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Abstract 

The SVM classifier has been used in many methods to 
identify emotions in text due to their good generalization 
capability and robustness with high dimensionality data. 
However, most textual corpora usually subject to such 
methods are naturally imbalanced. As a consequence, the 
SVM, sensitive to imbalance data, assigns to most texts the 
majority class. In this article, we present a Genetic 
Algorithm based approach that aims to reduce the imbalance 
of the data in the context of emotions identification. This 
approach allowed us to study the impact of its application in 
a method of emotion identification in texts written in the 
Brazilian Portuguese. Experimentations showed us that 
balancing the corpus could be an alternative when using the 
SVM classifier for emotions identification, especially in a 
multiclass configuration. 

Introduction   

Although existing knowledge discovery and data 

engineering techniques have shown great success in many 

real-world applications, the problem of learning from 

imbalanced data still a challenge (He and Garcia 2009). A 

dataset is imbalanced if the classification categories are not 

approximately equally represented. Applications such as 

detecting fraud in banking operations or detecting network 

intrusions are examples of domains where imbalanced 

datasets occur. The automatic identification of emotions in 

texts, one of the tasks related to Sentiment Analysis, is a 

domain characterized by imbalanced datasets as well. 

 Sentiment Analysis is the field of research dedicated to 

study emotions and opinion mining. It is a challenging 

natural language processing or text mining problem. Due 

to its value for practical applications, there has been a 

growth of both research in academia and applications in 

the industry (Liu 2012). The research in the field started 
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with sentiment and subjectivity classification, which 

treated the problem as a text classification problem (Liu 

2010). There has been progress in research on polarity 

(positive and negative texts) and sentiment analysis, but 

less work has been done in automatic identification of 

emotions in text. Currently, researches and studies 

concerning emotions are divided in several and different 

areas, but the one which will be discussed and used in this 

paper is the simplest of them, named Basic (or Pure) 

Emotions. This concept is related to the innate emotions 

shared among all cultures worldwide. It was proposed in 

the 1970’s by Paul Ekman and Wallace Friesen (Ekman 

and Firesen 1978) and defines six basic emotions: sadness, 

anger, happiness/joy, fear, disgust and surprise. 

 Most textual corpora used in Sentiment Analysis, such 

as newspaper articles or blog posts, are naturally 

imbalanced. In (Strapparava and Mihalcea 2008), 

Strappavara and Mihalcea used a corpus compounded by 

8,761 posts, where 55% of them were labelled as 

containing the emotion happiness and 0.8% of them were 

labelled as disgust. Ghazi and colleagues used in their 

work (Ghazi, Inkpen, and Szpakowicz 2010) a weblog 

corpus containing 4,090 annotated sentences: 68% of them 

annotated as non-emotional ones and 3% of them 

annotated as belonging to the fear and surprise emotion.  

 The SVM (Support Vector Machine) classifier has been 

used in many methods to identify emotions in text due to 

its good generalization capability and robustness with high 

dimensionality data (Rangel and Rosso 2013). Most of 

these methods were tested using balanced data. However, 

as previously mentioned, most textual corpora usually 

subject to emotions identification are naturally imbalanced. 

As a consequence, the SVM classifier, sensible to 

imbalance data, assigns to most texts the majority class.  

 In this paper we present a Genetic Algorithm (GA) 

approach to balance the corpus of texts in order to 

investigate the impact of this action in the classification 

level when using a SVM classifier. We also present a SVM 

163

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference



based emotion identification method used to run some 

experiments.  

 The remainder of this paper is organized as follows. 

First, we briefly overviews imbalanced data in machine 

learning. The next section presents an SVM based method 

for emotion identification in texts. Then, we present the 

Genetic Algorithm approach to balance the corpus. Some 

experimental results and analysis are also given. Finally, 

we give some conclusions and discuss future work. 

Imbalanced Data in Machine Learning 

The issue with imbalance in the class distribution became 

more pronounced with the applications of the machine 

learning algorithms to the real world (Chawla 2005). Some 

researchers, as Weiss and Provost (Weiss and Provost 

2003), studied the effect of class distribution on classifier 

learning. They state that the natural distribution is not the 

best one for learning a classifier. Many other researchers 

are working on this problem ((Batista, Prati, and Monard 

2004), (Japkowicz and Stephen 2002) and (Khoshgoftaar, 

Hulse, and Napolitano 2010)). From these studies, two 

main approaches arise: the ones that deal the problem in 

the data level and the ones that deal the problem in the 

classifier (algorithm) level. 

