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Abstract

A very promising tool for data mining and bioinformat-
ics is ensemble gene (feature) selection. Ensemble fea-
ture selection is the process of performing multiple runs
of feature selection and then aggregating the results into
a final ranked list. However, a central question of en-
semble feature selection is how to aggregate the indi-
vidual results into a single ranked feature list. There are
a number of techniques available, ranging from simple
to complex; the question is which one to choose. This
paper is a comprehensive study on the use of nine differ-
ent rank aggregation techniques for building classifica-
tion models to use gene microarray data for distinguish-
ing between cancerous and non-cancerous cells (or be-
tween patients who did or did not respond well to cancer
treatment). The techniques are tested using an ensemble
with twenty-five feature selection techniques and fifty
iterations along with eleven bioinformatics datasets and
five learners. Our results show that Lowest Rank is the
worst performing aggregation technique by a clear mar-
gin. The other techniques perform similarly well and a
simple technique (e.g., Mean aggregation) is preferable
due to computation time and the limited possible benefit
of a more complex technique. To our knowledge there
has never been a study this intensive on the classifica-
tion abilities of rank aggregation techniques in the field
of bioinformatics.

Introduction
Dimensionality reduction techniques have become com-
monplace in bioinformatics research. These techniques al-
low researchers to focus on the specific data that is needed
for their work. However, there are a number of techniques to
choose from, each with their own abilities and biases. One
of the possible solutions to this decision is ensemble gene
selection.

Ensemble gene or feature selection is the process of per-
forming multiple runs of feature selection (choosing an opti-
mum subset of features and performing any subsequent anal-
ysis on only those features) and then aggregating those re-
sults in to a single feature subset. There are a number of
benefits of ensemble feature selection including: more sta-
ble feature lists, comparable or superior classification results
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compared to individual techniques, and a reduction of bias
in the decision process.

However, one important aspect of ensemble feature selec-
tion is how to aggregate the results of the individual runs
of feature selection. There are a number of techniques to
choose from, ranging from simple to complex. The ques-
tion is which of these techniques is the most appropriate for
optimum results.

This paper is a thorough study of nine rank aggrega-
tion techniques and their classification performance. To
compare these, we use an ensemble of twenty-five feature
selection techniques on fifty iterations (each technique is
used twice) with eleven bioinformatics datasets (specifically,
gene microarray datasets used for distinguishing between
either cancerous and non-cancerous cells or response and
non-response to cancer treatment). Additionally, we also use
five learners for building classification models. Our results
show that in general, there is little difference between the
techniques, with the exception of Lowest Rank which was
clearly the worst. This allows us to state that the effect of
the choice of rank aggregation technique is minimal and that
a more simple and efficient technique (e.g., Mean aggrega-
tion) is preferable to a more complex and computationally
expensive technique for the potential small benefit.

This paper is organized as follows. Related Works con-
tains some background information regarding our topic.
Rank Aggregation Techniques contains information on
the nine rank aggregation techniques used in this paper.
Methodology contains the process of our experiments. The
Results section describes what we observed during our ex-
periments. Lastly, the Conclusion section presents our find-
ings and future work.

Related Works
The use of ensembles has been most frequently applied to
the creation of learners for building inductive models. It
has been shown that these ensemble learners are competi-
tive with other learners and in some cases are superior. This
has been found to be true within the domain of bioinformat-
ics (Yang et al. 2010). Recently, there have been studies
applying the ensemble concept to the process of feature se-
lection (Abeel et al. 2010). The benefits of using ensemble
feature selection include more stable feature lists and com-
parable or superior classification results when compared to
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individual (e.g., non-ensemble) feature selection (Awada et
al. 2012).

However, with ensemble feature selection comes a deci-
sion of how to aggregate the results. A number of different
rank aggregation techniques have been proposed in the liter-
ature: some are simple (Mean, Median, Highest Rank, Low-
est Rank), and some are less so. Recent work in the area
of rank aggregation techniques has centered around devel-
oping unique and innovative approaches. These new tech-
niques can focus on different aspects of the ranking pro-
cess, including comparing results to randomly generated re-
sults (Kolde et al. 2012), giving more weight to top ranking
features (Haury, Gestraud, and Vert 2011), or combining two
known techniques to enhance each other (Aslam and Mon-
tague 2001). While there has been work focusing on com-
paring a large number of rank aggregation techniques (Wald
et al. 2012), the focus of that work was on the similarity
of the selected feature subsets, not the classification results.
Additionally, previous research has shown that the choice of
aggregation technique can affect classification results (Wald,
Khoshgoftaar, and Dittman 2012).

