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Abstract

In student modeling, the concept of “mastery learning” i.e.
that a student continues to learn a skill till mastery is attained
is important. Usually, mastery is defined in terms of most re-
cent student performance. This is also the case with models
such as Knowledge Tracing which estimate knowledge solely
based on patterns of questions a student gets correct and the
task usually is to predict immediate next action of the student.
In retrospect however, it is not clear if this is a good defini-
tion of mastery since it is perhaps more useful to focus more
on student retention over a longer period of time. This paper
improves a recently introduced model by Wang and Beck that
predicts long term student performance by clustering the stu-
dents and generating multiple predictions by using a recently
developed ensemble technique. Another contribution is that
we introduce a novel clustering algorithm we call “Regularity
Clustering” and show that it is superior in the task of predict-
ing student retention over more popular techniques such as
k-means and Spectral Clustering.

Introduction

An important concept in student modelling is of “mastery
learning” - that is, a student continues to learn a skill till
mastery is achieved. While the exact definition of mastery
varies, it is usually defined in terms of the most recent stu-
dent performance. For example, in the Knowledge Tracing
(Corbett and Anderson, 1995) framework that has come to
dominate student modelling in many contexts, mastery in a
skill is said to have been achieved when according to the
model the probability that the student knows the skill ex-
ceeds 0.95. In many actual tutoring systems this definition
is relaxed but still relies on the idea of recent performance.
In a recent work (Wang and Beck, 2012) draw our attention
to the question whether such a near singular focus is impor-
tant after all. Intuitively, whether a student will remember
enough to answer a question after taking a break is a better
definition of mastery as compared to a local measure based
on next item response. That is, they found that features such
as the number of distinct days that the student practised a
skill was more important than features that accounted for
how many questions they got correct. It is noteworthy that
models such as Knowledge Tracing are in stark contrast to
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this, they only rely on the patterns of questions that students
get correct or incorrect to make a prediction of their response
on the next item, and hence factors such as how many ques-
tions they get correct are more important. This difference
is not surprising since the factors that reflect long term re-
tention might be quite different from factors that cause good
short term performance.

In retrospect, it is probably unfortunate that the Intelli-
gent Tutoring Systems field has fallen into using the term
“mastery” when that often meant “demonstrated some re-
tention over a few minutes”. Koedinger argues that we need
“robust” learning from our tutors, and being able to demon-
strate retention days later is clearly a more robust notion of
learning that immediate retention after practice.

To attempt to improve upon Wang & Beck, we have used
the technique of using clustering to generate an ensemble in-
troduced by (Trivedi, Pardos and Heffernan, 2011) to see if
we can improve our predictions. The first research question
that we have is: Can we employ this technique to increase
accuracy in predicting long term retention? In (Trivedi, Par-
dos, Sarkozy and Heffernan, 2011) it was found that Spectral
clustering was more effective than K-means for this type of
work. We also introduce and test a novel type of clustering
that we call “Regularity Clustering”, which is derived from
the Regularity Lemma (Szemerédi, 1976), a fundamental re-
sult in graph theory. We also ask the following empirical
question: “How does Regularity Clustering compare in per-
formance with spectral and K-means?” In the next section
we review a technique that uses clustering for bootstrapping.

Clustering Students and Strategy for
Bootstrapping

The idea that students are perhaps quite different when it
comes to forgetting makes it quite apparent that it is perhaps
not a good idea to fit a global model on all of the data. In
spite of individual differences, it is well known to teachers
that broadly the patterns and underlying reasons of forget-
ting fall into several coarse groups, with each such group
having students more “similar” to each other in regard to for-
getting. Honing on this intuition, it might make more sense
to cluster students into somewhat homogeneous groups and
then train a predictor separately on each such group, which
considers only the points from that cluster as the training set



for itself. It is clear that each such predictor would be a bet-
ter representative for that group of students as compared to
a single global predictor trained on all the students at one
time. While this idea sounds compelling, there is a major is-
sue with it. While it is useful to model students as belonging
to different groups, it is perhaps not a good idea to simply
divide them into clusters. This is because the groupings are
usually not very clear. For example, a student might be ex-
tremely good at retaining information about certain aspects
of Trigonometry but not other aspects, while at the same
time might be strong with retaining algebra. Such complex
characteristics can not be modelled by a simplistic solution
as only clustering the data to some upper limit and then train-
ing predictors on each cluster. The “fuzzy” nature of such
a process, which is like a spread of features across groups
needs to be captured to make a distributive model such as the
above more meaningful. This issue can be fixed by varying
the granularity of the clustering and training separate models
each time so the such features can be accounted for. A sim-
ple strategy to do so was proposed recently and was found
quite useful in various tasks in student modelling (Trivedi,
Pardos and Heffernan, 2011), (Trivedi, Pardos, Sarkézy and
Heffernan, 2011).

