
The Believability Gene in Virtual Bots

M. Polceanua, A. M. Morab, J. L. Jiménezd, C. Buchec, A. J. Fernández-Leivad

aFlorida International University, USA
bDepto. TSTC, Universidad de Granada, Spain

cLAB-STICC, ENIB, France
dDepto. LCC, Universidad of Málaga, Spain

mpolcean@cs.fiu.edu, amorag@geneura.ugr.es, josejl1987@gmail.com
buche@enib.fr, afdez@lcc.uma.es

Abstract

Video game development is not only one of the most prof-
itable entertainment industries but also represents a very in-
teresting field of research. Particularly in the area of Artificial
Intelligence (AI), it provides many interesting (and hard to
tackle) challenges. One of them consists in creating artificial
bots (i.e., game characters not controlled by a human) that
mimic human behavior or, at least, show a believable behav-
ior. This paper deals with this issue by describing two very
different approaches that were proposed for creating believ-
able bots and applied, with some degree of success, in the
context of a first-person shooter (FPS) game. One approach
is based on the idea of imitating human player behavior, and
the other one consists of automatically creating bots via an in-
teractive evolutionary algorithm. The paper analyzes the per-
formance of these proposals and introduces different forms of
hybridizing both approaches for future applications.

Introduction

Video games pose a wide variety of challenges for the field
of artificial intelligence, and the generation of believable
agents has been identified as one of the main research ar-
eas within this field (Yannakakis and Togelius 2014). People
enjoy playing with virtual players who exhibit behavior sim-
ilar to themselves, who can surprise and sometimes make
mistakes. The challenge for programmers is to create a vir-
tual player that can fool humans into thinking it is another
human player. Finding good solutions to this problem has a
practical impact in the development of commercial games,
specially in massively multiplayer online games as virtual
players can be (massively) added to the game without de-
creasing the motivation of human players, and this directly
affects the sales of game companies.

As in the original Turing test, BotPrize challenges bots
to convince human judges they are human. This compe-
tition (Hingston 2009) has been held since 2008, and its
aim is to find the most humanlike bots, thus it proposes a
variant of the Turing test in an Unreal Tournament 2004
(UT2K4) environment. UT2K4, is a FPS game mainly fo-
cused on the multiplayer experience, which includes several
game modes for promoting this playability, the most pop-
ular being Deathmatch, in which players are placed in an

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

arena and the goal is to kill the highest number of opponents
(frags) in a limited amount of time.

We describe the two bots, i.e. MirrorBot and NizorBot,
with the best performance in the 2014 Edition of the Bot-
Prize contest, and analyze the obtained results. MirrorBot’s
key strategy is mimicry. When the bot meets other players
in the game, it observes their behavior to trigger a mirror-
ing behavior that copies the actions of that player, including
movement, shooting, weapon choice, jumping and crouch-
ing. This makes the bot mimic another player in realtime,
and therefore “borrow” the humanness level of real humans.
NizorBot’s idea is completely different, proposing an inter-
active evolutionary algorithm which evolves a behavior, pre-
viously defined, by modeling the knowledge with the help
of a human controller. After discussing the advantages and
shortcomings of the two proposals, we continue our contri-
bution with possible ways of obtaining a superior bot, by
mixing the two approaches.

MirrorBot – “the Almost-Human”

MirrorBot (Polceanu 2013) was developed in 2012, specifi-
cally for the 2K BotPrize competition, and has participated
unchanged in the 2014 edition. Its design consists in two
main behavior modules: default and mirroring.

The default behavior module, which is used more of-
ten, allows the bot to navigate in its environment, collect
weapons and ammunition, shoot opponents and avoid en-
emy fire. Its implementation consists in a set of concurrent
submodules, among which the most important are: Aiming,
Navigation and Shooting. Other submodules have the role
of providing data required by the main submodules, such as
suitable attack or judging targets, navigation help and oppo-
nent aggressiveness.

The Aiming submodule is responsible for the orientation
of the bot and has two modes: normal and confrontation.
In the normal mode, which is active when no opponent is
within view, the bot will orient itself towards the second nav-
igation point in its path. This gives the observer the impres-
sion that it is following a goal and that it anticipates corners.
The confrontation mode is activated whenever an opponent
is in sight. It works by calculating a future location of the
target, using velocity information, which results in smooth
aiming and trajectory anticipation.

