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Abstract

SampleBoost is an intelligent multi-class boosting algo-
rithm that employs an error parameter combined with
stratified sampling during training iterations to accom-
modate multi-class data sets and avoid problems asso-
ciated with traditional boosting methods. In this paper
we investigate the choice of the error parameter along
with the preferred sampling sizes for our method. Ex-
perimental results show that lower values of the error
parameter can lower the performance while larger val-
ues lead to satisfactory results. The parameter choice
has noticeable effect on low sampling sizes and has less
effect on data sets with low number of classes. Varying
sampling sizes during training iterations achieves the
least variance in the error rates. The results also show
the improved performance of SampleBoost compared
to other methods.

Introduction

Ensemble Learning has gained a lot of attention owing to its
improved performance compared to single classifiers. Ad-
aBoost (Freund and Schapire 1997) represents one of the
most successful ensemble learning methods. The idea is to
iteratively combine decisions of different weak classifiers
into an improved one. However, AdaBoost faces several
challenges when it is employed for real-world problems,
among which early termination can turn the whole ensem-
ble learning process into a single classifier (Abouelenien and
Yuan 2012). This issue is caused by the repetition of misclas-
sified examples which rapidly increase the weighted error to
the maximum error bound. AdaBoost additionally suffers in
finding a direct transformation to accommodate multi-class
data sets and requires extended training time.

AdaBoost.M1 (Freund and Schapire 1997) was intro-
duced as an initial attempt to address multi-class problem,
which was followed by two updated methods AdaBoost.M2
(Freund and Schapire 1997) and AdaBoost.MH (Schapire
and Singer 1999). They converted the multi-class classi-
fication problem into a sequence of binary classification
problems. SAMME (Zhu et al. 2009) method was devel-
oped to accommodate any number of classes by relaxing
the error bound. The method eased the error bound to avoid
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early termination that is caused by increased weighted er-
ror. Random downsampling was integrated with AdaBoost
mainly to learn from imbalanced data sets as well as to
address efficiency issue with large data set. The main pur-
pose of sampling was to even the skewness of the learn-
ing process towards majority classes. Geiler et al. (Geiler,
Hong, and Yue-jian 2010) and Seiffert et al. (Seiffert et al.
2010) introduced random sampling of majority classes in E-
Adsampling and RusBoost algorithms, respectively, to im-
prove learning from minority classes. Lenth (Lenth 2001)
specified practical guidelines to decide a sample size ef-
fectively. However, methods suggesting sampling sizes de-
pend on the existence of prior information about the col-
lected data. Therefore, determining a general sampling size
rule seems infeasible. However, investigating the best com-
bination between the sampling size and the error parameter
might shed some light on determining the optimal parame-
ters for our method.

Our SampleBoost (Abouelenien and Yuan 2012) method
was developed to address the aforementioned challenges. In
this paper we study the SampleBoost method in search for
the optimal settings for the parameters involved. Sample-
Boost downsamples the multi-class training set at each it-
eration using a class-based weighted sampling. It employs
a weighted stratified sampling technique where each class
represents a stratum. Stratified sampling divides the exam-
ples into groups referred to as strata and then applies random
sampling to each individual group (stratum). This scheme
assigns higher chances of selecting hard-to-classify exam-
ples for the next training iteration for each class indepen-
dently. The method also introduces an error parameter that
is added to the loss function of the boosting method. The
parameter eases the error condition to accommodate multi-
class classification. Along with the sampling scheme, Sam-
pleBoost avoids early termination and aims at improving
both efficiency and accuracy.

Boosting with Class-based Stratified Sampling

Improvement achieved using AdaBoost and its multi-class
extensions rely on the variation in the decisions provided
by individual weak classifiers. However, no improvement
is achieved if all the classifiers created the same decision
boundary. Once the same group of examples is repeatedly
misclassified, the algorithm terminates regardless of the



weak classifier accuracy (Abouelenien and Yuan 2012).

