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Abstract

This paper presents a logic prover approach to predict-
ing textual similarity. Sentences are represented using
three logic forms capturing different levels of knowl-
edge, from only content words to semantic representa-
tions extracted with an existing semantic parser. A logic
prover is used to find proofs and derive semantic fea-
tures that are combined in a machine learning frame-
work. Experimental results show that incorporating the
semantic structure of sentences yields better results than
simpler pairwise word similarity measures.

1 Introduction
The task of Semantic Textual Similarity (Agirre et al. 2012)
measures the degree of semantic equivalence between two
sentences. Unlike textual entailment (Giampiccolo et al.
2007), textual similarity is symmetric, and unlike both tex-
tual entailment and paraphrasing (Dolan and Brockett 2005),
textual similarity is modeled using a graded score rather than
a binary decision. For example, sentence pair (1) is very sim-
ilar, while (2) is somewhat similar and (3) is not similar.
1. A man is riding a bicycle. A man is riding a bike.
2. A man is cutting a paper. A person is tearing paper.
3. A car is parking. A cat is playing.

State-of-the-art systems that predict textual similarity
(Bär et al. 2012; Šarić et al. 2012; Banea et al. 2012) mostly
rely on word pairings and disregard the semantic structure
of sentences. Consider sentences 1(a) A man is holding a
leaf and 1(b) A monkey is fighting with a man. These two
sentences are very dissimilar; the only commonality is the
concept ‘man’. Any approach that blindly searches for the
word in 1(b) that is the most similar to the word ‘man’ in
1(a) will find ‘man’ from 1(b) to be a match. One of three
content words is a perfect match and thus the predicted sim-
ilarity will be much higher than it actually is.

Consider now the semantic representations for sentences
1(a) and 1(b) in Figure 1. ‘man’ is an AGENT in 1(a), and
a THEME in 1(b). While both words encode the same con-
cept, their semantic functions with respect to other concepts
are different. Intuitively, it seems reasonable to penalize the
similarity score based on this semantic discrepancy.
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Figure 1: Semantic representation of 1(a) A man is holding
a leaf and 1(b) A monkey is fighting a man.

This paper presents a novel approach to predict textual
similarity. The main contributions are: (1) semantic repre-
sentations are incorporated; (2) three logic form transforma-
tions capturing different levels of knowledge are used; and
(3) semantic features are derived from a logic prover.

2 Related Work
Predicting similarity between text snippets is relevant to in-
formation retrieval, paraphrase recognition, grading answers
to questions and many others. In this section, we focus on re-
cent work and emphasize the differences with our approach.

The SemEval 2012 Task 6: A Pilot on Semantic Textual
Similarity (Agirre et al. 2012) brought together 35 teams that
competed against each other. The top 3 performers (Bär et
al. 2012; Šarić et al. 2012; Banea et al. 2012) followed a ma-
chine learning approach with features that do not take into
account the semantic structure of sentences, e.g., n-grams,
word overlap, pairwise word similarity (corpus and knowl-
edge based), dependency parses. Top-performers also used
knowledge derived from large corpora, e.g., Wikipedia.

Participants that incorporated information about the struc-
ture of sentences (Glinos 2012; AbdelRahman and Blake
2012; Rios, Aziz, and Specia 2012) performed worse than
the above systems. Out of 88 runs, they ranked 23, 36 and
64. We believe this is because they used semantic roles to
create a “role-based similarity score” or did not combine
deeper semantic information with more basic approaches
that for certain sentence pairs yield very good results.

3 Approach
The main components of our approach are summarized in
Figure 2. First, sentences are transformed into logic forms
(lft1, lft2). Then, a modified logic prover is used to find a
proof in both directions (lft1 to lft2, and lft2 to lft1). The
prover yields similarity scores based on how many pred-
icates had to be dropped and features characterizing the
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Figure 2: Main components of our semantic similarity prediction system.

sentence: A woman dances in the rain outside.
semantic relations extracted: AGENT(dances, woman), LOCATION(dances, rain)

Basic woman N(x1) & dance V(x2) & rain N(x3) & outside M(x4)
SemRels woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)
Full woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3) & outside M(x4)

Table 1: Examples of logic form transformations using Basic, SemRels and Full modes.

proofs. Additional similarity scores are obtained using WN-
based similarity measures. Finally, all scores and features
are combined using machine learning to obtain the final sim-
ilarity score. The rest of this section details each component
and exemplifies it with the sentences A woman is dancing in
the rain and A woman dances in the rain outside.

3.1 Logic Form Transformation

The logic form transformation (LFT) of a sentence is de-
rived from the concepts in it, the semantic relations linking
them and named entities. We distinguish six types of predi-
cates: (1) N for nouns, e.g., woman: woman N(x1); (2) V for
verbs, e.g., dances: dance V(x2); (3) M for adjectives and
adverbs, e.g., outside: outside M(x3); (4) O for concepts
encoded by other POS tags; (5) NE for named entities, e.g.,
guitar: guitar N(x4) & instrument NE(x4); and (6) SR
for semantic relations, e.g., A woman dances: woman N(x1)
& dance V(x2) & AGENT SR(x2, x1). AGENT SR(x2, x1)
could be read “x2 has agent x1”.