Rank Aggregation Techniques
Many techniques are used throughout the literature to com-
bine multiple ranked lists into one final product; these are
referred to as rank aggregation techniques. In this paper, we
study nine such techniques: Mean, Median, Highest Rank,
Lowest Rank, Stability Selection, Exponential Weighting,
Enhanced Borda, Round Robin, and Robust Rank Aggrega-
tion. All of these techniques assume that the ranked lists
being combined assign a value to each feature, from 1 to N
(for N features), where the best feature is assigned number
1, the second-best feature is 2, and so on until the worst fea-
ture is assigned N . Unless otherwise noted, the ranked lists
produced by the ensemble techniques will also assign values
to each feature such that lower values are better.

While some rank aggregation techniques employ complex
algorithms to assign values to the features based on their
position in the various lists being combined, some are rel-
atively straightforward. Mean aggregation simply finds the
mean value of the feature’s rank across all the lists and uses
this as that feature’s value. Similarly, Median aggregation
finds the median rank value across all the lists being com-
bined, using the mean of the middle two values if there are
an even number of lists. Highest Rank and Lowest Rank
use related strategies: either the highest (best, smallest) or
lowest (worst, largest) rank value across all the lists is as-
signed as the value for the feature in question. In all cases,
once each feature has been given a single value based on
the mean, median, highest, or lowest value, all features are
ranked based on these new values. Note that for all four of
these it is possible for two features to end up tied, even if
this was not the case in any of the lists being combined; this
tie is resolved randomly if necessary.

Stability Selection is based on a very simple principle:
a feature is good if it appears towards the top of many of
the ranked lists being aggregated. To this end, a threshold
is chosen. This is often the threshold which will be used
for selecting the features for downstream classification, but

may be any appropriate value. For each list where the fea-
ture in question meets or exceeds that threshold, that feature
is given a single point. For those lists where it fails to meet
the threshold, it is given zero points. This calculation is per-
formed for all of the ranked lists, and each feature is given
all the points it deserves. Finally, the features are ranked
from most to least points (Haury, Gestraud, and Vert 2011).

While Stability Selection performs its task of discover-
ing those features which are most often towards the top of
the list, it fails to account for how close to the top they
are, and penalizes features which are just slightly under the
threshold. A refinement upon this procedure is Exponential
Weighting, which assigns points based on e−r/s, where r is
the feature’s rank and s is the threshold being used. This
satisfies the same goal as Stability Selection, while allow-
ing for additional weight to be allocated as appropriate. As
with Stability Selection, those feature which collect the most
value are placed at the front of the final list (Haury, Gestraud,
and Vert 2011).

It has been shown that using the Borda count (Aslam and
Montague 2001) as the basis of feature ranking is mathe-
matically equivalent to simple Mean Aggregation. How-
ever, a variation known as Enhanced Borda expands upon
the original method by multiplying each feature’s Borda
score (

∑
L N − rl) by its Stability Selection score (num-

ber of times the feature meets or exceeds a specified thresh-
old). This ensures that features which are frequently above
the threshold get extra weight, while features also get more
weight based on how high up they are on the list. Again, as
with Borda (and Stability Selection), higher values are better
in the results.

The Round Robin rank aggregation technique combines
the lists in a fairly simple, although random, fashion: the
lists themselves are randomly assigned an order, and then
the first feature from the first list is chosen as the first fea-
ture for the final list, then the first feature from the second
list, then the third list, and so on until the first feature from
each list has been selected in order. After this, the second
feature from each list (again examining the lists in the same
order as before) are chosen. This proceeds until no features
have not been found at least once. If while proceeding in this
fashion a feature is found which is already on the final list, it
is disregarded (and left in its existing, higher position) (Neu-
mayer, Mayer, and Nørvåg 2011).

When combining ranked lists of features, one important
question is how well each of the ranked lists performs com-
pared to a randomly-sorted list. This is not an easy task,
because it is not known in advance what the correct fea-
ture order is. However, if one assumes that most of the
ranked lists are useful, and only a few are similar to the
null (randomly-sorted) list, some progress can be made. The
starting point of the Robust Rank Aggregation algorithm is
examining how high a given feature scored on the various
ranked lists. These values are collected into a so-called rank
order, ordered from best to worst. If a feature is particu-
larly useful, the predominance of these values should be to-
wards the smaller (better) end, while only those ranked lists
which are similar to the null list will give values that are ran-
domly distributed along the range. Given each of these val-
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ues, the algorithm finds the probability that if all the ranked
lists were random, the values would be smaller (better) than
is actually seen in the real ranking. It is expected that this
probability will be small for good features, and so smaller
values of this metric are better (Kolde et al. 2012).

