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Abstract

We present a new approach to reasoning about the outcome
of an argumentation framework, where an agent’s reasoning
with a framework and semantics is represented by an infer-
ence relation defined over a logical labeling language. We
first study a monotonic type of inference which is, in a sense,
more general than an acceptance function, but equally expres-
sive. In order to overcome the limitations of this expressive-
ness, we study a non-monotonic type of inference which al-
lows counterfactual inferences. We precisely characterize the
classes of frameworks distinguishable by the non-monotonic
inference relation for the admissible semantics.

1 Introduction
An argumentation framework (Dung 1995) (or framework,
for short) consists of a set of arguments, whose content may
be left unspecified, together with an attack relation encoding
conflict between arguments. Given a framework, a semantics
specifies which sets of arguments (called extensions) are ra-
tionally acceptable. This formalism captures many different
types of reasoning considered in the area of AI.

In many applications, a framework somehow represents
(part of) an agent’s belief state. Beliefs are then formed on
the basis of acceptable sets of arguments. For example, a
‘grounded reasoner’ forms beliefs on the basis of the frame-
work’s grounded extension, a ‘preferred reasoner’ on the ba-
sis of the preferred extensions, and so on. There is a problem
with this account, however. We demonstrate this using the
frameworks shown in figure 1. The problem is that, under
the admissible semantics, F3, F4, F5 and F6 have the same
set of extensions. Even worse, under most other semantics,
they all have the same set of extensions. Thus, the beliefs of
an agent whose belief state consists of one of them are equiv-
alent to the beliefs of an agent whose belief state consists of
any of the other ones. Despite the obvious differences, the
six frameworks are equivalent, in this sense.

A more appropriate notion of equivalence is strong equiv-
alence (Oikarinen and Woltran 2011). Given a semantics,
two frameworks are said to be strongly equivalent if their ex-
tensions are the same given every possible addition of new
arguments and attacks. Indeed, strong equivalence allows us
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Figure 1: Six argumentation frameworks

to see that the six frameworks in figure 1 are different. But
still, it leaves open the question of how to form beliefs on
the basis of a framework, so that different frameworks can
be meaningfully distinguished, even if their extensions are
the same. This is the problem we address in this paper.

To solve this we propose a new approach to reasoning
about the outcome of a framework. The basis is a logical la-
beling language, where formulas assign labels (in, out, un-
decided) to arguments (Caminada 2006). A framework F
(given a semantics s) then corresponds to one of two types
of inference relations |−Fs or |∼Fs , defined over the label-
ing language. Each of them represents a particular type of
reasoning that an agent may perform, where φ |−Fs ψ (or
φ |∼Fs ψ) means that from φ, together with the knowledge
encoded by F under the semantics s, the agent infers ψ. In
contrast with the first type, which is monotonic, the sec-
ond type is non-monotonic and embodies a counterfactual
mode of inference. That is, it gives useful conclusions, even
if the premise is normally false, e.g., stating that a is re-
jected, while a is always accepted. We show that with this
type of inference we can distinguish different frameworks in
a meaningful way, even if their extensions are the same. A
possible application of our theory is in dialogues where, for
example, agents must reason about about their framework,
in order to decide how to persuade an opponent.

The outline of this paper is as follows. After presenting
the necessary basics in section 2, we present in section 3 the
logical labeling language, characterize a number of seman-
tics in this language, and present a first type of (monotonic)
inference relation. We then discuss the limitations of this re-
lation, which are addressed in section 5, where we present
our second, non-monotonic type of inference. Before con-
cluding, we discuss in section 6 some properties and give
a precise characterization of the expressiveness of the non-
monotonic admissible inference relation.
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2 Preliminaries
An argumentation framework (or framework, for short) con-
sists of a set of arguments and an attack relation between
arguments (Dung 1995). Formally:

Definition 1 A framework F is a pair (AF , RF ) where AF
is a set of arguments andRF ⊆ AF×AF an attack relation.
If (x, y) ∈ RF , we say that x attacks y.