The technique is actually a simple ensemble method. The
basic idea behind ensemble methods is that they involve run-
ning a “base learning algorithm” multiple times, each time
with some change in the representation of the input (e.g.
considering only a subset of the training examples or a sub-
set of features etc) so that a number of diverse predictions
can be obtained. This process also gives a rich representa-
tion of the input, which is one of the reasons why they work
so well. In the particular case of our method, unlike many
other ensemble methods that use a random subset to boot-
strap, we use clustering to bootstrap. The training set is first
clustered into k disjoint clusters and then a logistic regres-
sion model is trained on each of the clusters only based on
the training points that were assigned to that cluster. Each
such model, being a representative of a cluster is referred to
as a cluster model. Thus for a given value of k there would
be k cluster models. Note that since all the clusters are mu-
tually exclusive, the training set is represented by all the k
cluster models taken together. We refer to this as a Pre-
diction Model, PMj,. For an incoming test point, we first
figure out the cluster that point belongs to and then use the
concerned cluster model alone to make a prediction on that
point. Now also note that we don’t specify the number of
clusters above. Hence, we can change the granularity of the
clustering from 1 (PM;, which is the entire dataset as one
cluster) to some high value K. In each such instance we
would get a different Prediction Model, thus obtaining a set
of K Prediction Models. Since the granularity of the cluster-
ing is varied, the predictions obtained would be diverse and
hence could be combined together by some method such as
averaging them together to get a single prediction.

Note that the clustering algorithm above is not specified
and hence could be any clustering technique, as long as
there is a straightforward way to map test points to clus-
ters. In particular we clustered students using three algo-
rithms: k-means (Hartigan et al 1979), Spectral Cluster-
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Figure 1: Construction of a Prediction Model for a given K.
See text for details

ing (Luxburg, 2007) and a recently introduced clustering
technique called Regularity Clustering (Sarkozy, Song, Sze-
merédi and Trivedi, 2012). The basic k-means algorithm
finds groupings in the data by randomly initializing a set of
k cluster centroids and then iteratively minimizing a distor-
tion function and updating these & cluster centroids and the
points assigned to them. This is done till a point is reached
such that sum of the distances of all the points with their
assigned cluster centroids is as low as possible. Cluster-
ing methods such as k-means estimate explicit models of the
data (specifically spherical Gaussians) and fail spectacularly
when the data is organized in very irregular and complex
shaped clusters. Spectral clustering on the other hand works
quite differently. It represents the data as an undirected
graph and analyses the spectrum of the graph Laplacian ob-
tained from the pairwise similarities of the data points (also
called the similar matrix of the graph). This view is use-
ful as it does not estimate any explicit model of the data
and instead works by unfolding the data manifold to form
meaningful clusters. Usually spectral clustering is a far more
accurate clustering method as compared to k-means except
in cases where the data indeed confirms to the model that
the k-means estimates. For more details we refer the reader
the mentioned references. In the next section we describe
the newly introduced clustering technique called Regularity
Clustering. This section might be skipped to experimental
results without any loss of generality.

Regularity Clustering Algorithm

In this section we briefly describe the Regularity Cluster-
ing algorithm. The Regularity Lemma (Szemerédi, 1976)
is a fundamental result in Graph Theory that claims the ex-
istence of a regular partition of the vertex set of the graph



(the actual definition of “regular” follows), from which we
can construct a reduced graph, this reduced graph is an
“essence” of the original graph and can be worked on in-
stead of the original graph. The Regularity Lemma is a very
important tool in theoretical proofs, but due to the require-
ment of very large graph, it doesn’t have practical appli-
cations. A clustering method was recently introduced that
makes an attempt to harness the power of the Regularity
Lemma(Sarkozy, Song, Szemerédi and Trivedi, 2012). Be-
fore we describe the algorithm, we first introduce some no-
tation.

Notation and Definitions

Let G = (V, E) denote a graph, where V' is the set of ver-
tices and F is the set of edges. When A, B are disjoint sub-
sets of V, the number of edges with one endpoint in A and
the other in B is denoted by e(A, B). When A and B are
nonempty, we define the density of edges between A and B

as
e(A, B)
d(A,B) = L,
Al B
The most important concept is the following.

