AAAI Publications, Fifth International AAAI Conference on Weblogs and Social Media

Font Size: 
Classifying the Political Leaning of News Articles and Users from User Votes
Daniel Xiaodan Zhou, Paul Resnick, Qiaozhu Mei

Last modified: 2011-07-05


Social news aggregator services generate readers’ subjective reactions to news opinion articles. Can we use those as a resource to classify articles as liberal or conservative, even without knowing the self-identified political leaning of most users? We applied three semi-supervised learning methods that propagate classifications of political news articles and users as conservative or liberal, based on the assumption that liberal users will vote for liberal articles more often, and similarly for conservative users and articles. Starting from a few labeled articles and users, the algorithms propagate political leaning labels to the entire graph. In cross-validation, the best algorithm achieved 99.6% accuracy on held-out users and 96.3% accuracy on held-out articles. Adding social data such as users’ friendship or text features such as cosine similarity did not improve accuracy. The propagation algorithms, using the subjective liking data from users, also performed better than an SVM based text classifier, which achieved 92.0% accuracy on articles.

Full Text: PDF