The Navigation submodule manages the paths taken by

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

346

the bot within the environment. MirrorBot’s navigation has
two modes: normal and emergency. The normal mode is a
variant of standard graph navigation, featuring an improve-
ment to how the bot follows navigation points. This im-
provement consists in generating random locations around
each navigation point, which perturbs the overall trajectory
and therefore hiding botlike movement. In cases where Mir-
rorBot gets stuck, either due to graph inconsistencies or ac-
cidents like falling off a bridge, the Navigation submodule
switches to emergency mode. This activates a ray-tracing
system, that allows it to “squeeze” itself out of difficult ter-
rain, and avoid cliffs.

The Shooting submodule decides whom and how to at-
tack. It takes into account weapon type, splash damage and
distance to targets to find an appropriate direction to shoot
at. It also considers collateral targets which can be attacked
with minimum effort while focusing on a main target.

The second behavior module, mirroring, is only activated
when an opponent is considered as unaggressive. An oppo-
nent is by default unaggressive, but this status changes as
soon as MirrorBot detects that the given player shoots di-
rectly at it with a dangerous weapon; i.e., a weapon that does
or can inflict damage. More specifically, receiving damage
is not the only criterion for deciding aggressiveness. Due to
MirrorBot’s dodging ability, even though enemy fire does
not reach it, an opponent targeting it with a potentially dan-
gerous weapon is also classified as a threat, and therefore
excluded from the mirroring candidate list. For example,
shooting the link gun (which deals zero damage in the Bot-
Prize competition) or not shooting at all, gives the ideal mir-
roring candidate.

When the mirroring behavior is activated for a target, Mir-
rorBot will begin recording all observable low-level actions
of the opponent: aim, movement, fire, jumping, crouching
and weapon choice. These are stored as frames in a se-
quence, which are to be replayed by MirrorBot itself. The
orientation is inverted and movement maintains a constant
distance to the target; i.e., aiming and moving left/right, and
moving forward/backward are swapped. Due to client-server
connection latency, frames may be received with a delay or
even lost. Average communication latency is approximately
300 milliseconds. In addition, a delay is introduced, so that
the total time before action frames are reproduced amounts
to the natural visual perception delay of humans.

NizorBot – “the Semi-Human”
NizorBot (Jiménez, Mora, and Fernández-Leiva 2015) is
based on the idea shown in ExpertBot (Mora et al. 2015),
which modeled the behavior of an expert human player (one
of the authors), who participated in international UT2K4
contests. It included a two-level finite state machine (FSM),
in which the main states define the high level behavior of
the bot (such as attack or retreat), while the secondary states
(or substates) can modify this behavior in order to meet im-
mediate or necessary objectives (such as taking health pack-
ages or a powerful weapon that is close to the bot’s position).
The decisions about the states are made by an expert system,
based on a huge amount of rules that take into consideration
almost all conditions (and tricks) that a human expert would

do. It also uses a knowledge database (bot’s memory) to re-
tain important information about the fighting arena, such as
the position of items and weapons, or advantageous loca-
tions. This information is stored once the bot has discovered
them, as a human player would do.

NizorBot is an implementation over ExpertBot by ap-
plying an Interactive Evolutionary Algorithm (IEA) (Takagi
2001; Parmee, Abraham, and Machwe 2008), in which hu-
man experts guide the optimization of the bot’s parameters
in order to obtain a humanlike bot. The basic idea is to let the
experts rule out those candidate solutions (i.e., individuals)
that perform subjectively worse than others from the point
of view of humanness. More specifically, every individual
in the IEA is a chromosome with 26 genes, divided into 6
blocks of information. Each block represents the behavior
of a specific feature of the bot.

The distance selection block [Genes 0-2] controls the dis-
tance ranges that influence weapon choice, attacking and
defending. The Weapon selection block [Genes 3-11] con-
trols the priority assigned to each weapon. The Health con-
trol block [Genes 12-13] manages the offensive, defensive
or neutral behavior of the bot, based on the level of health.
The Risk block [Genes 14-18] controls the amount of health
points that the bot could risk. The Time block [Gene 19] de-
fines the amount of time which the agent considers to decide
that the enemy is out of vision/perception. The Item control
block [Genes 20-25] sets the priority assigned to the most
important items and weapons.

