AAAI Publications, Twenty-Second IAAI Conference

Font Size: 
A Testbed for Investigating Task Allocation Strategies between Air Traffic Controllers and Automated Agents
Nathan Schurr, Richard Good, Amy Alexander, Paul Picciano, Gabriel Ganberg, Michael Therrien, Bettina L. Beard, Jon Holbrook

Last modified: 2010-07-05


To meet the growing demands of the National Airspace System (NAS) stakeholders and provide the level of service, safety and security needed to sustain future air transport, the Next Generation Air Transportation System (NextGen) concept calls for technologies and systems offering increasing support from automated systems that provide decision-aiding and optimization capabilities. This is an exciting application for some core aspects of Artificial Intelligence research since the automation must be designed to enable the human operators to access and process a myriad of information sources, understand heightened system complexity, and maximize capacity, throughput and fuel savings in the NAS.. This paper introduces an emerging application of techniques from mixed initiative (adjustable autonomy), multi-agent systems, and task scheduling techniques to the air traffic control domain. Consequently, we have created a testbed for investigating the critical challenges in supporting the early design of systems that allow for optimal, context-sensitive function (role) allocation between air traffic controller and automated agents. A pilot study has been conducted with the testbed and preliminary results show a marked qualitative improvement in using dynamic function allocation optimization versus static function allocation.


Function allocation; air traffic control; adjustable autonomy

Full Text: PDF