Crowdsourced Explanations for Humorous Internet Memes Based on Linguistic Theories

Chi-Chin Lin and Yi-Ching Huang
Graduate Institute of Networking and Multimedia
National Taiwan University
No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C)

Jane Yung-jen Hsu
Department of Computer Science and Information Engineering
National Taiwan University

Abstract
Humorous images can be seen in many social media websites. However, newcomers to these websites often have trouble fitting in because the community subculture is usually implicit. Among all the types of humorous images, Internet memes are relatively hard for newcomers to understand. In this work, we develop a system that leverages crowdsourcing techniques to generate explanations for memes. We claim that people who are not familiar with Internet meme subculture can still quickly pick up the gist of the memes by reading the explanations. Our template-based explanations illustrate the incongruity between normal situations and the punchlines in jokes. The explanations can be produced by completing the two proposed human task processes. Experimental results suggest that the explanations produced by our system greatly help newcomers to understand unfamiliar memes. For further research, it is possible to employ our explanation generation system to improve computational humanities.

Introduction
Recently, the subculture of humorous images has been a pervasive phenomenon on the Internet. Social media websites such as 9GAG\(^1\), Reddit, and 4chan provide platforms on which people share their images and opinions. Experienced users relax on the sites by browsing images and leaving their comments. To these users, understanding the gist of the humorous images – that is, what makes it funny – is easy and entertaining.

However, for those who are not familiar with the subculture, it can be very difficult to understand why the images are funny. When newcomers seek explanations in discussion groups, the explanations given are usually very rare or implicit, because the discussion is often dominated by experienced users. Most newcomers have trouble fitting in such communities because of the lack of a desirable explanation system.

Internet memes are an example of a type of humorous image that is relatively hard for newcomers to understand. Recently, researchers have observed a general fascination with memes (Bauckhage 2011) (Bauckhage, Kersting, and Hadiji 2013) (Coscia 2013). Fig. 1 shows a meme background image of the type “Socially Awkward Penguin” and an instance thereof. More implicit background knowledge is embedded in Internet memes than in other images such as LOLCats, face swapping, and pun images. To fully understand Internet memes, one must comprehend the associated shared knowledge and topics. For example, there is always an important characteristic of the background image of a meme that is not explicitly referenced in the meme itself.

Without recognizing this shared knowledge and these topics, one cannot really appreciate Internet memes. A common way to gain this knowledge is to simply read a great deal of memes. Yet this learning process can be very inefficient and frustrating. People who expect to relax on entertainment-oriented websites usually do not want to put so much effort into learning.

In this work, we propose a system that leverages crowdsourcing techniques to generate explanations for memes. The resulting explanations can clearly point out the incongruity between the punchlines and the expectation developed from the set-ups. We claim that people who are not familiar with Internet meme subculture can still quickly get the gist of the memes by reading the explanations.

\(^1\)http://9gag.com/
There are three main contributions in this paper: (1) applying verbal humor theories to a template-based explanation, (2) developing viable crowdsourcing workflows for generating such explanations, and (3) evaluating our method to show that our workflows help non-native English speakers understand jokes 30% better than with an expert explanation.

Related Work

Our work involves several research areas: computational humor recognition, crowdsourcing, and linguistic humor. Based on suitable linguistic humor theories, computational approaches to recognize humor have been proposed. However, we here point out the gap between existing work and the ideal computational humor recognition. We also discuss the innovation of our idea with respect to crowdsourcing.

Computational Humor Recognition

Computational humor is typically considered to be a hard natural language processing problem. The related work can be divided into two categories: humor recognition and humor generation. Some approaches recognize humorous punchlines by evaluating semantic relatedness and joke-specific features (Mihalcea, Strapparava, and Pulman 2010). The result SVM model yields 84% precision when choosing a best punchline from four punchline candidates given a setup sentence. However, the trained model is a black box; as such, it is difficult to determine why a chosen punchline is funny.