The fitness function is defined as:

f =

⎧⎪⎪⎨
⎪⎪⎩

(fr − d) + s2 + s1
2

+log((dmgG− dmgT) + 1) if fr � d
fr
d + s2 + s1

2
+log((dmgG− dmgT) + 1) if fr < d

Where fr is the number of enemy kills the bot has ob-
tained (frags), d is the number of own deaths, dmgG is the
total damage dealt by the bot, and dmgT is the total damage
it has received. s1 and s2 refer respectively to the number of
Shields and Super Shields the bot has picked up (very im-
portant item). This function rewards the individuals with a
positive balance (more frags than deaths) and a high number
of frags. In addition, individuals which deal a high amount of
damage to enemies are also rewarded, even if they have not
got a good balance. The logarithms are used due to the mag-
nitude that the damages take, being around the thousand. We
add 1 to avoid negative values.

The evaluation of an individual consists in setting the val-
ues of the chromosome in the NizorBot AI engine, then a 1
vs 1 combat is launched between this and a standard UT2K4
bot at its maximum difficulty level. Once the time defined
for the match is finished, the summary of the individual (bot)
performance regarding these values is considered for the fit-
ness computation.

A probability roulette wheel has been used as selection
mechanism, considering the fitness value as a proportion of
this probability. The elitism has been implemented by re-
placing the five worst individuals of the new population by
the five best of the current one.

347

The uniform crossover operator was used, so that every
gene of a descendant has the same probability of belonging
to each one of the parents.

The interaction of the game expert has been conducted
by pausing the game at some specific points of the evo-
lution (synchronously in some generations), where a form
with several questions is presented to the human. This form
shows the data about the best individual of the current gen-
eration (and thus, the best overall due to elitism). The expert
then performs a third person assessment (TPA) by watching
a video of the corresponding bot playing a match.

Afterwards, the evaluator must fill in the form to identify
those specific features (e.g. distance selection, weapon se-
lection, etc.) that he/she considers more humanlike.

Then, the gene blocks associated to the selected features
are ‘blocked’ so that they are not altered by the genetic oper-
ators during the evolution. This affects the rest of the popu-
lation when this individual combines and spreads its genetic
information. In addition, this interaction reduces the search
space as only the non-frozen blocks are evolved, so that the
algorithm performance is improved.

Obtained Results and Analysis

To evaluate the adequacy of the bots, both of them competed
in the BotPrize competition (edition 2014).

As illustrated in Table 1, the winner of the 2014 edition
was MirrorBot, which also was one of the two bots that
passed the Turing test adapted to games in the previous edi-
tion of the BotPrize competition, and can therefore be con-
sidered the state-of-the-art. However, as result of the new
(and harder) evaluation system, it does not reach the value
for being considered human according to the competition
rules (i.e., 0.5) although it is relatively close to it and by only
3% below the most humanlike human player in the contest.

NizorBot also showed a very good performance finishing
as the runner-up and with a humanity factor relatively close
to be considered as human, at a close tie with the 2nd and 3rd

ranked humans.
We argue that the requirement that a bot should be consid-

ered truly humanlike only if it passes the 50% barrier does
not reflect an appropriate measure of humanness. The main
reason for this claim is that, by applying this rule, none of
the four human judges in the 2014 edition can be considered
as human (according to the results shown in Table 1). Fur-
thermore, in the previous edition of the contest, two human
judges were also ranked well below the humanness barrier
of 50%. This same issue generated controversies amongst
the general public, regarding the 2012 competition results,
where bots where deemed “more human than human”.

Interestingly, the perceived level of humanness varies sig-
nificantly with the conditions in which it is evaluated. For
example, in the 2014 edition, one of the used game maps
featured low gravity; in this case, the perceived behavior of
players tended to be drastically more botlike, even in the
case of real human players. This was primarily due to the
fact that most of the time, the players were gliding in the air,
which left little time to analyze more complex movement
patterns, and easily predictable behavior was most obvious.