We assume that for every F , AF is a finite subset of a
fixed set U of arguments and denote the set of all frame-
works by F . The attack relation encodes conflict between
arguments: if x attacks y then they cannot be accepted to-
gether. The direction of the attack, that need not be symmet-
ric, gives rise to a ‘dialectical arrangement’ of the arguments
involved. That is, if x attacks y then x ‘opposes’ or ‘argues
against’ y, while y does not necessarily argue against x. The
goal is to select sets of arguments, called extensions, that are
rationally acceptable. A semantics embodies a set of condi-
tions that an extension must satisfy. The most studied ones
are defined as follows:

Definition 2 Let F be a framework. An extension of F is a
set E ⊆ AF . We say that E is conflict-free iff @x, y ∈ E
s.t. (x, y) ∈ RF . An argument x ∈ AF is defended by E iff
∀(y, x) ∈ RF , ∃z ∈ E s.t. (z, y) ∈ RF . Given an extension
E, we define Def(E) by Def(E) = {x ∈ AF |E defends x}.
An extension E ⊆ AF is said to be:

• admissible iff E is conflict free and E ⊆ Def(E).

• complete iff E is conflict free and E = Def(E).

• stable iff E is admissible and ∀x ∈ AF \ E, ∃y ∈ E s.t.
(y, x) ∈ RF .

• preferred iff E is maximal (w.r.t. set inclusion) among the
set of admissible labelings of F .

• grounded iff E is minimal (w.r.t. set inclusion) among the
set of complete labelings of F .

A semantics is usually captured by an acceptance func-
tion, that takes as input a framework and returns a set of
extensions:

Definition 3 An acceptance function is a function Es : F →
22

U
, where s ∈ {Ad,Co, St, Pr,Gr} is called the seman-

tics of Es. An acceptance function Es satisfies the condition
∀E ∈ Es(F ), E ⊆ AF . For s ∈ {Ad,Co, St, Pr,Gr},
Es(F ) is defined to return the set of all admissible, complete,
etc. extensions of F .

Given a framework F , semantics s and argument x ∈ AF ,
two types of inference are usually considered. The first is
skeptical acceptance, which amounts to checking whether
all s-extensions include x; and the second is credulous ac-
ceptance, which amounts to checking whether at least one s-
extension includes x. The result Es(F ) is always non-empty
and may contain more than one extension, with two excep-
tions: EGr(F ) always returns a single extension (which is
equivalent to the set of arguments skeptically accepted un-
der the complete semantics) and ESt(F ) may be empty.

3 Monotonic inference for argumentation
In this section we present a number of inference relations
that characterize the different argumentation semantics men-
tioned in the previous section. Given a finite set of arguments
A ⊆ U , the languageLA is generated by the following BNF:
(where x ∈ A).

φ := inx | outx | ux | ¬φ | φ ∨ φ

Here, inx means that the argument x is accepted, outx
that it is rejected, and ux that it is undecided—that is, neither
rejected nor accepted. We also use the connectives ∧,→,↔
defined, as usual, in terms of ¬ and ∨, and the symbols
⊥,> for contradiction and tautology. A model over LA
is a triple m = (Im, Om, Um) with Im, Om, Um ⊆ A,
Im∪Om∪Um = A and Im∩Om = Im∩Um = Um∩Om =
∅. We denote the set of all models over LA by MA. What
we call a model is often called a labeling in the labeling-
based semantics (Caminada 2006). Like in labeling-based
semantics, we say that arguments in Im, Om and Um are,
respectively, (labeled) in and out and undecided in m. How-
ever, in line with the more classical formalization we have in
mind, we call m model rather than a labeling. Interpretation
is defined as follows:

Definition 4 The satisfaction relation |=⊆MA×LA is de-
fined by: m |= inx iff x ∈ Im; m |= outx iff x ∈ Om;
m |= ux iff x ∈ Um; m |= φ ∨ ψ iff m |= φ or m |= ψ; and
m |= ¬φ iff m 6|= φ.

