Adversarial Uncertainty in Multi-Robot Patrol

Noa Agmon, Sarit Kraus, Gal A. Kaminka and Vladimir Sadov *
Department of Computer Science
Bar Ilan University, Israel
{segaln, sarit, galk, sadovv}@cs.biu.ac.il

Abstract

We study the problem of multi-robot perimeter patrol in adversarial environments, under uncertainty of adversarial behavior. The robots patrol around a closed area using a nondeterministic patrol algorithm. The adversary’s choice of penetration point depends on the knowledge it obtained on the patrolling algorithm and its weakness points. Previous work investigated full knowledge and zero knowledge adversaries, and the impact of their knowledge on the optimal algorithm for the robots. However, realistically the knowledge obtained by the adversary is neither zero nor full, and therefore it will have uncertainty in its choice of penetration points. This paper considers these cases, and offers several approaches to bounding the level of uncertainty of the adversary, and its influence on the optimal patrol algorithm. We provide theoretical results that justify these approaches, and empirical results that show the performance of the derived algorithms used by simulated robots working against humans playing the role of the adversary is several different settings.

1 Introduction

The problem of multi-robot patrol has gained interest in recent years [Ahmadi and Stone, 2006; Chevaleyre, 2004; Agmon et al., 2008a], mainly due to its applicability in various security applications. In this problem, robots are required to repeatedly visit a target area, to monitor it. Many researches have focused on a frequency-based approach, guaranteeing some point-visit frequency criteria are met by the patrol algorithm. Others [Paruchuri et al., 2007b; Agmon et al., 2008a; 2008b; Amigoni et al., 2008] have advocated an adversarial approach, in which the robots’ goal is to patrol in a way that maximizes their chances of detecting an adversary trying to penetrate through the patrol path. This problem is inherently different from the frequency driven patrol problem, mainly in the need to add randomization to the robots’ behavior.

Recent investigations have examined the optimality of patrol algorithms in two extreme adversarial settings, which vary in the knowledge of the adversary on the patrol algorithm and its parameters. Agmon et al. [Agmon et al., 2008b] has explored optimal algorithms for a zero-knowledge adversary which chooses its penetration point arbitrarily. More commonly, a worst-case full-knowledge adversary is investigated, which is assumed to know the randomization parameters (e.g., heading change probability), and therefore select the optimal penetration point [Paruchuri et al., 2007b; Agmon et al., 2008a; Amigoni et al., 2008]. However, realistically, most adversaries would have neither perfect knowledge nor zero knowledge, but partial knowledge. Unfortunately, optimal algorithms for either extreme case fail in partial-knowledge cases.

This paper provides a theoretical discussion of the case in which the adversary lies somewhere along the knowledge continuum, between full and zero knowledge. Specifically, we focus on the influence of the adversary’s partial knowledge on its uncertainty of its choice of action, and the impact of this uncertainty on the robots’ optimal patrol algorithm.

We describe two approaches for bounding the uncertainty of the adversary in its choices. In the first approach, we assume the adversary will choose to penetrate through one of the v weakest spots, i.e., the v spots with minimal probability of penetration detection. In the second approach, we assume the adversary will choose to penetrate through the set of v points surrounding the weakest spot. Both cases generalize the knowledge continuum; for both, maximal v corresponds to zero knowledge (thus maximal uncertainty), and minimal v is equivalent to full knowledge adversary (no uncertainty).

For both approaches, we present optimal patrol algorithms, which have polynomial run-time complexity. We prove that in some cases the v physical neighborhood and v weakest spots algorithms are equivalent. However, in many cases, their predictions of the adversary’s actions are different.

We therefore provide an empirical evaluation of the two patrol algorithms, using 71 human subjects that played as adversaries against simulated robots. We compare the two approaches to two other algorithms: MaxiMin, proven optimal for a full-knowledge adversary [Agmon et al., 2008a], and a novel heuristic algorithm MidAvg that averages the MaxiMin and the zero-knowledge algorithm.

Results show that given partial knowledge (correspond-
ing to limited observation time), the two \(\nu \)-algorithms outperformed the others. Moreover, the \texttt{MaxiMin} algorithm—optimal for full-knowledge adversary—performed poorly. We discuss the results of the game, and the possible reasons for reaching such results.