Player name FPA TPA H

Xenija 0.17139763 0.8235294 0.4974635
MirrorBot 0.20164771 0.7333333 0.4674905

Player 0.19328127 0.6315789 0.4124301
tmchojo 0.17757519 0.6470588 0.4123170
NizorBot 0.11821633 0.7058824 0.4120493

BotTracker 0.20070203 0.5909091 0.3958056
CCBot 0.06214746 0.7058824 0.3840149
Juan CVC 0.12372294 0.6190476 0.3713853
OvGUBot 0.10545765 0.6086957 0.3570767
ADANN 0.08351664 0.4761905 0.2798536

Table 1: Final Results of BotPrize 2014 (taken from the com-
petition website). 6 Virtual Bots (marked in italic) and 4 hu-
man judges. (F/T PA = First/Third Person Assessment)

Therefore, the measurement of humanness is more appro-
priate when done in a relative frame of reference than in an
absolute one, as there exist scenarios in which not even hu-
mans are perceived to behave in a humanlike fashion over
50% of the times.

BotPrize 2014 was the first edition that featured both first
and third person assessments of humanness, the results of
which have not been analyzed before. TPA deemed the play-
ers 5.2 times as humanlike as the FPA, on average (i.e., cal-
culated as the average of TPA/FPA ratios of each player).
This is also evidence that humanness is context-specific, and
may be better evaluated as such. Taken separately, the aver-
age FPA scores of humans and bots are 16.6% and 12.8%
respectively, while the average TPA scores are 68.0% and
63.6% respectively. This shows that humans are, on aver-
age, still more humanlike. However, in FPA, MirrorBot has
the highest score in the contest followed closely by another
machine called BotTracker. In TPA, MirrorBot and Nizor-
Bot have the highest scores for bots, with just one human
(Xenija) who did better.

Finally, when using an absolute threshold for humanness,
this condition may become unreachable (even by humans)
due to the subjective nature of voting.

Regardless of the exact evaluation metric, we can iden-
tify an objective set of advantages and drawbacks of the
two bots. In the past two editions of BotPrize, MirrorBot
has demonstrated the advantage of online mirroring, smooth
navigation and simultaneous activation of several behavior
modules which led to complex behavior using simple rules.
However, the rules were a result of a lengthy fine-tuning pro-
cess by its creator. Therefore, improving its behavior or port-
ing it to different scenarios will be cumbersome using the
same approach.

On the other hand, NizorBot was obtained using minimal
expert intervention, by using an automated evolution pro-
cess. Starting from botlike behavior, NizorBot evolved to be
a competitive alternative to MirrorBot. However, unlike Mir-
rorBot, it only exploited a limited set of techniques and did
not focus on online interaction.

To sum up, the two approaches are able to complement
each other towards the goal of obtaining an even more hu-
manlike bot which could also be applied to contexts other
than UT2K4.

348

Future Lines of Improvement for Obtaining a

‘Human’ Bot

There are several lines of improvement in both bots.
A direct first approach would be the application of evo-

lutionary computation (EC) methods to MirrorBot in order
to generalize its currently context-specific implementation.
Considering that MirrorBot has many ‘hard-coded’ param-
eters, such as aiming speed, view distance, weapon and tar-
get selection policies or mirroring candidate selection, this
would try to optimize their values. In the near future we in-
tend to study the possibility of optimizing these parameters
using an Interactive Evolutionary Algorithm (IEA) as done
in NizorBot.

Another EC technique that could be implemented is a Ge-
netic Programming (GP) (Koza 1992) approach, due to the
additional flexibility factor that this method offers, i.e., GP
is able to create new sets of behavioral rules, given a set of
possible inputs (conditions) and a set of possible actions.

However, one of the main problems of an IEA is the fa-
tigue of the human user that is produced by the continuous
feedback that the subjacent EC technique demands (Cotta
and Fernández Leiva 2011). A form to deal with it is to
promote the algorithmic proactivity in the sense that there
would be a mechanism that predicts or infers the further
user interactions with the goal of reducing the requirement
of user interventions. To this aim, historic decisions of the
expert are considered.