As usual, we define [φ] by [φ] = {m | m |= φ}, write
φ |= ψ if and only if [φ] ⊆ [ψ] and |= φ if and only if m |=
φ for all m in MA. We first define four special formulas
that characterize, given a framework F , the conditions of
conflict-freeness, admissibility, completeness and stability:

Definition 5 Given a framework F , we define:
• the attack restriction αF by αF = ∧(y,x)∈RF

α(x, y),
where α(x, y) is defined by α(x, y) = (iny → outx) ∧
(inx → outy).

• the admissible restriction βF by βF = ∧x∈AF
βF (x),

where βF (x) is defined by βF (x) = outx →
(∨(y,x)∈RF

iny).
• the complete restriction γF by γF = ∧x∈AF

γF (x), where
γF (x) is defined by γF (x) = (∧(y,x)∈RF

outy)→ inx.
• the stable restriction σF by σF = ∧x∈AF

σ(x), where
σ(x) is defined by σ(x) = inx ∨ outx.

In an attack restriction, α(x, y) states that if y (resp. x) is
labeled in, then x (resp. y) is labeled out. In an admissibility
or completeness restriction, βF (x) says that if we reject x,
we must do so for a reason (i.e., x must have an in-labeled
attacker); and γF (x) says that if we have no reason not to ac-
cept x (i.e., all attackers are out) then we must accept it. No-
tice that the reverse conditions of those expressed by βF (x)
and γF (x) are already implied by αF . Finally, σ(x) simply
states that x is either in or out. We have the following corre-
spondences with abstract argumentation semantics:

Proposition 1 For all F ∈ F , we have:
• {Im | m ∈ [αF ∧ βF ]} = EAd(F ),
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• {Im | m ∈ [αF ∧ βF ∧ γF ]} = ECo(F ).
• {Im | m ∈ [αF ∧ βF ∧ γF ∧ σF ]} = ESt(F ).

We will call a model satisfying αF∧βF , αF∧βF∧γF and
αF∧βF∧γF∧σF an admissible, complete and stable model,
respectively. Note that our definition of admissible differs
from the one used by Caminada and Gabbay (2009), which
does not establish a 1-to-1 correspondence between admissi-
ble sets and labelings. Our definition does and is equivalent
to what they call a JV-labeling, which is based on an earlier
proposal by Jacobovits and Vermeir (1999).

As we said, the different argumentation semantics are
usually represented by acceptance functions that take as in-
put a framework and return a set of extensions. Conditional
acceptance functions, which take as additional input a con-
dition, have been studied as well (Booth et al. 2012). Here
we take another approach: Given a framework F , each se-
mantics s corresponds to an inference relation parametrized
by F and s, i.e., |−Fs . The framework and semantics act as
a set of background assumptions that are taken for granted
when establishing whether some conclusion follows from a
premise, such that φ |−Fs ψ means that ψ follows from φ,
together with the knowledge encoded by F under the se-
mantics s. Formally:

Definition 6 Given a framework F , we define the admissi-
ble, complete and stable inference relations |−FAd, |−FCo and
|−FSt by:

• φ |−FAd ψ iff φ ∧ αF ∧ βF |= ψ,

• φ |−FCo ψ iff φ ∧ αF ∧ βF ∧ γF |= ψ,

• φ |−FSt ψ iff φ ∧ αF ∧ βF ∧ σF |= ψ.