Definition 1 The bipartite graph G = (A,B,E) is e-
regular if for every X C A, Y C B satisfying

| X[ > €e[Al,[Y] > €[ B

we have
|d(X7 Y) - d(A> B)' <,

otherwise it is e-irregular.

Roughly speaking this means that in an e-regular bipar-
tite graph the edge density between any two relatively large
subsets is about the same as the original edge density. In
effect this implies that all the edges are distributed almost
uniformly.

Definition 2 A partition P of the vertex set V =V, U V; U
..UV, of a graph G = (V, E) is called an equitable parti-
tion if all the classes V;, 1 < i < k, have the same cardinal-
ity. Vy is called the exceptional class.

Thus note that the exceptional class Vj is there only for a
technical reason, namely to guarantee that the other classes
have the same cardinality.

Definition 3 An equitable partition P of the vertex set V =
VoUWVIU...UV of G = (V, E) is called e-regular if |Vy| <
€|V | and all but ek? of the pairs (V;, V;) are e-regular where
1<i<j<k

The Regularity Lemma basically claims that every (dense)
graph could be partitioned into a bounded number of
pseudo-random bipartite graphs and a few leftover edges.
Since random graphs of a given edge density are much eas-
ier to treat than all graphs of the same edge-density, the Reg-
ularity Lemma helps us to translate results that are trivial for
random graphs to the class of all graphs with a given number
of edges.

In applications of the Regularity Lemma the concept of
the reduced graph plays an important role.
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Definition 4 Given an e-regular partition of a graph G =
(V, E) as provided by the Regularity Lemma, we define the
reduced graph G as follows. The vertices of GT are asso-
ciated to the classes in the partition and the edges are as-
sociated to the e-regular pairs between classes with density
above d.

The reduced graph would preserve most of the properties
of the original graph (see (Komlds et al., 2002)). This im-
plies that if we run any algorithm on G instead of G we
would get a significant speed-up without compromising ac-
curacy much.

Algorithmic Version of the Regularity Lemma

The original proof of the regularity lemma (Szemerédi,
1976) does not give a method to construct a regular partition
but only shows that one must exist. To apply the regularity
lemma in practical settings, we need a constructive version.
Alon et al. (Alon et al., 1994) were the first to give an algo-
rithmic version. Since then a few other algorithmic versions
have also been proposed (Frieze and Kannan, 1999). Below
we give a brief description to the algorithm due to Alon et
al, The details can be found at (Alon et al., 1994).

First, given a pair (A4, B), they have a subroutine
(Lemmal) which can either verify that the pair is e-regular
or provide a certificate that it is not. The certificate is the
subset (A’, B") C (A, B) and it helps to proceed to the next
step in the algorithm.

So given a concrete partition, the algorithm can check the
regularity of each pair by using Lemmal. If there are enough
regular pairs then the algorithm terminated with the conclu-
sion that this is indeed a regular partition. Otherwise by us-
ing all the certificates found before, the algorithm divides
each class into a set of “atoms”, then splitting each atom
into a set of equal sized classes. By doing so on the orig-
inal partition, the algorithm forms a new partition which is
guranteed to have better chance to be a regular partition.

Alon et al proved that the algorithm must halt after certain
iterations (see (Alon et al., 1994)). Unfortunately, the num-
ber of iterations is huge, also in each iteration the number of
classes increases to k4% from k, starting from some integer
k > 1. This implies that the graph G' must be indeed astro-
nomically large (a tower function) to ensure the completion
of this procedure. As mentioned before, Gowers (Gowers,
1997) proved that indeed this tower function is necessary in
order to guarantee an e-regular partition for all graphs. The
size requirement of the algorithm above makes it impracti-
cal for real world situations where the number of vertices
typically is a few thousand.

Spectral regularity algorithm

To make the regularity lemma applicable we first needed a
constructive version that we stated above. But we see that
even the constructive version is not directly applicable to
real world scenarios. We note that the above algorithm has
such restrictions because its aim is to find a perfect regular
partition. Thus, to make the regularity lemma truly applica-
ble, we modify the Regular Partition Algorithm so that in-
stead of constructing a regular partition, we find an approx-



imately regular partition. Such a partition should be much
easier to construct. We have the following 3 major modifi-
cations to the Regular Partition Algorithm given by Alon et
al.

Modification 1: We want to decrease the cardinality of
atoms in each iteration. Instead of using all the e-irregular
pairs, we only use some of them. Specifically, in our current
implementation, for each class we consider at most one e-
irregular pair that involves the given class. By doing this we
reduce the number of atoms to at most 2. We observe that in
spite of the crude approximation, this seems to work well in
practice.