2 Background

Multi-robot patrolling algorithms have been studied in various contexts. Many of these focused on optimizing frequency criteria [Ahmadi and Stone, 2006; Chevaleyre, 2004; Elmaliach et al., 2008], without any reference to the existence of an adversary. In this paper we consider the problem of multi-robot patrol in adversarial environments [Agmon et al., 2008a; 2008b; Sak et al., 2008], which is inherently different from all frequency-driven patrol approaches.

Agmon et. al. [Agmon et al., 2008a; 2008b] investigated multi-robot adversarial perimeter patrolling algorithms for full- and zero-knowledge cases. They introduced the robot motion model that we also utilize. They describe the \texttt{MaxiMin} polynomial-time algorithm that maximizes the minimal probability of penetration detection along the perimeter (i.e., improves the weakest point of penetration). This algorithm is proven optimal for a full-knowledge adversary. For the partial knowledge case, Agmon et al. propose a heuristic algorithm, yet provided no theoretical discussion of this case. In contrast, in this paper we focus on the partial knowledge case, and provide both theoretical and empirical analysis.

Sak et. al. [Sak et al., 2008] considered the case of multi-agent patrol in general graphs (rather than perimeters, as is our focus here). They concentrated on an empirical evaluation (using a simulation, with no human subjects involved) of several non-deterministic patrol algorithms that can be roughly divided into two: Those that divide the graph between the patrolling agents, and those that allow all agents to visit all parts of the graph. They considered three types of adversaries: random adversary, an adversary that always chooses to penetrate through a recently-visited node and an adversary that uses statistical methods to predict the chances that a node will be visited soon. They concluded that there is no patrol metric that outperformed the other in all the domains they have checked, but the results depend on the environment. In contrast to this investigation, we provide empirical results from tests with human subjects, and theoretic proofs of optimality for different settings.

Other closely related work is the work by Paruchuri et. al. [Paruchuri et al., 2007b; 2007a], which considered the problem of placing security checkpoints in adversarial environments. They use policy randomization for the agents’ behavior in order to maximize their rewards. In their work, the adversary has full knowledge of the agents’ behavior, therefore it can use it in order to minimize its probability of being caught in some checkpoint. They again do not consider sensorial scenarios which depend on different sensorial models of the robots. Pita et. al. [Pita et al., 2009] continued this research to consider the case in which the adversary makes their choice based on their bounded rationality or uncertainty, rather than make the optimal game-theoretic choice. They considered three different types of uncertainty over the adversary’s choices, and provide new algorithms that deal with these types of uncertainties. In our work we discuss other aspects of uncertainty in adversary’s choice, and provide optimal polynomial-time solutions.

Amigoni et. al. [Amigoni et al., 2008] also used a game-theoretic approach for determining the optimal strategy for patrolling agents, using leader-follower games. They consider an environment in which a robot can move between any two nodes in a graph, as opposed to the perimeter model we focus on. Their solution is suitable for one robot, and since the computation of the optimal strategy is exponential, they described a heuristic approach for finding a solution.

3 Robot and environment model

We are given a team of \(k \) homogenous robots, required to patrol around a closed area (perimeter). The perimeter is divided into \(N \) segments, where the travel time of each robot through a segment is uniform, i.e., all robots travel through one segment per time cycle. Hence the segments’ length is uniform in time, but not necessarily in distance.

The robots have directionality associated with their movement, i.e., if they go backwards they physically turn around. We model the cost of turning around in time, and denote time it takes the robots to turn around and stabilize in their new direction by \(\tau \). In this paper we focus on the case of \(\tau = 1 \).

The system of perimeter patrol is linear, meaning that at each time step the robots have one of two options: go straight or turn around. Therefore the robot’s patrol algorithm is characterized by a probability \(p \), i.e., at each time step go straight forward with probability \(p \), or turn around with probability \(q = 1 - p \).