The semantics discussed above are compositional, in the
sense that we can define a property for each argument x sep-
arately (i.e., using βF (x), γF (x) and σF (x)) such that, when
all arguments satisfy this property, our models correspond to
extensions under the respective semantics. It seems difficult
to do this for the preferred semantics. The most natural way
to define preferred inference is by delimiting the set of mod-
els we range over, when deciding whether a conclusion fol-
lows from a premise. The models that we range over are the
preferred models, i.e., admissible models that are maximal
with respect to the in labeled arguments. Formally:

Definition 7 Given a set of models M , the set of preferred
models of M , denoted by Pr[M ], is defined by Pr[M ] =
{m ∈M | @m′ ∈M, Im′ ⊃ Im}.

Proposition 2 For all F ∈ F , we have {Im | m ∈ Pr[αF ∧
βF ]} = EPr(F ).

Definition 8 Given a framework F we define the preferred
inference relation |−FPr by φ |−FPr ψ if and only if Pr[αF ∧
βF ] ∩ [φ] ⊆ [ψ].

Note that the admissible, complete and stable inference
relations are instances of what Makinson calls pivotal as-
sumption relations, while the preferred inference relation
is a pivotal valuation relation (Makinson 2005). They act,
in Makinson’s discussions, as a conceptual bridge between

a b c

d

e

Figure 2: An argumentation framework

monotonic and non-monotonic inference relations. These re-
lations are supraclassical (i.e., φ |= ψ implies φ |−Fs ψ) but
still monotonic.

There are many ways to formalize abstract argumentation
using logic, and ours is only one of them. Related work in
this area include reductions of frameworks to propositional
logic formulas, with the goal of finding extensions by check-
ing whether an extension corresponds to a model of a for-
mula, or by checking that a formula is satisfiable (Besnard
and Doutre 2004); reductions of frameworks to logic pro-
grams under the answer-set semantics (Egly, Gaggl, and
Woltran 2010); a study of a logical language consisting of
attack and defense connectives (Boella, Hulstijn, and van der
Torre 2005); and a formalization of fragments of argumenta-
tion theory using modal logic (Grossi 2010). Our approach
simply provides us with a method to reason about the accept-
ability of arguments of a framework under some semantics
s. For example, we can reason about skeptical and credulous
acceptance:

Proposition 3 Given a framework F , semantics s ∈
{Ad,Co, St, Pr} and argument x ∈ AF , we have that x
is skeptically accepted iff > |−Fs inx and x is credulously
accepted iff > 6|−Fs ¬inx.

On the one hand, the representation of a semantics by a
monotonic inference relation is more general than an accep-
tance function. This is demonstrated by the following exam-
ple, where the inferences go beyond establishing just skep-
tical or credulous acceptance.

Example 1 Let F be the framework shown in figure 2. We
will denote a modelm as a sequence (lalblcldle) where each
lx is the label of x. We use a similar notation in later ex-
amples. We have [αF ∧ βF ] = {(UUUUU), (IOUUU),
(OIOUU), (OIOIO)}, [αF ∧ βF ∧ γF ] = {(UUUUU),
(IOUUU), (OIOIO)} and [αF ∧ βF ∧ γF ∧ σF ] =
{(OIOIO)}. We can infer, e.g., > |−FCo outc ∨ uc,
outa |−FCo ind, ina |−FSt ⊥ and > |−FPr ina ∨ inb.

On the other hand, all we can learn from |−Fs can also
be learnt by just looking at the set Es(F ), and vice versa.
Formally, we can state this as follows:

Proposition 4 For all F,G ∈ F and all s ∈ {Ad, Co, St,
Pr}, Es(F ) = Es(G) if and only if |−Fs =|−Gs .