Methodology
Datasets
Table 1 contains the list of datasets used in our experiment
along with their characteristics. The datasets are all DNA
microarray datasets acquired from a number of different
real world bioinformatics, genetics, and medical projects.
As some of the techniques require that there be only two
classes, we can only use datasets with two classes (in par-
ticular, either cancerous/noncancerous or, in the case of the
mulligan-r-pd and mulligan-r-nr datasets, relapse/no relapse
following cancer treatment). The datasets in Table 1 show
a large variety of different characteristics such as number
of total instances (samples or patients) and number of fea-
tures. The fourth through tenth columns show the classifi-
cation performance on these datasets when building models
without feature selection. These are used to show that in ad-
dition to having many thousands of features, these datasets
are notable for being difficult to model (such that models
without feature selection do not perform well), which sug-
gests that they may also be difficult to select features from.
Six learners are used to generate these no-feature-selection
models, four of which (5-NN, MLP, Naı̈ve Bayes, and SVM)
are discussed in more detail under the Classification section.
C4.5D and C4.5N are both variants of the C4.5 decision
tree algorithm, which builds a tree by deciding at each node
which feature best divides the instances into sub-trees, and
iterating on these sub-trees until a stopping criterion is met.
The “D” and “N” versions differ in terms of their parameter
settings. The “Average” column at the end contains the aver-
age performance across all six learners. For all models, per-
formance is measured using AUC, the Area under the ROC
Curve, where the ROC Curve itself is a plot of True Positive
Rate versus False Positive Rate. All models were built using
one run of five-fold cross-validation (see Cross Validation
under Methodology). The idea behind using these difficult
datasets is that they are more dependent on feature selection
to improve their classification results.

Ensemble Technique
In order to throughly test the abilities of the rank aggrega-
tion technique we must use an ensemble approach. In this
work we have chosen to use a hybrid approach which com-
bines two different approaches to ensemble feature selection
into a single technique. The hybrid approach (Figure 1) be-
gins with the creation of (in this work) 50 different datasets
for use in the technique. We chose 50 iterations as it is the
smallest number of iterations which can accomodate the use
of 25 feature selection techniques used multiple times. The
datasets are created through the use of bootstrapping with re-
placement. This step creates diversity within the data being
used for feature selection. The next step applies a different
feature selection method to each of the different datasets.

This step was included to ensure that there is diversity with
the feature selection techniques and to eliminate any possi-
ble bias toward any of the feature selection techniques. In
this work we use fifty iterations of feature selection and use
an ensemble of 25 rankers (each ranker is used twice).

Feature Ranking Techniques
In this paper we use an ensemble of twenty-five filter-based
feature ranking techniques. The twenty-five feature rank-
ing techniques can be split into three categories: Threshold-
based Feature Selection (TBFS) Techniques, First Or-
der Statistics based feature selection, and commonly-used
techniques. Eleven of the techniques (Area under ROC
curve, Deviance, F–Measure, Geometric Mean, Gini Index,
Kolmogorov-Smirnov statistic, Mutual Information, Odds
Ratio, Power, Probability Ratio, and Area Under the Pre-
cision Recall Curve) fall under the category of TBFS tech-
niques. TBFS uses the normalized feature values as er-
satz posterior probabilities and then applies various classifier
performance metrics to determine the quality of the feature
being examined (Dittman et al. 2011).

Seven of the techniques (Fisher Score, Fold Change Ra-
tio, Fold Change Difference, Wilcoxon Rank Sum, Signifi-
cance Analysis of Microarrays, Welch T Statistic, and Signal
to Noise) belong to a family of techniques denoted as First
Order Statistic based feature selection techniques (Khosh-
goftaar et al. 2012). These seven techniques were combined
into a single family because all seven exhibit the use of first
order statistical measurements such as mean and standard
deviation. Our research shows that in general this family
of feature selection techniques are powerful and create very
diverse feature subsets. This combination of diversity and
power make them ideal to be included in ensemble feature
selection.

