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Abstract 
This paper describes a method for automatically imitating a 
particular facial expression in an avatar through a hybrid 
Particle Swarm Optimization – Tabu Search algorithm. The 
muscular structures of the facial expressions are measured 
by Ekman and Friesen’s Facial Action Coding System 
(FACS). Using a neutral expression as a reference, the 
minute movements of the Action Units, used in FACS, are 
automatically tracked and mapped onto the avatar using a 
hybrid method. The hybrid algorithm is composed of 
Particle Swarm Optimization algorithm and Tabu Search. 
Distinguishable features portrayed on the avatar ensure a 
personalized, realistic imitation of the facial expressions. To 
evaluate the feasibility of using PSO-TS in this approach, a 
fundamental proof-of-concept test is employed on the 
system using the OGRE avatar. Results are described and 
discussed. 

1. Introduction and Background   
In the future, having an avatar of oneself that looks and 
sounds like its human “master” could be a highly useful 
commodity. If one cannot (or does not wish to) attend a 
meeting, he/she could send his/her avatar to attend in 
his/her place and even possibly (although farther in the 
future), speak and make commitments for its master. Of 
course, its intelligence would be the primary element of the 
avatar’s being; however, that is not our objective here. 
Almost as important, if it were to credibly stand in for its 
human master, it must directly resemble the person it is 
representing. Advances in making avatars appear real have 
been made [Hung et al. 2010]. See Figure 1 for an example 
of an avatar built to imitate a real person. 
 Zalewski and Gong [2005] note that no two emotional 
expressions in humans are alike. That is, no two people 
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smile in the exact same manner because there are 
miniscule details that make each unique. When building 
graphic representations of specific humans, it is important 
to reflect such personal characteristics as realistically as 
possible. However, the facial expressions of a particular 
individual, especially when expressing an emotion, are still 
implemented mostly in a generic, “cookie cutter” manner. 

 
Figure 1: A Lifelike avatar for a Specific Individual 

 
Ekman [1993] gives an overview on the classifications of 
emotions and describes many psychological aspects of 
emotional expressions. He established a link between 
humans and facial expressions, explaining how each 
individual expresses his/her current emotional state. He 
found that although cultures differ in many aspects, basic 
emotional expressions are, for the most part, all universally 
understood and expressed in the same manner.  
 The works described by Zalewski and Gong [2005] and 
by Mori et al. [2011] have been geared towards 
recognizing slight movements that make certain 
expressions personal. Lin et al. [2008], Mipiperis et al. 
[2008], and Yang and Banu [2011] used systems that 
incorporated avatars; however, these were used to help 
detect and classify facial expressions, not imitate and 
recreate them. Other contributions to the state-of-the-art 
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have been made by Cosker et al. [2011] and Velusami et 
al. [2011]. 
 Mori et al. [2011] built a system that incorporates an 
avatar that expresses emotions in a natural environment 
(i.e. a daily conversation). The authors describe how 
emotional facial expressions can be expressed in an avatar 
using utterances as an input. That is, the avatar attempts to 
take on the emotion expressed in a given sound bite. Their 
system adds a personalized aspect in the recreation of the 
emotion by considering unique features of the face. To 
accomplish this personalization of expressions, the authors 
take into account the subtle differences in expressions. 
However, significant manual effort is involved in this 
manipulation - exactly what we are trying to avoid here. 
 There is a justified need for personalized expressions in 
avatars for numerous applications. This paper presents a 
means to apply machine learning techniques to learn how 
to express emotions for the avatar simply by learning these 
expressions from a photo or video of the person of interest 
on a pixel-by-pixel basis. Our objective is to use machine 
learning techniques to learn the specific facial expression 
on the human master, as recorded on a photograph or video 
(photographs were used here), and have the system set the 
“slider” values of the working avatar copy. This is to be 
done by comparing the images on a pixel-by-pixel basis.  
 Nevertheless, for reasons of practicality, a lifelike avatar 
was not used in this research. Instead, the concept was 
tested using the OGRE avatar [OGRE], which is a cartoon-
like figure. Nevertheless, its open access and use of sliders 
to move the facial muscles provided an excellent 
intermediate step to test our algorithms. In our work, two 
faces of the OGRE avatar were used, the target copy and 
the working copy.  The target OGRE face is the desired 
look of the avatar. Sliders were used to pre-select the facial 
muscles and achieve a unique specific expression. Thus, 
the target avatar face can be considered to be the 
equivalent of the photograph of a particular human 
depicting the desired expression. The working copy is the 
one that is to learn how to achieve the look of the target 
copy. In our lifelike avatar analogy, the working copy 
would be the avatar itself that is to be made to resemble the 
human’s expression in the photo (the target copy). See 
Figure 2 for a depiction of the OGRE avatar face.   

 
Figure 2: OGRE Tool [OGRE]: Working Avatar face (left) and 

Target Avatar face (right) 

1.1 FACS and Action Units 
In order to build a learning algorithm that can do the 
above, the muscular structure and features of the avatar’s 
face have to be defined in a way that can be measured. 
This was done using a form of Ekman and Friesen’s [1978] 
Facial Action Coding System (FACS). By designating 
Action Units (AUs) involved with the face, the movements 
and muscular contractions of the face can be detected and 
tracked to help evaluate the slight differences that make an 
avatar’s facial expressions unique.   
 Ekman and Friesen [1978] developed FACS to allow for 
a quantitative representation of facial expressions. At the 
time, the system was needed to further study emotional 
expressions and social interaction between humans 
[Donato et al. 1999]. Ekman and Friesen noticed that 
certain muscular contractions were the basis of rearranging 
the face in a way to express an emotional state. The facial 
structure was decomposed into segments to monitor 
movements in specific portions of the face.  Thus, they 
decided to base their system on these muscular 
contractions by pinpointing and tracking key locations on 
the face that encountered significant changes in the process 
of expressing an emotion [Donato et al. 1999]. 
 The specific locations that accurately express the 
independent motion of features in the face are more 
formally referred to as the Action Units (AUs).  The FACS 
system incorporates 44 AUs to accurately track and 
measure the facial differences encountered when 
expressing an emotion [Cosker et al. 2011]. FACS is based 
on six basic emotions: anger, disgust, fear, happiness, 
sadness, and surprise.   