We consider coordinated robotic systems in the sense that the robots decide to turn around, they do it simultaneously. Moreover, we require that the robots are placed uniformly along the perimeter, with distance of \(d = N/k \) segments between every two consecutive robots along the path. The coordination and uniform-distance requirements are derived from the optimality proofs given in [Agmon et al., 2008b; 2008a], which have shown that the probability of penetration detection is optimized under these conditions. These optimality proofs are based on the fact that the probability of penetration detection decreases as the distance from the robot increases [Agmon et al., 2008a]. Therefore it is best to minimize the maximal distance between every two consecutive robots. This is done by guaranteeing that the distance in time between every two consecutive robots is equal, maintained so by the requirement that the robots are coordinated.

In the adversarial models considered here, the adversary decides at time 0 through which segment to penetrate, and the time it takes it to penetrate is not instantaneous, and lasts \(t \) time units.

The chances of the robots to detect an adversary passing through a segment \(s_i \) is defined as the \textit{probability of penetration detection} at the segment, and denoted by \(\text{ppd}_i \). This is the probability that some robot will pass through segment \(s_i \) during \(t \) time units, and is a function of the probability of the robots to continue straightforward, \(p \).

1812
4 Uncertainty in the adversary’s perspective

In most cases, it is realistic to assume that the adversary’s knowledge on the patrol algorithm lies somewhere along the knowledge continuum, between full and zero knowledge. Usually, the adversary does not gain enough information on the patrol algorithm in order to derive the exact algorithm (i.e., probability p) or the exact weakest spots of the algorithm. Therefore we explore theoretically two directions in handling partial knowledge of the adversary. In the first, the adversary might have some estimation of the probability p characterizing the patrol algorithm. In the second, the adversary might have some estimation of the weakest spot of the algorithm. In both cases, we wish to use the region of possible beliefs of the adversary in order to find an optimal patrol algorithm for the patrolling robots.

A common way of handling uncertainties of systems is to assume that when having no knowledge, a random choice, with uniform probability, is made. In this domain, this approach was proven to be useful in an empirical evaluation in [Agmon et al., 2008b], where a patrol algorithm proven to be optimal for a random adversary performed substantially better than other algorithms for humans playing the role of an adversary that had no knowledge of the patrolling robots. We will use a similar approach here, i.e., within the region of estimation of the adversary — either of the patrol algorithm p or of the weakest spots — the adversary will be assumed to choose its actions at random.

We first examine the approach according to which the adversary estimates the probability p characterizing the patrol algorithm with some error. Unfortunately, we show that it is impossible to find an optimal patrol algorithm in this case.

We then discuss two alternative approaches, in which the uncertainty is reflected by the choice of penetration spot. In this case, we do not necessarily assume that the adversary calculates the probability p, but tries to estimate the weakest spot using two estimation methods - physical proximity, or probability proximity to the minimal ppd.

4.1 Estimating p - negative result

In this section we discuss the case in which the adversary estimates the probability p characterizing the patrol algorithm.

The problem of estimating the probability p can be considered as observing a Bernoulli trial, where a success is an event of going straight with probability p, and a loss is turning around with probability $1 - p$. We can use the Central Limit Theorem [Devore, 1991] that bounds the expected error from the real value of p after viewing it for t_v trials. The average of successes after viewing t_v trials is inside the boundaries $[p - \delta, p + \delta]$ with probability p_{conf}, where δ is a function of t_v and depends on p_{conf}. Therefore the adversary can estimate the real value of p inside some interval around p, and we will try to use this interval in order to optimize the patrol algorithm of the robots. Consider the following problem.

P-Interval problem definition: Let p be the probability characterizing the perimeter patrol algorithm of a team of robots. Assume the adversary estimates that the real value of p is inside the interval $[p - \delta, p + \delta]$. Therefore it chooses its believed p_b at random with uniform probability inside this interval. The algorithm needs to find the probability p characterizing the patrol of the robots such that it maximizes the expected ppd throughout the perimeter.

Unfortunately, we prove that this problem is unsolvable unless $\delta = 0$. We prove it by showing that the expected ppd function inside the interval $[0, 1]$ is monotonically increasing, i.e., as p grows the expected ppd grows, hence the optimal p does not converge unless $\delta = 0$ (since maximization of the expected ppd is obtained in the right bound of the interval, which is also the mid point of the interval only when $\delta = 0$).

We omit the proof of the following Lemma due to space constraints. Let $E_{\text{ppd}}(p)$ be the expected ppd for probability $p \in [0, 1]$.