 The first approach attempts to balance the distribution of 

the classes in the dataset, by under-sampling the majority 

instances or over-sampling the minority instances. The 

under-sampling method extracts a smaller set of majority 

instances while preserving all the minority instances. This 

method is suitable for large-scale applications where the 

number of majority samples is tremendous and lessening 

the training instances reduces the training time and makes 

the learning problem more tractable (Zhou and Liu 2006). 

However, one problem associated with under-sampling 

techniques is that we may lose informative instances from 

the discarded instances ( Nguyen, Bouzerdoum, and Phung 

2008). Over-sampling method increases the number of 

minority instances by oversampling them. The advantage is 

that no information is lost from the training samples 

because all instances are employed (Alejo et al. 2007). 

However, the minority instances are over-represented in 

the training set and moreover, adding training instance 

means increasing training time.  

 In the second approach, specific learning algorithms are 

modified or adjusted to learning from imbalanced data, 

such as cost-sensitive learning, one-class learning, and 

ensemble learning. He and Garcia published a 

comprehensive survey on learning from imbalanced data 

where they present a list of different algorithms (He and 

Garcia 2009). 

 A semi-supervised approach based on under-sampling 

and random subspace for sentiment classification was 

presented by Li and colleagues (Li et al. 2011). The 

approach first use under-sampling to generate multiple sets 

of balanced initial training data. Then, a semi-supervised 

learning method based on random subspace dynamically 

generates various subspaces in the iteration process to 

guarantee enough variation among the involved classifiers. 

Their approach is limited to positive and negative classes 

that are not enough in our multiclass (six emotions) 

domain.   

 In order to test our GA approach, we need to present a 

SVM based emotion identification method. The method is 

presented in the next section. 

An SVM Emotion Identification Based 

Method in a Multiclass Configuration 

The task of identifying emotions in texts is a multiclass 

problem: an instance may belong to one of the yi classes, 

where i > 2. The SVM is originally binary. Strategies for 

solving multiclass problems using SVM have been 

developed and allow converting a multiclass problem in 

several binary sub-problems (Hsu and Lin 2002). Several 

researches (most of them actually) reduce the problem of 

emotion identification to a binary problem: polarity 

approach ((Liu 2010) and (Li et al. 2011)). The positive 

polarity represents the emotion joy and the negative 

polarity groups the emotions sadness, anger, disgust and 

fear. This approach simplifies the problem. 

 In our research, we are interested in identifying the basic 

emotions (sadness, anger, happiness/joy, fear, disgust and 

surprise) present in a text. Despite the imbalance on data, 

some emotions are very similar (or close) to each other, 

increasing the opportunity for confusion. This can be seen 

on Figure 1. It shows a wheel proposed by Robert Plutick 

(Plutchik 2001), where he presents his emotion model, 

containing eight emotions. The wheel is used to illustrate 

the different emotions compelling and nuanced. The idea is 

to show bipolar relations among opposite emotions, such 

as joy and sadness or anger and fear. It is possible to 

conclude that emotions vary in their degree of similarity to 

one another. 

 In our method, each text in the corpus needs to be 

preprocessed. After traditional natural language 

preprocessing tasks, such as removal of stopwords, we use 

the Bag-of-Words ( Radovanovic and Ivanovic 2008) 

model to generate a list of words without repetition. Then, 

two filters designed to extract the best features of the data 

set and to reduce dimensionality are applied. The first filter 

removes all terms that have a few occurrences (under a 

threshold). The threshold varies according to the size of the 

corpus and considers that rare terms are irrelevant for 

classification of the text. The second filter implements the 
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population is randomly generated with k individuals, where 

k is empirically set. An iterative process begins, using 

under-sampling and over-sampling to generate the 

population of candidates. The following three steps are 

thus repeated k times: 

 1. The individual i has n genes, where each gene is 

initially set to be 1.  

 2. For each gene of i, the under-sampling will set it to 0 

if a randomly generated value v is smaller than 0.1 (i.e. the 

under-sampling is limited to 10% of genes), where v varies 

between 0 and 1. 

 3. The over-sampling step means randomly choose a 

gene to be incremented. It will be repeated n/5 times, 

which means that approximately 20% of genes will be 

changed. A gene can be selected more than once. 

 Figure 2 shows how the initial individual evolves from 

step 1 to step 3, considering 20 genes. 

 

Step 1: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 

Step 2: [0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0] 

Step 3: [0, 1, 1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1] 

Figure 2. An Example of Individual After Under-Sampling and 

Over-Sampling. 

  

 There are some constants that must be defined (the over-

sampling and under-sampling rate, for instance). They are 

related to the imbalance rate of the corpus. Our practical 

experience using news articles and social media texts 

suggest using 10% for under-sampling and 20% for over-

sampling. 