Fisher Score (Gu, Li, and Han 2011) calculates the
weighted squared difference between the mean values for
each class (positive and negative) compared with the overall
mean value, divided by the variance for all instances. Fold
Change Ratio and Fold Change Difference (Jeffery, Higgins,
and Culhane 2006) find either the ratio of or the difference
between the mean value of the positive and negative classes.
Signal-to-noise (Dittman et al. 2011) is the ratio of the dif-
ference in mean values across the two classes divided by the
sum of the standard deviations from both classes. The Welch
T Statistic (Tusher, Tibshirani, and Chu 2001) is a modi-
fied version of the t-statistic which does not assume equal
variance with each of the classes, while the Wilcoxon Rank
Sum (Breitling and Herzyk 2005) is different from the stan-
dard t-statistic in that it makes no assumptions on whether
or not the distribution is normal. Finally, the Significance
Analysis of Microarrays (Tusher, Tibshirani, and Chu 2001)
is the ratio of the difference of mean values from the two
classes over the sum of the overall standard deviation and an
exchangeability constant.

The remaining seven techniques (Chi-Squared, Informa-
tion Gain, Gain Ratio, ReliefF, ReliefF-W, Symmetric Un-
certainty , and SVM–RFE) are of the non-TBFS category,
and are implemented in the open-source Weka machine
learning toolkit (Witten and Frank 2011). Due to space lim-

422



Table 1: Details of the Datasets
Name Total # # of AUC value

of Instances Attributes 5-NN C4.5D C4.5N MLP Naı̈ve Bayes SVM Average
colon 62 2001 0.8568 0.8420 0.8585 0.7284 0.6392 0.8398 0.79413

ovarian mat 66 6001 0.8775 0.6163 0.6413 0.8763 0.7650 0.9613 0.78958
prostate 136 12601 0.8895 0.7651 0.8165 0.6850 0.5861 0.9512 0.78225

Brain Tumor 90 27680 0.8053 0.7378 0.7287 0.5094 0.6372 0.9072 0.72096
lungcancer-ontario 39 2881 0.6278 0.7361 0.7597 0.7167 0.7292 0.7486 0.71968
ECML Pancreas 90 27680 0.7973 0.6814 0.6799 0.3994 0.5000 0.9756 0.67226

mulligan-r-pd 126 22284 0.6628 0.6402 0.6471 0.5509 0.6996 0.7154 0.65265
breast-cancer 97 24482 0.7097 0.5882 0.5791 0.4770 0.5217 0.7293 0.60085
mulligan-r-nr 169 22284 0.7063 0.5146 0.5335 0.5097 0.6160 0.6783 0.59308
DLBCL-NIH 240 7400 0.5163 0.5220 0.5174 0.6727 0.6168 0.6664 0.58527

CNS 60 7130 0.5653 0.4139 0.4505 0.4646 0.5842 0.6349 0.51813

Figure 1: Diagram of Hybrid Diversity Ensemble Approach

itations we cannot elaborate on the specifics of each of the
techniques; please refer to (Dittman et al. 2011) for more
information.

As the goal of feature selection is to choose an optimum
subset of features to perform classification, we must decide
on how many of the features to use to build the classification
models. Our group decided on four feature subset sizes for
this experiment: 10, 25, 50, and 100. These four values span
a wide range of subset sizes.

Classification
We used five different classifiers or learners to create induc-
tive models from the features or genes chosen by the ensem-
ble feature selection technique. These models are used to
evaluate the predictive power of the genes chosen by apply-
ing them to a set of learners with varied properties. The five
learners (discussed further in (Witten and Frank 2011)) work
as follows: 5 Nearest Neighbor (5-NN) classifies instances
by finding the five closest instances to the test instance and
comparing the total weight of the instances from each class
(using 1/Distance as the weighting factor). Multilayer Per-
ceptron (MLP) builds an artificial neural network with three
nodes in its single hidden layer, with 10% of the data be-
ing held aside for validating when to stop the backpropaga-
tion procedure. Naive Bayes uses Bayes’ Theorem to de-
termine the posterior probability of membership in a given
class based on the values of the various features, assuming

that all of the features are independent of one another. Sup-
port Vector Machines (SVM) find a maximal-margin hyper-
plane which cuts through the space of instances (such that
instances on one side are in one class and the other side
are in the other class), choosing the plane which preserves
the greatest distance between each of the classes. For this
study, we set SVM’s complexity parameter c to 5.0 and its
buildLogisticModels parameter to “true” to provide proper
probability estimates. Logistic Regression is a statistical
technique that builds a logistic regression model to decide
the class membership of future instances. All five learn-
ers use the built-in implementations in the Weka machine
learning toolkit (Witten and Frank 2011), using the default
parameter values unless noted elsewhere in the preceding
descriptions.