Additional methods like finding the keywords and sentence structure in the joke domain have been considered. Some approaches identify “that’s what she said” jokes by searching for sexually explicit nouns and sentence structures in erotic domain context (Kiddon and Brun 2011). With their proposed method “Double Entendre via Noun Transfer”, they achieved 71.4% precision. Even though they are able to find the main elements that made the text erotic, the system still does not understand why the whole text is related to the joke.

Existing approaches all try to recognize humor without dealing with the reasons why people laugh – we fill this gap. In this work, we seek to empower computers to understand the humorous gist by making them discover and comprehend the incongruity behind jokes.

Crowdsourcing

The wisdom of the crowd has solved many computationally infeasible problems. With crowdsourcing techniques, researchers have successfully achieved goals ranging from generating answers to visual questions for blind people in nearly real-time (Bigham et al. 2010), conducting a variety of remote user studies (Kittur, Chi, and Suh 2008), and enabling people to contribute on microtasks on mobile phones in seconds (Vaish et al. 2014).

In order to explain Internet memes, we choose text explanations as our expression method. In the subfield of text processing, Soylent (Bernstein et al. 2010) performs shortening, proofreading, and other editing tasks on documents. Some approaches attempt to solve the problem of word sense disambiguation by clustering dictionary definitions (Parent and Eskenazi 2010). Note that the above human tasks were all divided into two or three subtasks for the workers to complete. Our proposed approach is motivated by this find-fix-verify concept, and is divided into explanation generation subtasks.

To our best knowledge, no existing work attempts to generate explanations for humorous materials. With crowdsourcing, humorous text classification can be achieved in an active learning context (Costa et al. 2011). In other research, the datasets of joke recommendation have been collected from crowdsourcing (Gupta et al. 1999). While effort toward joke recognition was made, the algorithms for joke explanation generation are still not clear.

Compared to current work, which only processes general text or classifies humor/non-humor text, we leverage the crowd to generate explanations for humorous Internet memes. It can be said that the idea in our work is relatively innovative. We tackle a problem that cannot be solved by current AI algorithms. However, the generated explanations can be used in further research.

Linguistic Humor Theories

Incongruity theory is a generally accepted humor theory that was first hinted at in Aristotle’s Rhetoric. The theory states that humor can occur in the resolution of two concepts with incongruity.

The semantic script theory of humor (SSTH) was proposed (Raskin 1985) to implement incongruity theory. SSTH claims that a text can carry a single joke if:

(a) the text is fully or partially compatible with two different scripts, and
(b) the two scripts are opposite.

The two different scripts are called the “obvious script” and the “alternative script”, where the obvious script is the direct meaning in the punchline while the alternative script is the implicit information hidden behind the joke. Humor can be found when the two scripts in a text are opposite. Note that the oppositeness in the two scripts relies on a trait basis. Hence the script can be placed on the two ends of the trait axis.

For example, a one-liner joke goes “I say no to alcohol – it just does not listen.” The obvious script is that “the man literally said no to alcohol” and the alternative script is that “the man refused to drink alcohol”. In the trait basis of “ability to quit drinking alcohol”, the two scripts are at the two ends of the axis. In the fields of both computational humor and linguistic, SSTH is the most suitable theory for analyzing verbal humor.

Approach

For every Internet meme, we define three components: the meme template, the set-up, and the punchline. A meme template is the underlying image of a meme and can be repeatedly used in a great number of memes. A set-up and a
punchline are the captions superimposed on the upper and lower positions of the meme template, respectively.

To help newcomers understand an Internet meme, a proper explanation is required. Assuming that there are general forms to explain the memes, the question is what is the template of a good explanation for an Internet meme?

**Template-Based Explanation**

To find general forms of the explanation, here we take Fig. 1(b) as an example. First, we must know that the meme template “Socially Awkward Penguin” describes awkward and uncomfortable life situations. When an experienced reader sees this meme, he knows that the captions are a joke about awkward situations, without even actually reading the text. Then we read the upper caption (set-up): “I’ll see you later!” For a normal person, saying “see you later” means parting from someone. Therefore, we expect the two to wave goodbye and leave each other in different directions. However, when we read the lower caption (punchline) “we both walk in the same direction”, we immediately see that it is an awkward situation because this is contrary to the expectation of parting. The humor lies in the incongruity between the punchline and our expectations.