1.2 Mapping Action Units 
In order to correctly map the AUs defined in FACS, an 
algorithm is typically used that may incorporate machine 
learning in the process. The AUs on the OGRE avatar are 
controlled by the sliders. Therefore, when the algorithm 
manipulates the sliders, the corresponding AUs are also 
manipulated. This algorithm allows the mapping process to 
take place efficiently and effectively. An algorithm that has 
been found to be successful in search and optimization 
problems is Particle Swarm Optimization (PSO) [Kennedy 
and Eberhart, 1995]. Variations of PSO have been used in 
many applications that require an optimal solution [Ghandi 
et al. 2009]. In their work, Ghandi et al. make 
modifications to incorporate PSO in emotion detection 
problems. Another search algorithm used in optimization 
problems is Glover’s Tabu Search (TS) [1989, 1990]. 
Unlike PSO, Tabu Search is a local search algorithm that 
takes advantage of a memory structure to log solutions that 
were previously visited [Glover, 1989; 1990; Bekrar et al. 
2011; Zhang and Wu, 2011]. Because of its local search 
characteristics and use of memory, TS has been 
“hybridized” with other algorithms to increase its 
robustness in certain applications [Thangaraj et al. 2011; 
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Bekrar et al. 2011; Zhang and Wu, 2011; 2012; Li et al. 
2010; Mhamdi et al. 2011]. Because of space limitations, 
PSO and TS are not described here but the reader is 
referred to their cited original descriptions. 

1.3 Objectives of Our Work 
Although PSO can successfully search throughout a large 
search space and find an optimal solution, it often 
prematurely converges toward local optima. This means 
the algorithm often is subject to partial optimization.  
Instead of finding the global optimal solution, it finds the 
local optimal solution within the swarm [Bai, 2010]. A 
specific example of this premature convergence is seen in 
[Puklavage et al. 2010]. Their mechanism uses PSO to map 
the AUs on the OGRE avatar using the PSO mechanism, 
which successfully converges to the optimal solution for 
the happy, sad, fear, and surprise test faces [Puklavage et 
al. 2010].  However, the weakness of PSO was exposed 
when their system failed to accurately converge to the 
target angry face of the OGRE avatar. In the specific case 
of converging to the angry face, PSO continually fails to 
find the optimal solution within the search space because it 
becomes trapped in a local minimum.   
 This prior work by Puklavage et al. [2010] attempted to 
use the same OGRE avatar (albeit an earlier version) and 
PSO to achieve the same objectives described above – that 
of using machine learning to automatically learn to 
replicate personal facial expressions from photographs of 
the avatar’s human counterpart. Our research, therefore, is 
a follow up on Puklavage et al’s work in an attempt to 
improve upon their results. 
 Our approach was to make a hybrid PSO-TS learning 
algorithm, where the TS part compensated for the 
limitations found to exist in the PSO approach to this 
problem. Clearly, the hybrid combination of PSO and TS is 
not novel, as several others have implemented it as well as 
variations thereof. Nevertheless, we describe our 
application of this technique to solve a problem that was 
not completely solved using PSO by itself.   

2 The PSO-TS Hybrid System 
Our hybrid PSO-TS algorithm is described in Figure 3. 
This hybrid PSO-TS algorithm combines a slightly 
modified form of PSO with a standard Tabu Search. The 
flowchart of Figure 3 provides a top-level overview of the 
architecture of the algorithm.  As depicted in the flowchart, 
PSO serves as the driving force of the PSO-TS algorithm. 
Unlike other models where the search population is 
randomly halved and TS and PSO are independently 
operated [Zhang and Wu, 2011; 2012], our hybrid PSO-TS 
embeds TS within PSO. The diversification of the search 
provided by TS helps PSO avoid its limitation of 
premature convergence toward local optima. The PSO 
algorithm drives the overall search and begins the process 

by a random search through the solution space. Once initial 
pbests and a global gbest are obtained, the pbests are 
passed to Tabu Search to explore the nearby area of the 
swarm. TS takes in these pbests and establishes a local 
search boundary centered on each pbest. The search 
examines the nearby area for a potential better solution. If 
a better solution is found, TS returns this updated solution 
to PSO. PSO then updates the swarm based on the best 
solution found thus far. The pbest and gbest along with the 
particles’ velocities and positions are updated. The process 
continues in this manner until the stopping criteria is met. 
Overall, the combination of PSO and TS joins the strength 
of PSO’s global search with TS’s local search to help 
diversify the search and overcome PSO’s premature 
convergence to poor quality local optima [Zhang and Wu, 
2011; Bekrar et al. 2011]. 
 

 
Figure 3: Top Level Flowchart of PSO-TS 

3 The OGRE Application 
We first describe our use of OGRE as the testbed to test 
our algorithm. To do this, we developed the OGRE 
Algorithm Comparison Tool (OACT). To begin the 
development of OACT, the OGRE Official Demos 
Distribution v1.7.0 (Windows) was downloaded [OGRE]. 
The OGRE face is centered in the middle of the screen 
with 18 sliders available in the upper left-hand corner. 
Once the “Manual” option is selected, the OGRE face 
stops its automated movements and provides the user with 
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