SampleBoost is a multi-class boosting method that em-
ploys a class-based stratified sampling. In a training itera-
tion, a subset of examples identified using downsampling is
used. Yet, each classifier is evaluated using the whole train-
ing set. Based on this evaluation, the weights for all exam-
ples are updated such that the weights for the misclassified
ones are increased. The weighted sampling process then se-
lects examples for the next iteration according to the up-
dated data distribution. Based on the evaluation process, a
weight is assigned to the classifier to decide its contribution
to the overall decision. In our SampleBoost method, we in-
troduced an error parameter +y in the calculation of the classi-
fier weights (see Equation (2)) to accommodate multi-class
data sets and ensure diversity among classifiers. This adjust-
ment is translated to the loss function and accordingly to the
weighted error in Equation (1). Upon completion of ensem-
ble training, the decisions of all weak classifiers are com-
bined using weighted voting.

SampleBoost has two parameters that need to be specified
in advance in addition to the total number of iterations. The
first is the error parameter and the second is the sampling
size for each class. In AdaBoost.M1, the error bound was
set to 0.5 which is a very strict condition to learn from multi-
class data sets. In SAMME, the loss function was modified
by including a constant term K — 1 that accounts for the error
rate of random guessing of K classes, i.e., 1 — % We inves-
tigate whether the range between those two error bounds can
accommodate multi-class data sets. Moreover, it was never
determined if the error bound is limited to SAMME’s 1 — %
We extended our error parameter to 104 to observe its abil-
ity of accommodating multi-class data sets.

We additionally investigate different sampling sizes. The
sizes can be fixed or varying through different iterations. Our
gaol here is not to determine the best sampling size since the
data is assumed to exist from an unknown probability distri-
bution. Yet, we provide guidelines for choosing the suitable
sampling size relative to the size and number of classes of
the data set. Moreover, we explore if there exists a preferred
combination of the error parameter and the sample size for
improved performance.

Given a training set TR = (21,41),..., (TN, YN). T; €
Xandy, € Y = {1,...,K}. K is the number of classes.
N 1is the total number of examples and 7" is the total number
of iterations. “s” is the downsampled size per class to form
a total sample size of S = s % K. [-] denotes an indicator
function that returns 1 if true and —1 otherwise. J|[.] is an
indicator function that returns 1 if true and O otherwise.

Experimental Results and Discussion

Five data sets with varying sizes, number of classes, and di-
mensionality were trained for our experiments. We created
a 2D Gaussian synthetic data set. Image Segmentation and
Letter Recognition data sets were downloaded from UCI
machine learning repository (Frank and Asuncion 2010).
AR (Martinez and Benavente 1998) and Yale (Georghiades,
Belhumeur, and Kriegman 2001) face recognition databases
were collected. Details and characteristics of each data set
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Algorithm 1 SampleBoost

1: initialize example weights with wq (i) = 1/N

2: fort=1,...,T do

3:  Selectasubset S C TR, S = s* K, according to the
distribution

4:  Train a weak classifier f; with .S

N
€ = Zwt(i)ﬂyi # fi(zi)] (1)

5. ife > ﬁ then
6: return o; = 0
7. else
8: Calculate o, of the weak classifier
1—e¢
oy = log(—) +1og() @)
t
9: Adjust the examples distribution to,
wy <= wteat[[yiift(ﬂﬂz')ﬂ
10: Normalize w;
11:  endif
12: end for

13: Combine weak classifiers f; into F'(z)

T
F(x) = arg max Z oy fi(x)
S

can be seen in Table 1. We trained the data sets using Sam-
pleBoost, AdaBoost.M1, and SAMME for 100 iterations in
all experiments. Two fold cross validation was used to evalu-
ate all data sets except for AR database where leave-one-out
cross validation was used. Decision Trees were used as the
weak classifiers owing to its recognition with boosting as the
best off-the-shelf classifier (Breiman 1998). We used four
different sampling sizes for SampleBoost as shown in Ta-
ble 1. Three of the sizes, SB=A, SB-B, and SB-C, are fixed
and the last one, SB-V, changed though different iteration.
In particular, every 25 iterations, an increased sample size is
used in training new iterations as shown in the table.