Thus, in terms of expressive power—that is, the classes
of frameworks that we can distinguish—we lost nothing and
gained nothing. In the next section, we will take a closer
look at the limits of this expressiveness. After this, we will
present a number of non-monotonic inference relations, that
generalize the monotonic relations presented here, and that
improve upon the limits of their expressiveness.
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Before we move on, however, a remark about monotonic-
ity seems to be in order. As we already pointed out, all the
inference relations presented so far are monotonic. That is,
for all s ∈ {Ad,Co, St, Pr}, we have φ |−Fs ψ implies
φ ∧ χ |−Fs ψ. We can also look at (non-)monotonicity w.r.t.
adding arguments and attacks. Monotonicity w.r.t. argu-
ments (resp. attacks) then holds for a relation |−Fs iff AF ⊆
AG (resp. RF ⊆ RG) implies |−Fs ⊆|−Gs . We then find that
for all s ∈ {Ad,Co, St, Pr}, |−Fs is monotonic w.r.t. adding
arguments and—more interestingly—non-monotonic w.r.t.
adding attacks. In this paper we will not look at this type
of non-monotonicity.

4 Expressivity of monotonic inference
We are interested in the expressive power of the semantics
introduced in the previous section. In terms of inference re-
lations, we should then ask: What are the classes of frame-
works that the inference relation can distinguish? Stated for-
mally, given a relation |−Fs , two frameworks F and G be-
long to the same indistinguishable class if |−Fs =|−Gs . We do
not aim at making formal statements about this expressive
power, but suffice in briefly showing its inadequacy.

Consider the six frameworks shown in figure 1. They all
encode different relations between the arguments. For exam-
ple, in framework 1, b is out because a is in. In framework
2, however, b is out because c is in, and not because a is
in! For complete, preferred and stable monotonic inference,
however, all six frameworks are indistinguishable. That is,
for all s ∈ {Co, St, Pr} and i, j ∈ {1, . . . , 6}, we have
|−Fi
s =|−Fj

s . Thus, the monotonic inference relations and cor-
responding semantics fail to distinguish the differences be-
tween the six frameworks. Admissible inference fares bet-
ter: all frameworks are distinguishable for |−FAd, except for
5 and 6, i.e., |−F5

Ad=|−
F6

Ad. In sum, none of the inference re-
lations is able to distinguish all six frameworks, and it is
easy to come up with more examples of indistinguishable
frameworks (e.g., none of the relations can distinguish any
of the six frameworks in figure 1 with or without a self-
attack added to b).

We can understand this limitation when we realize that
these inference relations cannot deal with what we may
call counterfactual inference. We can distinguish the frame-
works 1 and 2 under the complete semantics, for example,
if we could check what follows if a is out. But a being out
cannot be satisfied together with βF ∧ γF . That is, the se-
mantics has ruled out all models in which a is out, so we
cannot verify what the label of b and c would have been, if a
would have been out.

In the next section, we present a number of non-
monotonic generalizations of the inference relations pre-
sented in section 3. They allow us to reason counterfactu-
ally, and thus improve upon the limited expressivity of their
monotonic counterparts.

5 Non-monotonic inference for
argumentation

The non-monotonic generalizations of the inference rela-
tions that we present in this section are defined using the

preferential model semantics, where ψ follows from φ iff ψ
is true in the most preferred models of φ (Kraus, Lehmann,
and Magidor 1990). Here, ‘most preferred’ is understood as
most admissible, complete, stable or preferred in the sense
of ‘better’ satisfying the constraints of the respective seman-
tics. The preferential model semantics for argumentation has
been considered before in (Roos 2010). The approach there
is to define a preference relation over conflict free sets of
arguments based directly on the attack relation. The most
preferred states are then maximal conflict free sets and ad-
ditional criteria for selecting preferred states give rise to dif-
ferent semantics.

Our approach is to prefer models that satisfy e.g. βF (x)
or βF (x) ∧ γF (x) for maximal sets of arguments. This cor-
responds intuitively to the idea of counterfactual inference,
mentioned earlier. Namely, in order to know what follows
from φ even though, in accordance with the semantics, all
models that satisfy φ have been ruled out, we must look at
what follows from the models that satisfy the constraints im-
posed by the semantics ‘as much as possible’. We use the
following notation:

Definition 9 Given a framework F and model m ∈ MAF

we define βmF by βmF = {x ∈ AF | m |= βF (x)} and γmF by
γmF = {x ∈ AF | m |= γF (x)}.