 Finished the population generation, it has k individuals 

to be evolved. 

 A new population is generated based on the 

chromosome of an individual in a Cross Validation (10-

fold) process. We use elitism to select the best individuals 

to take part of the next generation. Parents are selected 

using roulette wheel. Genetic operators (arithmetic 

crossover and a variation of mutation) are then applied. 

After randomly choosing two individuals, equation 6 

calculates the individual of the next generation, where λ (0 

≤ λ ≤ 1) and l is the position of a gene. The process is 

repeated for each gene. 
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 In order to execute the mutation operator, σ (σ > 0) is 

defined. Empirically, σ was set to 3. 

 This process is done only in the training folds. The 

algorithm terminates when there is no change in results 

after 100 generations. 

Experiments and Analysis 

In this section, we apply the proposed approach to two 

different experiments. The first experiment evaluates how 

the identification method performs in a multiclass 

configuration (six classes or six emotions). The second 

experiment evaluates how the identification method 

performs in a binary configuration (positive and negative). 

In both experiments, we used the same corpus. The corpus 

contains newspaper headlines extracted from several 

Brazilian online news sites, such as www.globo.com. The 

corpus contains 1,312 labeled texts. It is annotated base on 

Eckman’s emotions at the text level. Table 1 shows the 

distribution of each emotion in the corpus. The corpus was 

preprocessed setting up the Information Gain to 80% 

(using the top 80% sorted words). 

 

Emotion # of texts % in the corpus 

Joy 280 21.34 

Disgust 226 17.23 

Fear 160 12.20 

Anger 168 12.80 

Surprise 172 13.11 

Sadness 306 23.32 

Table 1. Distribution of Emotions in the Corpus. 

  

 In the first experiment, the corpus contains all available 

data (1,312 texts), with six classes/emotions. We ran the 

experiment using the original (imbalanced) corpus and the 

balanced corpus. The GA was started with 100 individuals, 

using the initialization approach shown in the previous 

section. Table 2 shows the obtained results. 
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Table 2. Multiclass Experiment Results. 

  

 The second experiment reduces the problem to a binary 

classification, where the positive class represents the 

emotion joy and the negative class represents the emotions 

sadness, anger, disgust and fear. In this case, texts labelled 

as surprise were not used, since it is difficult to classify 

them as positive or negative. Table 3 shows the number of 

texts for each class. As we can conclude, in this 

configuration, the classes are more imbalanced than the 

first one. 

 

Polarity # of texts % in the corpus 

Positive 280 24.56 

Negative 860 75.44 

Table 3. Number of Texts in the Polarity Experiment. 

  

Table 4 shows the results for two classes. 

 

Table 4. Polarity Experiment Results. 

 

 To study the impact of balancing the corpus in 

Sentiment Analysis, we have defined that is more 

important to improve the F1 for each class, than improving 

accuracy. Thus, we studied the behavior of F1 in both 

experiments. We can conclude based on experiments, that 

balanced corpus, as expected, improved the SVM results. 

This is especially important when trying to identify Pure 

Emotions (six emotions) in texts. As we noted, most 

researchers work with balanced data, despite they know 

that their domain is commonly imbalanced (Ghazi, Inkpen, 

and Szpakowicz 2010).  

 Tables 2 and 4 show that using the GA approach, 

accuracy improved. Statistical tests (Wilcoxon and t-test) 

were done to certify that results are statistically valid. The 

impact is more important in the multiclass scenario (six 

class). We might note that recall decreases for some classes 

in the multiclass problem. This is due to the fact that, in 

order to improve the F1 measure, recall of majorities’ 

classes should be reduced. On the opposite, recall of 

minorities’ classes should be increased. 

Conclusions and Future Work 

Most textual corpora used in Sentiment Analysis, such as 

newspaper articles or blog posts, are naturally imbalanced. 

In this paper we presented a Genetic Algorithm approach 

to balance the corpus of texts in order to investigate the 

impact of this action in the classification level when using 

a SVM classifier. Results showed that balancing the corpus 

could be an alternative for emotion identification in texts 

(multi-emotion identification). 

 In the near future we intend to use different corpora, 

such as blog post or tweets. We planed to test this approach 

in different domains, such as, automatic bird species 

classification. 

 We are also interested in studying the impact of 

balancing the corpus using only under-sampling 

(EasyEnsemble or BalanceCascade approaches) (Liu, Wu, 

and Zhou 2006) or over-sampling (SMOTE algorithm) 

(Chawla et al. 2002). Different classifiers will also be 

tested.  
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