From the above example, we observe that an explanation can be composed of four lines. The four-line template illustrates the incongruity between a normal situation and the scenario presented in the meme. The template is described below.

1. **Meme template introduction**: A meme template represents the main characteristic in the joke. To newcomers, this is hidden background knowledge. This line helps to build the mental model of the meme template.

2. **Set-up repetition**: In this line, the upper caption in the meme is repeated. The set-up provides the context and premise in the joke.

3. **Anti-punchline**: A normal reaction developed from the set-up. To make the incongruity stand out, the anti-punchline is also an opposite situation to the punchline.

4. **Punchline repetition**: The lower caption in the meme is the punchline which completes the joke.

The anti-punchline is the most important line in the whole explanation. We define an anti-punchline in a meme as the reaction and expectation developed from the set-up, which ends up conflicting with the punchline. Clearly stating an anti-punchline makes the incongruity stand out to readers, making the humorous gist more obvious.

In SSTH, an anti-punchline in a four-line explanation can be treated as the alternative script that is the opposite of the original punchline. The funny gist is revealed when the reader realizes the oppositeness. While finding a trait basis for a general joke can be very challenging, the trait basis for a meme is obvious. The meme template of a meme can determine the trait basis of the oppositeness.

An anti-punchline is not only the most important line in our four-line template: it is also the most difficult to generate. The following subsections describe how we obtain anti-punchlines using crowdsourcing workflows and expert knowledge.

We describe the other lines (meme template introduction, set-up repetition, and punchline repetition) as supporting lines. Supporting lines are also necessary to fully explain the memes. For these lines, existing digital image processing algorithms and natural language processing techniques are sufficient. The generation of supporting lines is described in detail below.

**Three Anti-Punchline Generation Methods**

In the following subsections, we propose three methods to generate anti-punchlines. In the first, a crowd is used to collect and then select the best anti-punchline. In the second, we request crowd workers to directly write up anti-punchlines according to the four-line template. Finally, we ask meme experts to directly provide anti-punchlines.

**Collection-Selection Process**

In this process, we design two humor subtasks in which to find anti-punchlines. The first subtask is to collect anti-punchline candidates, and the second subtask is to select the best anti-punchline out of the candidates.

**Subtask 1**: collecting anti-punchline candidates. The workers are asked to imagine themselves in a given situation and fill in their reasonable reaction. Each given situation is the set-up caption that is re-stated in the second person. For each situation, multiple reactions are collected to prepare the selection subtask.

To construct the collection subtask, the meme set-up is extracted and re-stated in the second person. To illustrate the concept of transformation, we take Fig. 1(b) as an example. In this subtask, we transform the set-up “I’ll see you later!” into a situation sentence “You are a normal person, and you say “I’ll see you later!”” When the situation sentence is prepared, the collection subtask can be constructed as Fig. 2.

**Subtask 2**: selecting the best anti-punchline from the candidates from the collection subtask. The workers are asked to choose the best opposite reaction to the punchline with respect to the given trait basis. The trait basis is determined by the meme template and the provided choices are from the collection subtask. When enough workers agree with a specific reaction, the reaction is judged to own enough votes, and thus evidences sufficient confidence to be opposite to the punchline. Hence it is selected as the anti-punchline in the explanation. We also provide workers with an “other” option in which they may fill in new reactions when there are no “opposite enough” reactions from which to choose.
You say “I’ll see you later!”

Normal situation

Awkward situation

• Add “alligator” as a lame joke.
• Wave and leave.
• To walk off.
• We both walk in the same direction.

Figure 3: An example selection subtask for Fig. 1(b).

Once a new reaction is provided, it randomly replaces an existing reaction with the least votes.

After receiving the responses from the collection subtask (Fig. 2), we continue publishing the selection subtask shown in Fig. 3. The labels on the axis are the clues for the workers to choose a proper opposite reaction. The label on the anti-punchline side is always “Normal situation” while the one on the punchline side is determined by the trait of the given meme template.