We denote the relations by |∼Fs , for s ∈
{Ad,Co, St, Pr}. We now proceed with the formal
definition of the non-monotonic inference relations. After
this, we turn again to the matter of expressivity, and we
discuss some properties that the non-monotonic inference
relations satisfy.

Non-monotonic admissible inference
Admissible models are conflict-free (i.e., satisfying αF )
models that satisfy βF (x) for all x ∈ AF . Thus, ‘more ad-
missible’ means that βF (x) is satisfied for more arguments
and, given two conflict-free models m,m′, we say that m is
‘at least as admissible’ as m′ if and only if βmF ⊇ βm

′

F . This
gives us the admissibility order �Ad:

Definition 10 Given a framework F , the order �FAd⊆
MAF

×MAF
is defined by m �FAd m′ iff βmF ⊆ βm

′

F .

Note that �FAd is a partial pre-order. As usual, given a
partial pre-order �, we denote by ≺ the strict partial order
derived from � and define ≈ by m ≈ m′ iff m � m′ and
m � m′. The non-monotonic admissible inference relation
|∼FAd is now defined as follows:

Definition 11 Given a framework F , we define |∼FAd by
φ |∼FAd ψ iff max≺F

Ad
([αF ∧ φ]) ⊆ [ψ].

Example 2 Consider figure 1. We apply non-monotonic ad-
missible inference to the frameworks F1 and F2. We will
consider the question: what would hold, under the admis-
sible semantics if a were out? For F1, the most admis-
sible models that satisfy outa are m1 = (OIO) and
m2 = (OUU), with βm1

F1
= βm2

F1
= {b, c}. Thus we have

outa |∼F1

Ad outc ∨ uc. For F2, the most admissible models
that satisfy outa are m1 = (OIO),m2 = (OOI),m3 =
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(OUU), with βm1

F2
= {a, b}, βm2

F2
= βm3

F2
= {b, c}. Thus we

have outa 6|∼F2

Ad outc ∨ uc.

Non-monotonic complete inference
Complete models are conflict-free (i.e., satisfying αF ) mod-
els that satisfy βF (x) ∧ γF (x) for all x ∈ AF . So how do
we define ‘most complete’? Given two conflict-free models
m,m′, we can say that m is ‘at least as complete’ as m′ if
βmF ∩ γmF ⊇ βm

′

F ∩ γm
′

F . This gives us what we call the βγ
order:

Definition 12 Given a framework F , the order �Fβγ⊆
MAF

× MAF
is defined by m �Fβγ m′ iff βmF ∩ γmF ⊆

βm
′

F ∩ γm
′

F .

This leaves us with the question of what to do when �Fβγ
is indifferent about two models m,m′ (i.e., we have m ≈Fβγ
m′). We will then prefer the most admissible one among the
two. So, what we actually do, is maximize according to the
lexicographic order of first�Fβγ and then�FAd. This gives us
the completeness order �FCo:
Definition 13 Given a framework F , the order �FCo⊆
MAF

× MAF
is defined by m �FCo m′ iff m ≺Fβγ

m′ or (m ≈Fβγ m′ and m �FAd m′)

Note again that �FCo is a partial pre-order. We can now
define the non-monotonic complete inference relation |∼FCo:
Definition 14 Given a framework F , we define |∼FCo by
φ |∼FCo ψ iff max≺F

Co
([αF ∧ φ]) ⊆ [ψ].

Example 3 We apply non-monotonic complete inference to
the frameworks F1 and F2 of figure 1. What would hold,
under the complete semantics, if a were out? For F1, the
most complete model that satisfies outa ism = (OIO) with
βmF1
∩ γmF1

= {b, c}. Thus we have outa |∼F1

Co outc. For
F2, the most complete models that satisfy outa are m1 =
(OIO) and m2 = (OOI), with βm1

F2
∩ γm1

F2
= {a, b} and

βm2

F2
∩ γm2

F2
= {b, c}. Thus we have outa 6|∼F1

Co outc.