In order to overcome semantic relation extraction errors,
we have experimented with three logic form transformation
modes. Each mode captures different levels of knowledge:

Basic generates predicates for nouns, verbs, modifiers and
named entities. This logic form is parallel to accounting
for content words, their POS tags and named entity types.

SemRels generates predicates for all semantic relations,
concepts that are arguments of relations and named en-
tities. If no semantic relations are found, this mode backs
off to Basic to avoid generating an empty logic form.

Full generates predicates for all concepts, all semantic rela-
tions and all named entities.

Table 1 exemplifies the three logic forms. If perfect se-
mantic relations were always available, SemRels would be
the preferred mode. However, this is often not the case and
combining the three yields better performance. Note that
there is no predicate for outside in SemRels since it is not
an argument of a semantic relation extracted.

3.2 Modified Logic Prover

Textual similarity is symmetric and therefore we find proofs
in both directions (lft1 to lft2, and lft2 to lft1). In the rest
of this section we only exemplify one, lft1 to lft2. The
logic prover is a modification of OTTER (McCune and Wos
1997). For the textual similarity task, we load lft1 and ¬lft2
to the set of support and do not load anything to the usable
list. Then, the logic prover begins its search for a proof. Two
scenarios are possible: (1) a contradiction is found, i.e., a
proof is found, and (2) a contradiction cannot be found. The
modifications to the standard resolution procedure are used
in scenario (2). In this case, predicates from lft1 are dropped
until a proof is found. The goal is to force the prover to al-
ways find a proof, and penalize partial proofs accordingly.
Predicate Dropping Criteria. Individual predicates from
lft1 are dropped following a greedy criterion: predicates that
occur earlier are dropped first. After dropping a predicate,
predicates that become unbound are dropped as well. Specif-
ically, dropping a noun, verb or modifier may make a se-
mantic relation or named entity predicate unbound. To avoid
predicting high similarity between sentences with a com-
mon semantic structure but unrelated concepts instantiating
this structure, we drop predicates for semantic relations and
named entities when they become unbound.
Proof Scoring Criterion. The score of the proof from lft1
to lft2 is the ratio of predicates not dropped to find the proof
over the number of predicates in lft1. Note that the drop-
ping mechanism, and in particular whether predicates that
become unbound are automatically dropped, greatly impacts
the proof obtained and its score. Table 2 exemplifies the
dropping and scoring criteria. If unbound predicates were
not dropped, the overall score would be 2/8 = 0.25.
Feature Selection. While the proof score can be used di-
rectly as an estimator of the similarity between lft1 and lft2,
we also extract features from the proof itself. Namely, for
each predicate type (N, V, M, O, SR, NE), we count the num-
ber of predicates present in lft1, the number of predicates
dropped to find a proof for lft2 and the ratio of the two
counts. An example is provided in Table 3.
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sent1: A woman plays an electric guitar sent2: A man is cutting a potato
lft1: woman N(x1) & play V(x2) & AGENT SR(x2, x1) & electric M(x3) & guitar N(x4) & instrument NE(x4)
& VALUE SR(x4, x3) & THEME SR(x2, x4)
¬lft2: ¬man N(x1) ∨ ¬cut V(x2) ∨ ¬AGENT SR(x2, x1) ∨ ¬potato N(x3) ∨ ¬THEME SR(x2, x3)

Step Predicate dropped (regular) Score Predicate dropped (unbound) Score
1 woman N(x1) 0.875 n/a 0.875
2 play V(x2) 0.750 AGENT SR(x2, x1) 0.625
3 electric M(x3) 0.500 n/a 0.500
4 guitar N(x4) 0.375 instrument NE(x4), VALUE SR(x4, x3), THEME SR(x2, x4) 0.000

Table 2: Example of predicate dropping and proof scoring.

lft1: woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)
lft2: woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3) & outside M(x4)

lft2 to lft1

pred. dropped outside M(x4)
score 5/6 = 0.8333

features nt nd nr vt vd vr mt md mr net ned ner srt srd srr
2 0 0 1 0 0 1 1 1 0 0 0 2 0 0

Table 3: Score and features obtained with the logic prover. For each predicate type (n, v, m, o, ne, sr; o omitted), features
indicate the total number of predicates, the number of predicates dropped and ratio (t, d and r) until a proof is found.

Split Score Sentence Pair Notes
MSRpar (36) 2.600 The unions also staged a five-day strike in March that forced all but

one of Yale’s dining halls to close. The unions also staged a five-day
strike in March; strikes have preceded eight of the last 10 contracts.

Long sentences, difficult to parse;
often several details are missing in
one sentence but the pair is similar

MSRvid (13) 0.000 A woman is swimming underwater. A man is slicing some carrots. Short sentences, easy to parse
SMTeuroparl (56) 4.250 Then perhaps we could have avoided a catastrophe. We would per-

haps then able prevent a disaster.
One sentence often ungrammatical
(SMT output), long sentences

Table 4: Examples from the three splits.The number between parenthesis indicates the average number of tokens per pair.