Another approach in this line consists in computing the
decisions as a function of the similarity of individuals. Thus,
the expert would assign a humanness score to an individual,
for instance, and the score would be computed for the rest of
the population considering the similarity to that individual.
This could be also done with regard to the parts blocked in
the chromosomes according to the expert’s criteria.

A different improvement (and thus, research) line intends
to obtain a more comprehensive evaluation by considering
multiple aspects of humanness, and to study several evolu-
tionary solutions using a larger behavior repository (includ-
ing mirroring behavior) which may result in superior bot ver-
sions for various contexts.

Last but not least, defining what is “humanlike” might be
harder than to recognize what is “botlike”. By using tech-
niques applied in NizorBot to evolve a bot that avoids botlike
behavior, which was the actual development process of Mir-
rorBot, we may partially remove the need for human-based
evaluation in constructing humanlike bots.

Anyway, also considering the human interaction in the
loop, we could let the evaluators the capability of identify
or ‘mark’ somehow in a video showing a bot’s behavior the
exact moments when he/she has recognized a bot-like be-
havior. Combining this tool with a very deep log file storing
all the information about the bot and the environment we
could identify the botlike actions and potentially design an
automatic learning system for avoiding doing them.

Acknowledgements

This paper has been partially supported by project V17-
2015 of the Microprojects program 2015 from CEI BioTIC

Granada, Junta de Andalucı́a within the project P10-TIC-
6083 (DNEMESIS), by Ministerio español de Economı́a
y Competitividad under project TIN2014-56494-C4-1-P
(UMA-EPHEMECH), and Universidad de Málaga. Campus
de Excelencia Internacional Andalucı́a Tech. This material
is based upon work supported by the ENIB mobility pro-
gram.

Conclusions

We have presented two models to build a believable bot:
one based on mirroring the behavior of the human, and
another based on interactive genetic algorithms. These ap-
proaches have been evaluated in the BotPrize competition
as benchmark. Design features of each approach were cor-
related with the results they obtained. We have argued that
the current methodology for evaluating humanness can still
benefit from further research, and that context is a critical
factor in this type of assessment. We have also discussed the
advantages and shortcomings of MirrorBot and NizorBot,
and concluded that a mixed approach has the potential of
producing a more humanlike bot, which may also be trans-
ferable to scenarios other than the BotPrize competition.

References

Cotta, C., and Fernández Leiva, A. J. 2011. Bio-inspired
combinatorial optimization: Notes on reactive and proactive
interaction. In J. Cabestany et al., ed., IWANN’11, volume
6692 of LNCS, 348–355. Springer.
Hingston, P. 2009. A turing test for computer game bots.
Computational Intelligence and AI in Games, IEEE Trans-
actions on 1(3):169–186.
Jiménez, J. L.; Mora, A. M.; and Fernández-Leiva, A. J.
2015. Evolutionary interactive bot for the FPS unreal tour-
nament 2004. In Proceedings 2nd Congreso de la Sociedad
Española para las Ciencias del Videojuego, Barcelona,
Spain, June 24, 2015., 46–57.
Koza, J. R. 1992. Genetic Programming: On the program-
ming of computers by means of natural selection. Cam-
bridge, MA: MIT Press.
Mora, A. M.; Aisa, F.; Garcı́a-Sánchez, P.; Castillo, P. Á.;
and Guervós, J. J. M. 2015. Modelling a human-like bot in
a first person shooter game. IJCICG 6(1):21–37.
Parmee, I. C.; Abraham, J. A. R.; and Machwe, A. 2008.
User-centric evolutionary computing: Melding human and
machine capability to satisfy multiple criteria. In Multi-
objective Problem Solving from Nature, Natural Computing
Series. Springer Berlin Heidelberg. 263–283.
Polceanu, M. 2013. Mirrorbot: Using human-inspired mir-
roring behavior to pass a turing test. In CIG’13, 1–8. IEEE.
Takagi, H. 2001. Interactive evolutionary computation: Fu-
sion of the capabilities of EC optimization and human eval-
uation. Proceedings of the IEEE (9):1275–1296.
Yannakakis, G., and Togelius, J. 2014. A panorama of ar-
tificial and computational intelligence in games. Computa-
tional Intelligence and AI in Games, IEEE Transactions on.

349