Cross-Validation and Experimental Procedure
Cross-validation is a technique for training and testing mod-
els on a single dataset without the risk of overfitting. First,
the dataset is divided into N folds, or subsets. Models are
then trained on the first N − 1 folds and tested on the fi-
nal fold. The training and testing process is repeated until
each of the folds has been the test fold, and the results for
all iterations (i.e. from each of the folds, when that fold was
the test fold) are collected. In this paper we use five-fold
cross-validation. Additionally, we perform four runs of the
five-fold cross validation so as to reduce any bias due to a
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Table 2: Average Classification Performance (in AUC) of the 9 Aggregation Techniques

Learner Subset Enhanced Exponential Highest Lowest Mean Median Robust Round Stability
Size Borda Weighting Rank Rank Rank Robin Selection

5-NN

10 0.73907 0.74439 0.70145 0.70570 0.74358 0.74135 0.72014 0.71465 0.74039
25 0.75324 0.75625 0.74384 0.72097 0.76283 0.74973 0.73133 0.74336 0.75163
50 0.76149 0.76168 0.75345 0.74189 0.76980 0.76642 0.75899 0.75141 0.76080

100 0.76537 0.76853 0.76508 0.75707 0.76446 0.76847 0.76804 0.77371 0.76491

LR

10 0.72758 0.72525 0.71930 0.71723 0.71557 0.72109 0.71952 0.72401 0.72341
25 0.70646 0.71092 0.70706 0.70236 0.71081 0.71489 0.71003 0.71605 0.70481
50 0.69938 0.70871 0.69220 0.70153 0.69756 0.69118 0.69924 0.69098 0.69267

100 0.69279 0.69134 0.68000 0.68872 0.69102 0.69330 0.69328 0.68027 0.69268

MLP

10 0.75647 0.75117 0.74400 0.73042 0.74316 0.74636 0.74345 0.74144 0.75235
25 0.75452 0.76322 0.75343 0.73416 0.74418 0.75776 0.75552 0.75935 0.76011
50 0.76516 0.76832 0.76677 0.73987 0.74506 0.75219 0.75678 0.76117 0.76936

100 0.76904 0.76616 0.77280 0.74300 0.75126 0.75968 0.76472 0.77534 0.76997

NB

10 0.75618 0.75219 0.73596 0.73395 0.74271 0.75183 0.73217 0.73304 0.75394
25 0.75983 0.76167 0.75676 0.73983 0.75330 0.76409 0.75214 0.75157 0.76018
50 0.74665 0.74874 0.76670 0.72049 0.74260 0.74391 0.74739 0.76591 0.74870

100 0.74394 0.74516 0.75299 0.72461 0.74038 0.74503 0.73891 0.75365 0.74456

SVM

10 0.76329 0.75616 0.75059 0.74793 0.75576 0.75705 0.74793 0.74233 0.75776
25 0.76905 0.77089 0.75691 0.75570 0.76421 0.76447 0.76178 0.75616 0.76616
50 0.76528 0.76746 0.75507 0.74975 0.76320 0.76090 0.75544 0.75602 0.76932

100 0.76131 0.76457 0.75895 0.74090 0.75657 0.76125 0.75956 0.76221 0.76500

lucky/unlucky split.
The overall experimental procedure incorporated feature

selection embedded within cross-validation, to ensure that
features were selected only on training data. For each of the
datasets and each of the four runs, the data was divided into
five folds, and one fold was held out to serve as the train-
ing step. The remaining four folds were bootstrapped with
replacement 50 times, and each of the 25 feature ranking
techniques was applied to two of the bootstrapped datasets.
These 50 ranked feature lists were then aggregated with
one of the nine feature aggregation methods, and one of
the four feature subset sizes was used to select the top fea-
tures. These features were used to build a model on the
four training folds using one of the five learners, and this
model was finally tested on the test fold which had been
held aside initially. This procedure was repeated until all
folds were used as the training fold once, and until all four
runs of cross-validation had been performed, and the results
from the training folds were collected into a single result for
the given choice of feature aggregation method, feature sub-
set size, learner, and dataset. Finally, the entire procedure
was repeated for all other choice of aggregation, subset size,
learner, and dataset, and the results collected for presenta-
tion. In total we built (11 datasets × 4 runs × 5-fold cross-
validation × 50 iterations) = 11,000 ranked feature lists, not
counting the lists created through aggregation. In terms of
inductive models we built (11 datasets × 4 runs × 5-fold
cross-validation × 9 rank aggregation techniques × 4 fea-
ture subset sizes × 5 learners) = 39,600 models.