Lemma 1. The expected ppd, as a function of p, is a monotonically increasing function in the range $[0, 1]$, i.e., for all $0 \leq p' < p \leq 1$, $E_{\text{ppd}}(p') < E_{\text{ppd}}(p)$.

Theorem 2. P-Interval is unsolvable unless $\delta = 0$.

Proof. Assume, towards contradiction that $\delta > 0$, yet there exists p^* that maximizes the expected ppd throughout the perimeter. By the definition of P-Interval, the adversary deduces an interval around p^* in which it chooses its believed p at random inside the interval $[p^* - \delta, p^* + \delta]$. By Lemma 1, the expected ppd function is monotonically increasing, therefore the maximal expected ppd inside this interval is obtained in $p^* + \delta$. This contradicts the assumption that p^* maximizes the expected ppd, unless $\delta = 0$. \[\square \]

4.2 Uncertainty in the choice of penetration spot

In this section we explore the case in which the partial knowledge of the adversary on the patrol algorithm is translated into different possible options of penetration spots. For several reasons, the adversary might not choose to penetrate through the exact weakest spot. We present herein two deviations from the weakest spots, hence two possible corresponding optimal ways of choosing the patrol algorithm in such cases.

The adversary, after studying the robots’ patrol for a period of time, could result in several reasonable segments which the ppd values, as it believes, are small enough. In this case it could choose to penetrate through one of the v weakest spots at random, with some probability distribution (for example uniform). Hence the robots should choose p such that the expected ppd along the v segments with minimal ppd is maximal. We refer to this approach by v-Min.

The second case is that the adversary might not choose to penetrate through the segment with the minimal ppd, but either through that segment, or through one of its neighboring segments at random. Hence the robots should choose p such that the minimal expected ppd along v neighboring segments is maximized. This approach is referred to as v-Neighbor.

Note the difference between the two cases - in v-Min we are looking for the value $0 \leq p \leq 1$ such that the weighted average of the v minimal ppd’s is maximized, and in v-Neighbor case we are looking for p such that the minimal weighted average of v neighboring segments is maximized.

In both cases, the two extremities of uncertainties—full knowledge adversary (no uncertainty) and zero knowledge adversary (complete uncertainty)—match the results obtained.
by [Agmon et al., 2008a; 2008b], respectively. If \(v = 1 \), i.e., there is no uncertainty in the choice of the weakest spot, then the algorithms are required to return exactly the value \(p \) such that the minimal \(\text{ppd} \) is maximized, similar to the MaxiMin algorithm presented in [Agmon et al., 2008a]. On the other hand, if \(v = d \) and the probability distribution is uniform, then the algorithms will return the value \(p \) that maximized the expected \(\text{ppd} \) throughout the perimeter (=average \(\text{ppd} \)). As proven in [Agmon et al., 2008b], the optimal algorithm in this case is \(p = 1 \), i.e., the deterministic algorithm.

The algorithms for finding an optimal patrol uses the \(\text{ppd} \) function for each segment \(s_i \). These \(\text{ppd} \) are functions of \(p \), and are calculated in polynomial time using a dynamic-programming algorithm described in [Agmon et al., 2008a].

Optimality of the patrol algorithm using the v-Min approach

We present herein Algorithm ComputeMinV that finds the optimal patrol algorithm, corresponding to the probability \(p \) of going straight at each time step under the v-Min scenario. Specifically, Algorithm ComputeMinV computes the value \(p \) such that the minimal \(v \text{ppd}'s \) are maximized, given a probability distribution \(V = \{v_1, v_2, \ldots, v_v\} \), where \(v_i \) is the probability that the adversary will choose to penetrate through the \(i \)'th weakest spot. \(\sum_{i=1}^{v} v_i = 1 \). This distribution can be used to further manipulate the impact of the extent of knowledge of the adversary on its choice of penetration spot, for example after obtaining more knowledge \(v_i \) may increase to more than the uniform distribution \(1/v \).

\[
\text{Algorithm 1 ComputeMinV}(v, V, \{\text{ppd}_1, \ldots, \text{ppd}_d\})
\]