After a sufficient number of workers agree that “wave and leave” is the best opposite reaction, we have the anti-punchline sentence against the original punchline. Therefore, a template-based explanation is completed and shown below.

1. The background image is called “Socially Awkward Penguin”. The text typically narrates uncomfortable life situations, highlighting an exceptionally clumsy or inelegant response.
2. The upper caption says that he says “I’ll see you later!”
3. We expect him to wave and leave.
4. However, in the lower caption, it turns out that they both walk in the same direction.

Figure 4: An example subtask for Fig. 1(b) in the direct filling process.

anti-punchline. The direct filling process is to request the workers to enter a good anti-punchline into the blank. Fig. 4 demonstrates an example subtask for Fig. 1(b).

The following text is one of the output explanations:

1. The background image is called “Socially Awkward Penguin”. The text typically narrates uncomfortable life situations, highlighting an exceptionally clumsy or inelegant response.
2. The upper caption says that he says “I’ll see you later!”
3. We expect that ____________.
4. However, in the lower caption, it turns out that they both walk in the same direction.

Because the workers have to understand the funny gist before entering their anti-punchline, this process has a higher entry barrier. However, they may use the four-line template structure as an aid for comprehension. The explanation breakdown can help them organize what information the meme is trying to communicate.

Expert Process In order to understand the advantage of the above proposed methods over experience readers’ help, we designed a process to obtain anti-punchlines from meme experts.

The expert process is identical to the direct filling process, except that the workers are selected meme experts. The memes and supporting lines are shown to the experts. The experts are asked to come up with a proper anti-punchline to fill in the blank line. Here is one of the explanations produced by an expert:

1. The background image is called “Socially Awkward Penguin”. The text typically narrates uncomfortable life situations, highlighting an exceptionally clumsy or inelegant response.
Table 1: Proportion of top ten meme templates in our datasets.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Template name</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Confession Bear</td>
<td>16.91%</td>
</tr>
<tr>
<td>2</td>
<td>Actual Advice Mallard</td>
<td>16.65%</td>
</tr>
<tr>
<td>3</td>
<td>Success Kid</td>
<td>9.40%</td>
</tr>
<tr>
<td>4</td>
<td>Socially Awesome Awkward Penguin</td>
<td>5.24%</td>
</tr>
<tr>
<td>5</td>
<td>Scumbag Steve</td>
<td>5.04%</td>
</tr>
<tr>
<td>6</td>
<td>Good Guy Greg</td>
<td>4.49%</td>
</tr>
<tr>
<td>7</td>
<td>First World Problems</td>
<td>4.29%</td>
</tr>
<tr>
<td>8</td>
<td>The Most Interesting Man in the World</td>
<td>3.90%</td>
</tr>
<tr>
<td>9</td>
<td>Futurama Fry</td>
<td>3.73%</td>
</tr>
<tr>
<td>10</td>
<td>Socially Awkward Penguin</td>
<td>3.31%</td>
</tr>
</tbody>
</table>

2. The upper caption said that he says “I’ll see you later!”
3. We expect that he and his friend will part ways.
4. However, in the lower caption, it turned out that they both walk in the same direction.

Supporting Lines

The supporting lines (meme template introduction, set-up repetition, and punchline repetition) can be extracted automatically. Basic digital image processing and natural language processing techniques are sufficient to produce these lines.

Lists of the most popular meme templates can be found online (for example Quick Meme2). When the meme templates are given, the template of a meme can be easily recognized by calculating the similarity between the target meme and all of the templates. After the template is determined, additional information can be retrieved from Know Your Meme1.

The set-up and punchline repetition requires optical character recognition (OCR) techniques. Since the state-of-the-art OCR algorithms are able to recognize computer-printed characters with very high precision, we use it as a tool to extract the set-up and punchline captions from memes. In the explanations, these two lines are usually stated in the third person; this necessitates basic substitution of the subjects and grammatical verb tenses.

Experimental Results

Datasets

Since 9GAG is one of the most popular websites for funny images, we chose it as our Internet meme source and crawled 39447 posts from it. From these posts we recognized 3051 memes in 38 unique meme templates. Table 1 shows the ten most popular meme templates in our datasets.