The LFT-based scores and features are fed to a machine
learning algorithm. Specifically, we account for 9 scores (3×
3; three scores (2 directions and average), three LFT modes)
and 108 features (3×6×3×2 = 108; three features for each
of the six predicate types, three LFT modes, two directions).

3.3 Pairwise Word Similarity Measures and ML
Pairwise word similarity measures between concepts have
been used for predicting textual similarity before. Following
the proposal by Mihalcea, Corley, and Strapparava (2006),
we derive scores using 7 measures: Path, LCH, Lesk, WUP,
Resnik, Lin and JCN. We incorporate these scores for com-
parison purposes and to improve robustness in our approach.

We follow a supervised machine learning approach,
where a model created with training instances is tested
against unseen test instances. As a learning algorithm, we
use bagging with M5P trees (Quinlan 1992; Wang and Wit-
ten 1997) as implemented in Weka (Hall et al. 2009).

4 Experiments and results
Logic forms are derived from the output of state-of-the-art
NLP tools developed previously and not tuned in any way
to the current task or corpora. Specifically, the named entity
recognizer extracts up to 90 fine-grained types and was first
develop for a Question Answering system (Moldovan et al.
2002). Semantic relations are extracted using a state-of-the-
art semantic parser (Moldovan and Blanco 2012).

4.1 Corpora
We use the corpora released by the organizers of SemEval
2012 Task 06: A Pilot on Semantic Textual Similarity
(Agirre et al. 2012). These corpora consist of pairs of sen-
tences labeled with their semantic similarity score, ranging
from 0.0 to 5.0. Sentence pairs come from three sources:
(1) MSRpar, a corpus of paraphrases; (2) MSRvid, short
video descriptions; and (3) SMTeuroparl, output of machine
translation systems and reference translations. Table 4 shows
examples of the three sources, for more details about the cor-
pora refer to the aforementioned citation.

4.2 Results and Error Analysis
Results obtained with out approach and the top-performer at
SemEval-2012 Task 6 (Bär et al. 2012) are shown in Table
5. The three individual LFT scores are the scores obtained
by the logic prover (average of both directions) with the cor-
responding logic form. LFT scores + features is a system
combining 117 features (9 scores and 108 additional features
derived from the proof, Section 3.2). WN scores is a system
combining the 7 WN-based word similarity scores. Finally,
All is a system combining all scores and features available.

Regarding LFT modes, Basic performs better than Sem-
Rels and Full performs better than SemRels. The only ex-
ception is with sentences from SMTeuroparl, where Sem-
Rels outperforms Basic by a negligible difference, 0.4728−
0.4695 = 0.0033. These results lead to the conclusions that
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Correlation

MSRpar

LFT score
Basic 0.5240
SemRels 0.4318
Full 0.5074

LFT scores + features 0.5522
WN scores 0.5052
All 0.5852
(Bär et al. 2012) 0.6830

MSRvid

LFT score
Basic 0.7295
SemRels 0.6459
Full 0.6665

LFT scores + features 0.7716
WN scores 0.8504
All 0.8602
(Bär et al. 2012) 0.8739

SMTeuroparl

LFT score
Basic 0.4695
SemRels 0.4728
Full 0.4978

LFT scores + features 0.4724
WN scores 0.5111
All 0.5180
(Bär et al. 2012) 0.5280

Table 5: Correlations obtained for the test split by our ap-
proach and the top-performer at SemEval-2012 Task 6.

including concepts that are not arguments of relations (Full)
is better than disregarding them (SemRels), and that building
a system grounded exclusively on semantic relations (Sem-
Rels) performs worse than simpler approaches that only ac-
count for concepts (Basic).

Combining LFT scores and features derived from the
proofs, the main novelty of our approach, brings substantial
improvements with MSRpar and MSRvid, but worse perfor-
mance with SMTeuroparl. The fact that most pairs in SM-
Teuroparl include one ungrammatical sentence makes our
NLP tools perform poorly, greatly affecting overall perfor-
mance. We note, though, that when sentences are easier to
parse (MSRpar, MSRvid), the benefits are clear.

Only using scores from WN-based word similarity mea-
sures performs astonishingly well. WN scores outperforms
LFT scores + features except in MSRpar. We believe that
this is due to the fact that sentences in MSRvid are very
short (13 words on average per pair), and the grammar is-
sue in SMTeuroparl pointed out above.

Finally, best results are obtained when all scores and fea-
tures are combined. This suggests that while WN-based
scores provide a strong baseline, it can be improved by
incorporating features capturing the semantic structure of
sentences. Also, semantic information brings improvements
only when combined with simpler methods, as the results
obtained by All, LFT scores + features and LFT score with
the three LFT modes show.

Comparison with Previous Work Our best system, All,
performs worse than the top performer (Table 5): −0.0978
(MSRpar), −0.0137 (MSRvid) and −0.100 (SMTeuroparl).
We note, though, that (1) the differences are small for
MSRvid and SMTeuroparl, and (2) our approach does not
require knowledge from Wikipedia or other large corpora.
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