Modification 2: We want to bound the rate by which the
class size decreases in each iteration. In the original Re-
finement Algorithm, each class will be divided into 4% sub-
classes. Since Modification 1 gurantees at most 2 atoms for
each class, we could significantly decrease the number of
subclasses to [, where a typical value of [ could be 3 or 4,
much smaller than 4*. We call this user defined parameter [
the refinement number.

Modification 3: In the original Refinement Algorithm the
exceptional class is guranteed to be small. Our Modification
2 might cause the size of the exceptional class to increase too
fast. Indeed, by using a smaller /, we risk putting % portion
of all vertices into 1/ after each iteration. To overcome this
drawback, we “recycle” most of 1, i.e. we move back most
of the vertices from V{;. Below is the modified Refinement
Algorithm.

Modified Refinement Algorithm: Given a v-irregular
equitable partition P of the vertex set V = VoUViU. ..UV}

with v = % and refinement number |, construct a new par-
tition Q).

For each pair (V5, Vi), 1 < s <t < k, we apply Lemmal
with A =V, B =V, and €. For afixed s if (Vy, V;) is found
to be e-regular for all t # s we do nothing, i.e. Vi is one
atom. Otherwise, we select one e-irregular pair (V, V;) ran-
domly and the corresponding certificate partitions Vy into

two atoms. Set m = L%J 1 < ¢ < k. Then we choose
a collection QQ' of pairwise disjoint subsets of V' such that
every member of Q' has cardinality m and every atom A

contains exactly L‘%‘j members of Q)'. Then we unite the
leftover vertices in each Vi, we select one more subset of
size m from these vertices and add these sets to Q' resulting
in the partition Q). The collection Q) is an equitable partition
of V into at most 1 + lk classes.

Now we present our modified Regular Partition Algo-
rithm. There are three main parameters to be selected by the
user: ¢, the refinement number [ and h the minimum class
size when we must halt the refinement procedure. h is used
to ensure that if the class size has gone too small then the
procedure should not continue.

Modified Regular Partition Algorithm :

Given a graph G and parameters €, 1, h, construct an ap-
proximately e-regular partition.

1. Imitial partition: Arbitrarily divide the vertices of G
into an equitable partition Py with classes Vo, Vi,..., V],
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where |V1| = | 7| and hence |Vy| < I. Denote ky = .

2. Check size and regularity: If |V;| < h, 1 <1 < k, then
halt. Otherwise for every pair (Vs,Vy) of P;, verify if it is
e-regular or find X C V5, Y C V4, | X]| > %|VS|,|Y| >
S\ Vi, such that |d(X,Y) — d(Vs, V)| > €

3. Count regular pairs: If there are at most ek? pairs that

are not verified as e-regular, then halt. P; is an e-regular
partition.

4. Refinement: Otherwise apply the Modified Refinement
Algorithm, where P = P, k = k;,v = %,
partition Q with 1 + lk; classes.

5. Tteration: Let ki1 = lk;, Py = Q.1 =1+ 1, and go
to step 2.

and obtain a

Two Phase Strategy

To make the regularity lemma applicable for clustering data,
we still need to resolve two issues: Firstly, in practise we
don’t require equitable partition; and secondly, we do not
have full control on the number of clusters in the final parti-
tion. To overcome these, we adopt the following two phase
strategy (Figure 1):

1. Application of the Regular Partition Algorithm: In the
first stage we apply the regular partition algorithm as de-
scribed in the previous section to obtain an approximately
regular partition of the graph representing the data. Once
such a partition has been obtained, the reduced graph as
described in Definition 4 could be constructed from the
partition.

2. Clustering the Reduced Graph: We apply spectral clus-
tering (though any other pairwise clustering technique
could be used) on the reduced graph to get a partitioning
and then project it back to the higher dimension. Recall
that vertices in the exceptional set 1/, are leftovers from
the refinement process and must be assigned to the clus-
ters obtained. Thus in the end these leftover vertices are
redistributed amongst the clusters using knn classifier to
get the final grouping.

In the next section we discuss the dataset considered and
the results.

Dataset Description and Experimental Results

The data considered in this article comes from the ASSIST-
ments system, a web-based tutoring system for 4th to 10th



grade mathematics. The system is widely used in Northeast-
ern United States by students in labs and for doing home-
work in the night. The dataset used is the same as used in
(Wang and Beck, 2012). The only exception being that we
considered the data for a unique 1969 students and did not
consider multiple data points of the same student attempting
something from a different skill. This was only done be-
cause we were interested in clustering students according to
user-id. The following features were used. The goal was to
predict whether a response was correct i.e. 1 or incorrect or
0.