For each meme template, we randomly selected two memes to be used in our experiment, resulting in a 76-meme testing dataset. After completing the human task processes, the output explanations for each memes were generated.

As Fig. 1(b) is one of the randomly selected memes in the testing datasets, in the following sections we continue to use it as an example describing how we execute the collection-selection and direct filling processes.

Experiment Settings

To conduct the experiment, we used Amazon Mechanical Turk (MTurk). However, the human tasks are not limited to MTurk and can be ported to any crowdsourcing platform.

In the collection-selection process, we collected three responses in the collection subtask. After collecting the three anti-punchlines candidates, we selected the best anti-punchline in the selection subtask. In the direct filling process, we also gathered three anti-punchlines. For the expert process, we invite an American subculture lover who has been reading memes for over two years. This expert is a 24-year-old male graduate student in computer science.

Evaluation

In the evaluation, ten memes were randomly chosen from the testing datasets. We designed a questionnaire to ask each participant whether the explanations were meaningful and helpful to them. For each of the ten memes, five explanations were attached. The explanations consisted of three sources: (a) one explanation generated from the collection-selection process, (b) three explanations generated from the direct filling process, and (c) one explanation provided by an experienced meme reader. The motivation behind including a meme expert’s explanation was to use it as a baseline. The order of the five explanations was randomized. When the participants read the explanations, they were not aware of the respective sources.

After recruiting, nine volunteers participated in the evaluation and provided their opinions for the memes and explanations. The participants were all non-native English speakers. They consist of five females and four males, all graduate students. For each meme in the questionnaire, a participant was required to answer whether they had seen the meme template before in a yes/no question. Immediately, without any explanation, the questionnaire asked the participant if he or she understood the funny gist right after reading the meme. The participant was permitted answers of “yes”, “no”, and “not sure” for the prior understanding question. This was followed by five explanations. For each explanation, two questions were asked. The first question was if the participant considered the given explanation reasonable, and the second was if the participant believed the explanation to be helpful. The options for the two questions were also in the form of “yes”, “no”, and “not sure”. From the results of the questionnaire, we found that none of the participants were familiar with the meme subculture. Four of them had seen one meme template out of ten memes, and the other six participants had never seen any meme template. As mentioned in previous sections, they can be considered newcomers to the subculture.

To compare the helpfulness of the different approaches to generating anti-punchlines, we show the statistical results of the participants’ feelings that an explanation was helpful. In order to measure the helpfulness of an explanation, we simply counted the number of “yes” answers to the helpfulness question. The answers of “no” and “not sure” did not count.
The helpfulness ratio for the explanations from experts, the selection-collection process, the direct filling process, and the crowd processes. The crowd processes are the union results of the selection-collection and direct filling processes. In other words, a newcomer indicates that an explanation from the crowd processes is helpful if he feels at least one explanation from the selection-collection and direct filling processes is helpful.

The overall statistical results are presented in Fig. 5. In the chart, we observe that both crowd processes produced anti-punchlines comparable with those of the expert.

We compared not only the individual processes, but also calculated the union of the crowd processes, that is, the selection-collection process and the direct filling process. In our evaluation settings, a participant considers a crowd explanation helpful if at least one of the explanations from the selection-collection and direct filling processes helps him understand the meme. In Fig. 5, we see that the crowd union yields a 30% improvement over the expert.

Also note that the crowd union is substantially improved over the individual collection-selection process and direct filling process. It is interesting that the two processes are mutually complementary. When one crowd process cannot explain a meme well, the other one is very likely to be able to explain it.

The helpfulness ratios with respect to individual memes are shown in Fig. 6. The blue bars stand for the ratios of participants that understood a meme before reading any explanation. The red and yellow bars are the helpfulness of the explanations from the expert and our crowd processes, respectively.

