AAAI Publications, Twenty-Second IAAI Conference

Font Size: 
A Machine Learning Approach to the Detection of Fetal Hypoxia during Labor and Delivery
Philip A. Warrick, Emily F. Hamilton, Robert E. Kearney, Doina Precup

Last modified: 2010-07-05

Abstract


Labor monitoring is crucial in modern health care, as it can be used to detect (and help avoid) significant problems with the fetus. In this paper we focus on hypoxia (or oxygen deprivation), a very serious condition that can arise from different pathologies and can lead to life-long disability and death. We present a novel approach to hypoxia detection based on recordings of the uterine pressure and fetal heart rate, which are routinely monitored during labor. The key idea is to learn models of the fetal response to signals from its environment, using time series data recorded during labor. Then, we use the parameters of these models as attributes in a binary classification problem. A majority vote over several periods is taken to provide the current label for the fetus. We use a unique database of real clinical recordings, both from normal and pathological cases. Our approach classifies correctly more than half the pathological cases, 1.5 hours before delivery. These are cases that were missed by clinicians; early detection of this type would have allowed the physician to perform a Caesarean section, possibly avoiding the negative outcome

Full Text: PDF