1. n_correct: the number of prior student correct responses
on this skill; This feature along with n_incorrect, the num-
ber of prior incorrect responses on this skill are both used
in PFA models.

2. n_day_seen: the number of distinct days on which stu-
dents practiced this skill. This feature distinguishes the
students who practiced more days with fewer opportuni-
ties each day from those who practiced fewer days but
more intensely, and allow us to evaluate the difference be-
tween these two situations. This feature was designed to
capture certain spaced practice effect in students data.

3. g_mean_performance: the geometric mean of students
previous performances, using a decay of 0.7. For a
given student and a given skill, use opp to represent
the opportunity count the student has on this skill, we
compute the geometric mean of students previous perfor-
mance using formula: g_mean_per formance(opp) =
g-mean_per formance(opp — 1) x 0.7 +
correctness(opp) x 0.3. The geometric mean method
allows us to examine current status with a decaying
memory of history data. The number 0.7 was selected
based on experimenting with different values.

4. g_mean_time: the geometric mean of students previ-
ous response time, using a decay of 0.7. Similar
with g_mean_performance, for a given student and a
given skill, the formula of the geometric mean of stu-
dents previous response time is: g_mean_time(opp) =
g-mean_time(opp — 1) x 0.7 + response_time(opp) X
0.3.

5. slope_3: the slope of students most recent three perfor-
mances. The slope information helps capture the influ-
ence of recent trends of student performance.

6. delay_since_last: the number of days since the student last
saw the skill. This feature was designed to account for a
gradual forgetting of information by the student.

7. problem_difficulty: the difficulty of the problem. The
problem_difficulty term is actually the problem easiness
in our model, since it is represented using the percent cor-
rect for this problem across all students. The higher this
value is, the more likely the problem can be answered cor-
rectly.

Out of these features it was reported that features such as
n_correct and n_incorrect had very little influence on the pre-
diction performance while the features g_mean_performance
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Table 1: Paired t-tests on the predictions obtained with the
baseline (P M) and Regularity Clustering

Pred. Models

Baseline & Regularity

1 N

2 0.00531
3 0.0401
4 0.0018
5 0.0044

and n_day_seen appear to be reliable predictors of student re-
tention. This observation is consistent with the spaced prac-
tice effect in cognitive science. Hence, in our experiments
we don’t consider n_correct and n_incorrect while training
the model. As mentioned before, we used k-means, Spectral
and Regularity Clustering in conjunction with the ensemble
technique described. It must also be noted that the features
were normalized to values between -1 and 1 to avoid undue
dominance of performance by a specific feature. The results
obtained were rather surprising. The use of k-means clus-
tering and Spectral Clustering, that has been reported useful
in other tasks does not seem to help in the case of predict-
ing long term retention (atleast on this data). The baseline
model used by Wang & Beck is represented in Figure 3 by
PM,, the starting point on the x-axis. The other values on
the x-axis represent how many Prediction Models were av-
eraged. The errors reported are the mean absolute errors. As
reported in Table 1, the ensemble used in conjunction with
Regularity Clustering is significantly better than the baseline
with strong p-values. In table 2 we show that this trend also
holds when Regularity Clustering is compared with Spectral
Clustering.

Conclusion

(Corbett and Anderson, 1995) found time and again that
Knowledge Tracing was consistently over predicting student
performance on paper and pencil measures, and we suggest



Table 2: Paired t-tests on the predictions obtained with Spec-
tral and with Regularity Clustering at different k

Pred. Models | Spectral & Regularity
1 _
2 0.1086
3 0.0818
4 0.0045
5 < 0.005

that a focus on retention days later might be a way to correct
that. This paper makes two contributions, one is in educa-
tional data mining and another is a contribution to the liter-
ature on clustering. We use this new clustering technique to
help predict student long term retention and compared the
result of different clustering techniques. From the results,
we can draw two important conclusions: Firstly, by adding
the ensemble cluster model technique build in (Trivedi, Par-
dos and Heffernan, 2011), we are able to improve the model
that Wang and Beck used to predict student long-term re-
tention; Another conclusion is that, the Regularity Cluster-
ing method provides reliably higher predictive accuracy in
predict student retention compare to other popular existing
clustering methods we used: K-means and the spectral clus-
tering. The paper shows the clear value of clustering in pre-
dicting student long-term retention lending weight to the fact
that the patterns of forgetting in students might roughly be in
groups. This paper also suggests that Regularity Clustering
is the most effective clustering method in this task, atleast in
the methods that we tried, outperforming techniques such as
Spectral Clustering.
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