Meme #3 is a meme nicely explained by the crowd explanations; the explanations have a helpfulness ratio of 77%. The meme is shown in Fig. 7 and feature a meme template named “Scumbag Steve”. The five explanations shown to the participants are:

1. The background image is called “Scumbag Steve”. The overlaid text generally centers around unethical behavior regarding drugs, partying, and other hedonistic behavior.
2. The upper caption says that he borrows a bunch of your stuff.
3.a (collection-selection process) You expect that he will be careful to return it in good condition.
3.b (direct filling process) You expect that he will return your stuff later.
3.c (direct filling process) You expect that he will not return it in a timely manner.
3.d (direct filling process) You expect that he will return it to you.
3.e (expert process) You expect that he will return your stuff on time.
4. However, in the lower caption, it turns out that he lends it out to people you don’t know.

The above explanation contains five unique anti-punchlines, each preceded by its source in parentheses. As we can see, the majority of the anti-punchlines follow the logic and flow in a four-line template. Among the five anti-punchlines, only one of them from the direct filling process (3.c) expresses a different idea, that which is not an appropriate anti-punchline.

One possibility why the expert’s anti-punchline is not helping the participants is that the set-up and punchline do not mention anything about when the stuff will be returned; referring to this concept thus only confuses newcomers. It may be that experts are not able to produce proper anti-punchlines for every meme because experts have already forgotten what is confusing to a newcomer.

To evaluate the cost efficiency of the processes, we discuss the payment strategy as follows. In the collection-selection process, we collected three anti-punchline candidates and selected the best one as the average three votes. For each collection and selection subtask, we paid $0.05 to
the workers. We thus spent $0.05 \times (3 + 3) = $0.30 to find an anti-punchline. In the direct filling process, we also offered $0.05 for the workers to fill in an anti-punchline.

**Discussion**

Here we review the possibilities and limitations in generating sufficient explanations for Internet memes by crowdsourcing techniques.

The evaluation results suggest that our collection-selection process and direct filling process produce helpful explanations. However, the helpfulness is obvious only after the readers have read all four explanations. Reading more than one explanation requires extra patience and is unlikely for most Internet users. A good mechanism for selecting a best explanation from those generated would be significant.

Considering the aspects of time efficiency and monetary cost, the two proposed processes have different strengths. The collection-selection process is much faster than the direct filling process. As dynamic changing of the content and topics is the nature of memes, speed is a decisive factor. If we emphasize the monetary cost, the direct filling process is more prominent. When dealing with millions or even billions of memes on the Internet, a process with high cost is impractical.

As far as limitations, we are aware that our four-line explanations are not suitable for explaining all Internet memes. For example, some memes contain only one caption (Fig. 8(a) for example) and cannot be used in our template-based explanation. Another condition that we cannot handle is meme templates that have one conventionally fixed caption (e.g. Figures 8(c) and 8(d)).

Fortunately, less than 1% of memes contain only one caption, and only 8.4% of meme templates have a conventional fixed caption: these are sufficiently low ratios. To sum up, we leverage crowdsourcing to produce explanations for humorous Internet memes. Our experiments demonstrate that acceptable explanations are successfully generated by completing the humor tasks.

**Conclusion & Future Work**

Humorous Internet memes can be seen in many image-based online forums. However, steep learning curves are observed before newcomers can fit in to this subculture. In this paper, we propose a template-based explanation approach to extract the incongruity in humorous Internet memes. With crowdsourcing techniques, we are able to generate such explanations for most of the cases.

In this paper, there are mainly three contributions: template-based explanation applying humor theories, workflows of anti-punchline generation, and an evaluation of our crowd explanations. The four-line explanations are based on SSTH, and illustrate the incongruity and opposition between the anti-punchline and the punchline. The proposed two anti-punchline generation processes demonstrate how crowdsourcing may be leveraged to generate explanations for humor materials.

The experimental results and evaluation show that the explanations produced by our processes indeed do help newcomers to pick up the funny gist. An additional comparison between explanations from an expert and our system is made to highlight the strength of our proposed processes.

For further study, is it possible to leverage the proposed system to build an explainer system for other forms of humor. For example, an explainer system for comic strips could be built if the last dialogue can be extracted as the punchline and the previous ones as the set-up. Pure computational humor recognition and generation can also consider our system as a source of explained humorous data for better analysis.
References