Intermezzo: Five valued labelings
Before we move on to non-monotonic stable and preferred
inference, we will make a remark about a notion that we nat-
urally end up with, namely a five-valued labeling. If we look
at a model m ∈ [αF ] that is conflict-free but does not neces-
sarily satisfy the admissibility and completeness restriction,
we have, for all x ∈ AF , five mutually exclusive and collec-
tively exhaustive possibilities:

1. m |= inx and m |= βF (x) ∧ γF (x).
2. m |= ux and m |= βF (x) ∧ γF (x).
3. m |= outx and m |= βF (x) ∧ γF (x).
4. m |= ux and m |= ¬γF (x) ∧ βF (x). This means that all

attackers of x are out in m. We call the argument forced
undecided.

5. m |= outx and m |= ¬βF (x). This means that x has no
attacker that is in. We call the argument forced out.

Note that inx and ux already imply βF (x) ∧ γF (x) and
βF (x), respectively. So, given a conflict free model m (i.e.,
m ∈ [αF ]) we can assign one of the five statuses in, unde-
cided, out, forced undecided or forced out to an argument.
The concept of a five-valued labeling is a useful one, when
reasoning about labelings that are only partially admissible
or complete. For example, if we look at the orderings pre-
sented previously, we have that:

• The order �Ad minimizes arguments that are forced out,
• The order�βγ minimizes arguments that are forced either

out or undecided.
• The order �Co minimizes first arguments that are forced

either out or undecided, and additionally prefers forced
undecided over forced out.

Non-monotonic stable inference
Stable models are admissible models with the additional re-
striction that no arguments are undecided. We will model
non-monotonic stable inference not by minimizing unde-
cided arguments but by restricting the models that we con-
sider to those that satisfy the stable restriction. Formally:

Definition 15 Given a framework F , we define |∼FSt by
φ |∼FSt ψ iff max≺F

Ad
([αF ∧ σF ∧ φ]) ⊆ [ψ].

Note that if we had defined |∼FSt by minimizing undecided
sets, we would not get backwards compatibility—a prop-
erty we discuss in the following section. Such a definition,
however, does seem to correspond to a semantics, namely
the semi-stable semantics (Caminada, Carnielli, and Dunne
2012). We leave this for future work.

Example 4 We apply non-monotonic stable inference to the
frameworks F3 and F4 of figure 1. What would hold, under
the stable semantics, if a were out? For F3, the most admis-
sible model that is stable and satisfies outa is m = (OII)

with βmF1
= {b, c}. Thus we have, for example, outa |∼F1

St
inb. For F4, the most admissible model that is stable and
satisfies outa is m1 = (OOI) with βmF2

= {b, c}. So here
we have outa 6|∼F1

St inb.

Non-monotonic preferred inference
Preferred models are admissible models that have a max-
imal (w.r.t. set-inclusion) set of in-labeled arguments. Ac-
cordingly, given two conflict-free (i.e., satisfying αF ) mod-
els m,m′, we take m to be ‘at least as preferred’ as m′ if m
is at least as admissible as m′ (i.e., if m′ �FAd m). Further-
more, if�FAd is indifferent about m and m′, we take m to be
at least as preferred asm′ if Im ⊇ Im′—which sets what we
call the Pr order apart from the admissible order. Formally:

Definition 16 Given a framework F , the order �FPr⊆
MAF

× MAF
is defined by m �FPr m′ iff m ≺FAd

m′ or (m ≈FAd m′ and Im ⊆ Im′ )

Note again that �FPr is a partial pre-order. We can now
define the non-monotonic preferred inference relation |∼FPr:
Definition 17 Given a framework F , we define |∼FPr by
φ |∼FPr ψ iff max≺F

Pr
([αF ∧ φ]) ⊆ [ψ].
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Example 5 We apply non-monotonic preferred inference to
the framework F5 in figure 1. What would hold, under the
preferred semantics, if a were out? For F5, the most pre-
ferred models that satisfy outa are m1 = (OIO) and
m2 = (OOI) with βm1

F1
= βm2

F1
= {b, c}. Thus we have

outa |∼F1

Co (inb ∧ outc) ∨ (outb ∧ inc).