Results
This section contains the results from our experiment regard-
ing the classification performance (in terms of AUC) of nine

rank aggregation techniques. The performance was tested
using an ensemble of twenty-five feature rankers along
with the hybrid ensemble approach with 50 iterations (each
ranker is used twice), applied toward eleven bioinformatics
datasets from various genetics, biological, and biomedical
experiments. Table 2 contains the results of our experiment,
with all five learners presented in one table. The learner and
subset size are shown in columns 1 and 2, and columns 3
through 11 contain the average classification results across
the eleven datasets when keeping the learner, rank aggrega-
tion technique, and the feature subset size static. The top
performing value in each row is in boldface while the worst
performing value in each row is in italics.

Looking at the top performers across the five learners
we see that for seven of the rank aggregation techniques
(Mean, Median, Highest Rank, Stability Selection, Expo-
nential Weighting, Enhanced Borda, and Round Robin)
there is at least one combination of feature subset size and
learner which will have the rank aggregation technique be
the top performer. Of these seven the most common top
performer is a tie between Enhanced Borda, Exponential
Weighting, and Round Robin with four combinations each.
The least frequent top performer was Highest Rank with
only a single combination as top performer.

The remaining two rank aggregation techniques (Lowest
Rank and Robust Rank) did not have a single combination
of learner and feature subset size in which they were the
top performing rank aggregation technique. While Robust
Rank was never the top performer, it was only the worst per-
former once. However, Lowest Rank is by far the most fre-
quent worst performer of the rank aggregation techniques.
Lowest rank was the worst performer a total of fourteen out
of twenty combinations. This leads us to say that of the
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nine rank aggregation techniques one should definitely avoid
Lowest Rank.

Statistical analysis (not presented due to space limita-
tions) demonstrates that with the exception of Lowest Rank,
all rank aggregation techniques perform similarly. First, a
three-way ANOVA was performed, with the factors being
the choice of rank aggregation, learner, and subset size. All
three factors were statistically significant, meaning that at
least one pair of values has different means. A Tukey’s Hon-
estly Significant Difference test performed on the first fac-
tor confirms that the Lowest Rank technique differs from the
rest, while all other techniques are statistically indistinguish-
able. We believe this due to Lowest Rank choosing the worst
value for a feature; with 25 different rankers, there is a high
chance of one randomly giving a bad result . Thus, as all
other rankers are indistinguishable, we see that it is prefer-
able to choose a simple and computationally inexpensive ag-
gregation technique such as Mean over a more complex and
computationally expensive aggregation technique.

Conclusion
Ensemble gene (feature) selection is a potentially robust and
powerful tool for the creation of gene lists which not only
performs well in terms of classification but are stable to
changes in the data. However, one of the key decisions
when performing ensemble feature selection is how to ag-
gregate the multiple ranked feature lists generated during
the ensemble process. In this paper we applied nine rank
aggregation techniques on an ensemble of twenty-five filter-
based feature ranking techniques on eleven bioinformatics
datasets. The resulting aggregated gene lists were used with
five learners in order to measure their performance in terms
of classification results.

It was found that for seven of the techniques (Enhanced
Borda, Exponential Weighting, Highest Rank, Mean, Me-
dian, Round Robin, and Stability Selection) there is at least
one combination of learner and feature subset size which
will have the rank aggregation technique as the top per-
former. Conversely, two of the techniques (Lowest Rank and
Robust Rank) did not have a combination which will place
the technique as the top performer. Additionally, Lowest
Rank was by far the most frequent worst performer and it is
recommended not to use this technique for rank aggregation.

The results between the rank aggregation techniques have
very little variance. Statistical tests confirm that other than
Lowest Rank (which performs worst), all rank aggregation
techniques are statistically indistinguishable. This allow us
to state that the effect of the choice of rank aggregation tech-
nique is minimal and it is recommended to choose a simple
and efficient technique over a more complicated one.

Future work in this area will focus on narrowing the do-
main of the datasets to those of specific purposes (patient re-
sponse prediction to a drug, tumor identification, etc.). This
is to determine if the variability of the techniques change
based on a more specific data source.
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