Principal Component Analysis was used for dimensional-
ity reduction for AR and Yale face databases. The error pa-
rameter -y ranged from 1 as in AdaBoost.M1 up to ten times
K including SAMME’s K — 1. Average Error Rates (AER)
denoted with F, average efficiency across all -y values in sec-
onds, variance (c2) of the AER across different values of v,
and average number of effective weak classifier (EWC) are
used to measure the performance of all experiments. o> for
each data set is calculated according to

2 1 g n 2
o :512(@_#)

where p denotes the mean of all E% and G denotes the total
number of ~ values used. The lower the variance, the more
stable the method is across different y. EWC presents the
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average number of weak classifiers that did not exceed the
error bound, i.e., classifiers with non-zero weights a.

Table 1: No. of Classes (K), size of each class (| K|), no. of
features (feat), and 4 different sampling sizes per class using
SampleBoost (SB) for 6 data sets
Data set [ K[[K][ feat [SB-A[SB-B[SB-C]| SB-V
Synthetic [50]100] 2 | 10 | 25 | 40 | 10,20,30,40
UCI Image| 7 |330| 18 30 75 | 150 | 30,60,90,120
UCI Letter |26{700| 16 | 100 | 200 | 300 |75,150,225,300
Face AR |50| 11 |13200| 2 5 8 2,4,6,8
Face Yale [38] 64 | 896 8 18 28 4,12,20,28

In Figure 1, it can be seen for the 2D Gaussian synthetic
data set that lower values of 7y achieve low error rates specif-
ically for the lowest sampling size SB-10. Extending + in the
loss function to ten times K, i.e., 500, did not show any sig-
nificant change. However, SB-10 achieves the highest AER.
SB-25 and the variable sampling size SB-V achieve the low-
est AER. All sampling sizes achieve lower AER compared
to AdaBoost.M1 and SAMME as shown below the figure.
The figure also shows that lower values of ~ achieve the
lowest EWC. As the sampling size decreases the number
of EWC increases. The variable sampling size presented by
SB-V had the second highest EWC. The number of EWC
for AdBoost.M1 and SAMME (2.5 and 1.5) is very low
compared to SampleBoost for all data sets due to the early
termination problem. Table 2 show that the variance of the
AER of all sampling sizes is below one except for SB-10. As
the sampling size increases, the efficiency decreases. SB-V
achieves an average efficiency. Generally, SB has higher ef-
ficiency compared to AdaBoost.M1 and SAMME.
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Figure 2: AER and EWC of Image Segmentation using Sam-
pleBoost (left and right). AER and EWC of AdaBoost.M1
and SAMME are 0.21, 0.213 and 2, 1 respectively.

Higher AER are achieved with low values of v. The low-
est sample size is the most affected by lower v values. Ex-
tending y to ten times K, i.e., 260, still achieve improved
results than very low values of . The highest sampling size
achieves the highest AER. The lowest AER is achieved by
SB-V for v < K — 1 and SB-200 for v > K — 1. All
sampling sizes outperform the AER of AdaBoost.M1 and
SAMME, 0.405, 0.40, respectively. The variance of AER%
in Table 2 shows also that a higher variance is achieved
with SB-100 compared to other sizes. EWC results show
that as the sampling size decreases the number of EWC in-
creases. The increase in the number of EWC for SB-V when
v < K — 1is reflected in the improvement of its AER. The
very low number of EWC in SB-100 with v = 1 is also
reflected in its AER results.
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Figure 1: AER and EWC of 2D Gaussian Set using Sample-
Boost (left and right). AER and EWC of AdaBoost.M1 and
SAMME are 0.34, 0.34 and 2.5, 1.5 respectively.

Figure 2 shows the results of the UCI Image Segmentation
set. AER across different s and up to ten times K, i.e., 70,
shows no significant variation (see AER variance in Table 2).
This is attributed to the small number of classes which is
seen in vy values ranging from one to just 70. The highest
sampling size SB-150 and SB-V achieved the lowest AER
while SB-30 achieved the highest AER in most cases. EWC
results also show that higher number of EWC is achieved
with lower sample sizes. SB-V achieves the second highest
EWC. Efficiency results in Table 2 show that smaller sample
size has better efficiency.

UCT Letter Recognition results are shown in Figure 3.

Figure 3: AER and EWC of Letter Recognition using Sam-
pleBoost (left and right). AER and EWC of AdaBoost.M1
and SAMME are 0.405, 0.40 and 2.5, 4 respectively.

