and the headlights
have been left on but the car starts, is it plausible that the bat-
tery is charged? Obviously yes, but only the c-representation
approves this, i.e., . = (b|hfs) while System ZT plainly
rejects this by k7 = (b|hfs).

In the following, as an add-on, we will verify whether
the conditional ranks specified in the local ranking tables
also hold for the global functions k7 and x.. We do this
exemplarily for the “expert knowledge” R used for the



H ‘ KH(H)

h 15

h 0
B|H \ kp(B|H)
blh 4
blh 0
blh 0
Wk 8

S|BE |w4(S|BF) |5 (| BF) |S|BF |sZ(S|BF) | (5| BF)
sl f 0 0 slb f 12 12
sbf 0 0 spf 0 0
s\bi 15 15 s\éi 27 15
sbf 0 0 sbf 0 0

Figure 4: Solution for the car starting example with local
OCF at S calculated with c-representations and System Z™.

Table 3: Ranking functions xz based on System Z* and x..
based on c-representations obtained through stratification for
the car-starting-example.

w |hbfs|hbf5|hbfs|hbf3s|hbfs|hbfs|hbfs|hbfs
kz@)| 19 | 19 | 44 | 29 | 27 | 15 | 40 | 25
ke(w)| 19 | 19 | 44 | 29 | 27 | 15 | 52 | 25

w |hbfs|hbf5hbfs|hbf3s|hbfs|hbfs|hbfs|hbfs
kz(w)| 0 0 | 25 | 10 | 20 | 8 | 33 | 18
re(w)| 0 0 | 25 | 10 | 20 | 8 | 45 | 18

generation of the local ranks.

kz(s|b) = k(bs) — k(b)) =12 -0 =12 > 12
kz(s|f) =k(fs) —r(f)=15-0=15> 15
ke(s|b) = k(bs) — k(D) =12 —0 =12 > 12
ke(s|f) = k(fs) —k(f) =15—-0=15>15

So in this example, global conditional rankings coincide
with the locally specified ranks.

7 Conclusion

In this paper, we showed that for OCF networks with missing
local ranking values inductive reasoning approaches like Sys-
tem ZT as well as c-representations are capable of generating
complete local ranking tables. This helps us accomplishing
the goal to allow the user of an OCF network based system to
specify her knowledge in an appropriate way and still rely on
network techniques, leaving the technical details regarding
local tables to the mentioned inference mechanisms. As part
of our ongoing work, we explore these ideas for efficient
implementations of OCF based knowledge representation.
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