1. Set \(\text{BufP} \leftarrow \{0,1\} \) \{initialize list of all intersection points\}
2. for every pair \(\text{ppd}_1, \text{ppd}_2 \), \(1 \leq i,j \leq d, i \neq j \) do
3. \(\text{Intersect}_{i,j} \leftarrow \) intersection points between \(\text{ppd}_i \) and \(\text{ppd}_j \),
4. \(\text{BufP} \leftarrow \text{BufP} \cup \text{Intersect}_{i,j} \)
5. Sort \(\text{BufP} \) in ascending order
6. \(\text{Res}_f, \text{Res}_p \leftarrow 0 \) \{initialize maximin value and its \(p \} \)
7. for \(j \leftarrow 1 \) to \(|\text{BufP}| \) do
8. Find \(v \) functions \(f_{j_1}, \ldots, f_{j_v} \) such that \(f_{j_i}(p') < f_{j_j}(p') \forall p' \in [\text{BufP}(j), \text{BufP}(j + 1)], 1 \leq i \leq v, f_{j_i} \neq f_{j_j} \),
9. \(f_{\text{avg}} \leftarrow \sum_{j=1}^{v} v_i \times f_{j_i} \), \(m \leftarrow f_{\text{avg}}(p^*) \) such that \(\forall p \in [\text{BufP}(j), \text{BufP}(j + 1)], f_{\text{avg}}(p^*) \geq f_{\text{avg}}(p) \),
10. if \(m > \text{Res}_f \) then
11. \(\text{Res}_f \leftarrow m ; \text{Res}_p \leftarrow p^* \),
12. Return \(\text{Res}_p \)

The algorithm works as follows. First, it identifies all intersection points between every pair of \(\text{ppd}_i, \text{ppd}_j \) functions \(1 \leq i, j \leq d, i \neq j \). Then it divides the range \([0,1]\) to sections according to all the intersection points. For each section \([p_a, p_b]\), the algorithm identifies the minimal \(v \) curves between \([p_a, p_b]\), and finds their average curve, \(f_{\text{avg}} \). Since the adversary chooses to penetrate through one of the \(v \) segments with lowest \(\text{ppd} \) at random with the given distribution \(V \), the weighted average (given weight \(v_i \) to the \(i \)'th minimal curve) of the \(v \) curves represent the expected \(\text{ppd} \) in that section. Last, ComputeMinV calculates the maximal value of \(f_{\text{avg}}(a, b) \) in the section \([p_a, p_b]\), and reports the point \(p_{opt} \) that is maximal among all minimal points of the average functions. An illustration of this algorithm is shown in Figure 1.

Figure 1: An illustration of Algorithm ComputeMinV for \(d = 8, t = 6, v = 3 \). The small stars mark the intersection points, and the bold curve is the average of the 3 minimal curves at each section. The arrow marks the maximal point computed by ComputeMinV.

The time complexity of ComputeMinV is \(O(d^4 + d^3 \log v) \) (compared to time complexity of \(O(d^3) \) of the MaxiMin algorithm for full knowledge adversary [Agmon et al., 2008b]).

Optimality of the patrol algorithm using the v-Neighbor approach

As stated previously, the adversary might attempt to penetrate not only through the weakest segment, but through one of its neighboring segments. Therefore this can be used in order to find a patrol algorithm \((p \text{ value}) \) more suitable for the situation. Algorithm ComputeNeighborV computes the weighted average of \(v \) neighboring segments according to a distribution \(V = \{v_1, \ldots, v_v\} \), then finds the maximin point of the new curves. Note that if the robot currently resides inside the \(v \)-neighborhood of a segment \(s_i \) (i.e., \(v - i < 0 \) or \(v + i > d \)), its current location is excluded, i.e., we average fewer segments for that case. The probability distribution can be used to express the fact that the adversary tends, for example, to try and penetrate through the segments further away from the robot in its current position. Figure 2 illustrates the algorithm for \(d = 8, t = 6, v = 3 \).

\[
\text{Algorithm 2 ComputeNeighborV}(v, V, \{\text{ppd}_1, \ldots, \text{ppd}_d\})
\]