6 Expressivity and properties
We demonstrated non-monotonic inference by a number of
examples, most of which showed that it is able to distinguish
frameworks that the monotonic inference relations cannot
distinguish. Furthermore, the non-monotonic inference rela-
tions agree on the consequences of φ with their monotonic
counterparts, whenever this is consistently possible (i.e. φ is
credulously accepted). Formally this property, which we call
backwards compatibility, is expressed as follows.

Proposition 5 For all F and all s ∈ {Ad,Co, St, Pr}), if
> 6|−Fs ¬φ then (φ |∼Fs ψ iff φ |−Fs ψ).

This property implies that > |−Fs φ iff > |∼Fs φ whenever
F has at least one s-extension, meaning that we can still
express skeptical and credulous acceptance.

For admissible non-monotonic inference, we have ob-
tained a precise characterization of its expressivity, stated in
terms of a kernel. Given a semantics s, a kernel of a frame-
work F ∈ F is a framework F ′ ∈ F such that AF = AF ′

andRF ′ ⊆ RF . The idea is that in a kernel all attacks are re-
moved of which the semantics cannot distinguish whether it
is present. Whenever a semantics distinguishes exactly those
frameworks F,G of which the kernels are different, the ker-
nel is said to characterize the expressivity of the semantics.

The idea of using a kernel to characterize the expressivity
of a semantics comes from (Oikarinen and Woltran 2011).
Here, kernels are used to study the relation of strong equiv-
alence. Two frameworks F,G ∈ F are said to be strongly
equivalent w.r.t. a semantics s, denoted by F ≡s G, if and
only if for all possible expansions H ∈ F , we have that
Es((AF ∪ AH , RF ∪ RH)) = Es((AG ∪ AH , RG ∪ RH)).
One of the results obtained there is a characterization of the
admissible semantics using the admissible kernel:

Definition 18 Given a framework F , the admissible kernel
of F , denoted by F ak is defined by F ak = (AF , R

ak
F ) where

RakF = RF \{(x, y) ∈ RF | x 6= y∧(x, x) ∈ RF ∧((y, x) ∈
RF ∨ (y, y) ∈ RF )}
Proposition 6 For all F,G ∈ F , F ≡Ad G iff F ak =
Gak (Oikarinen and Woltran 2011).

We have obtained an analogous result for admissible non-
monotonic inference:

Theorem 19 For all F,G ∈ F , |∼FAd=|∼GAd iff F ak = Gak.

The proof of the above is omitted due to space constraints.
We leave the characterization of the expressivity of the other
inference relations as future work.

7 Conclusions and future work
We presented a new approach to reasoning about the out-
come of a framework. The approach is based on a logical

labeling language. Different types of inference relations can
be defined over this language, each representing a particu-
lar type of reasoning that an agent may do on the basis of a
framework and a semanantics. We have shown, by example,
that this approach allows us to distinguish frameworks in a
meaningful way, even if they have the same set of exten-
sions in the traditional approach. Finally, we characterized
the expressiveness of admissible non-monotonic inference
in terms of a kernel.

Among future work are the characterization of the expres-
sivity of the other inference relations. We also plan to study
specialized forms of non-monotonic inference to model,
e.g., the difference between interpreting a premise as either
an ‘intervention’ or an ‘observation’. We may also look at
the possibility of axiomatizing the non-monotonic inference
relations, and a generalization that allows premises that vio-
late conflict-freeness. Finally, we will use our inference rela-
tions to study properties of (non-)monotonicity w.r.t. adding
arguments and attacks.
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