Figure 4 presents results of face recognition AR database.
Lower values of v result in higher AER. The two lowest
sampling sizes, SB-2 and SB-5, are the most affected by the
lower values of 7. Extending  to ten times K was success-
ful for all methods. It is also reflected in the EWC results
that lower values of ~y result in very low number of effective
classifiers. Larger sample sizes achieves better performance
overall. This can be caused by the lower number of samples
per class in this data set. SB-8 achieves better error improve-
ment compared to AdaBoost.M1 and SAMME while SB-2
has higher AER. Variance results in Table 2 show that SB-V
and SB-8 achieve the lowest AER variance.

Face recognition Yale results are shown in Figure 5. The
trend of the results is very similar to that of the AR database.
Lower values of ~y result in lower number of EWC and, ac-
cordingly, higher AER. The lowest sampling sizes, SB-8 and
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Figure 4: AER and EWC of AR database using Sample-
Boost (left and right). AER and EWC of AdaBoost.M1 and
SAMME are 0.74, 0.74 and 1.2, 1.8 respectively.

SB-18, have significantly higher AER with lower values of
~. Extending ~ to ten times K, i.e., 380, was successful for
this set. All sample sizes outperformed AdaBoost.M1 and
SAMME. Table 2 show that SB-8 and SB-18 have higher
AER variance compared to SB-28 and SB-V.
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Figure 5: AER and EWC of Yala database using Sample-
Boost (left and right). AER and EWC of AdaBoost.M1 and
SAMME are 0.88, 0.88 and 3, 2 respectively.

Table 2: Variance of I and Efficiency in seconds (E) for all
SampleBoost sampling sizes and AdaBoost.M1 (A.M1) and
SAMME (SA)

SB-A SB-B SB-C SB-V |AMI1| SA
o |EJd | E|o”| E [0’ E E E

Syn | 1.2 [54.5[0.17[76.2[0.29]94.9[0.73[77.4] 66.1 [66.4
Image |0.53|8.77|0.51|14.7(1.07|21.5|0.19|14.2| 14.9 |14.7
Letter [22.4|200(0.27|334|0.54| 447 {1.16| 310 | 393 | 397
AR |8.41(49.5/67.2|105|7.84| 143 | 4.5 (97.4| 144 | 145
Yale |7.35[171|13.9{406 |1.14| 703 |2.46|381| 611 | 636

Dataset

Conclusion

Our SampleBoost method employs weighted stratified sam-
pling and integrates an error parameter to accommodate
multi-class classification. The parameter relaxes the error
bound for each base learner. In this paper, we shed some
light on the choices of the error parameter with respect to
sampling size.

Our experiments demonstrate that integrating low values
of v as in AdaBoost.M1 could result in weak classifiers that
have zero contribution to the overall decision. This loss is
also reflected in the sudden increase in the average error rate.
However, for different sampling sizes, an increased number
of effective weak classifiers has no implication on the im-

proved generalization error. Lower sample sizes have deteri-
orated performance with lower values of . The problem is
most prevalent when individual class in a data set has small
number of examples. Some data sets might have a large total
number of examples to train; however, what matters is the
sufficiency of representative samples per class.

Data sets with small number of classes are less affected
by the choice of . Extending 7 to far beyond K — 1 (as
indicated in SAMME (Zhu et al. 2009)), e.g., ten times K,
produced satisfactory results for all experiments, sampling
sizes, and data sets. Our interpretation of this phenomenon is
that the normalization factor also integrates  in updating the
data distribution. And this adjustment is directly reflected in
the calculation of the weighted error.

Training a variable increasing sampling size has, on av-
erage, proven to be the least susceptible to large variance
in the average error rates. It achieves improved efficiency
compared to traditional boosting methods. However, when
number of examples per class is small, using large sam-
pling size is recommended to decrease the generalization er-
ror. We recommend training SampleBoost with a large fixed
sampling size for small data sets and with variable sampling
sizes otherwise. We also recommend using large ~ value to
avoid the uncertainty associated with lower values. With re-
spect to accuracy, using large v seems to always lead to sat-
isfactory results.
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