1. Set \(\text{FuncSet} \leftarrow \emptyset \)
2. for \(i \leftarrow 1 \) to \(d \) do
3. \(\nu_e = \min(d, i + v) \)
4. \(\text{FuncSet} \leftarrow \{v_{j-i+1} \times \text{ppd}_j \cup \text{FuncSet} \}
5. \(p_{opt} \leftarrow \text{MaxiMin} (\text{FuncSet}, d) \)
6. Return \(p_{opt} \)

The time complexity of Algorithm ComputeNeighborV is \(O(d^3) \) (similar to the complexity of MaxiMin).
Comparing v-Min and v-Neighbor

The two approaches of v-Min and v-Neighbor towards bounding the uncertainty of the adversary in its choice of penetration spot might seem to be inherently different. Consider for example the case in which $d = 8$, $t = 6$ and $v = 3$ (Figures 1 and 2). The optimal p in case of v-Neighbor is $p = 0.7359$, and the optimal p for v-Min is $p = 0.9273$. The result returned by the MaxiMin algorithm (used in case of a full knowledge adversary, i.e., $v = 1$) is $p = 0.7037$.

However, in some cases they coincide, as proven in the following Theorem.

Theorem 3. The optimal choice of p according to v-Neighbor coincides with the optimal p according to v-Min if $t = \lfloor d/2 \rfloor + 1$.

Proof. The optimal p in the v-neighborhood and in the v-minimal, is the one maximizing the minimal ppd of the average of the v-neighborhood and v-minimal ppd, functions, correspondingly. Therefore it is enough to show that along this optimal point p_{o_1}, the v-minimal ppd, functions are also all neighbors. Formally, we need to show that $ppd_{i_1}, \ldots, ppd_{i_t}$ are minimal, where $i = j + l$ for some index $1 \leq j \leq d - v$.

Consider the section of d segments between two consecutive robots R_a and R_b. First, assume d is odd. In this case, ppd_{i_1} for $1 \leq i \leq t$ is influenced only by R_a, and ppd_{i_2} for $t + 1 \leq i \leq d$ is influenced only by R_b. Moreover, every ppd_{i_1} function for $1 \leq i \leq t$ equals 0 if $p = 0$, and equals 1 if $p = 1$. On the other hand, every ppd_{i_2} function for $t + 1 \leq i \leq d$ equals 0 in both $p = 0$ and $p = 1$.

Note that if a robot is headed clockwise, then any ppd function of a segment s_i of distance i to its right is larger than a ppd function of segment which is in the same distance, but to the left. For example, $ppd_{1} > ppd_{2}$, $ppd_{2} > ppd_{d-1}$ and so on. The reason lies in the fact that the probability of reaching a segment of distance i in the opposite direction is equivalent to the probability of reaching a segment in distance i in the same direction, but multiplied by $(1 - p)$. Since we assume that $p \leq 1$, this it always true.

Combining all known facts together, from Lemma 1 in [Agmon et al., 2008a] we see that $ppd_{i+1} \leq ppd_{i+2} \leq \ldots \leq ppd_{d-1} \leq ppd_i$ and $ppd_i \leq ppd_{i-1} \leq \ldots \leq ppd_1$. Also, as shown herein, $ppd_1 \geq ppd_2 \geq ppd_3 \geq \ldots \geq ppd_{d-1} \geq ppd_{d-2} \geq ppd_{d-3} \geq \ldots \geq ppd_1$. It follows that, necessarily, the minimal function is ppd_{i+1}, the function above it is ppd_i and ppd_{i-1}, followed by ppd_{i+2} and ppd_{i-2} and so on (see an example in Figure 3). Therefore, necessarily, when considering the v-minimal segments, for all i, we remain in the v-neighborhood of ppd_{i+1}.

If d is even, then the only difference is that function ppd_i receives components from both R_a and R_b, hence it is not straightforward that it is smaller than ppd_{i-1}. Calculating the exact value of ppd_i, shows us that $ppd_i = p^i + (1 - p)p^{i-1} = p^i - 1$. On the other hand, $ppd_{i+1} = p^i - 1$, i.e., $ppd_{i-1} = ppd_i$, and the rest of the proof follows directly as in the case of an odd d. \hfill \square

![Figure 2: An illustration of Algorithm ComputeNeighborV for $d = 8$, $t = 6$, $v = 3$. The curves are not the original ppd, functions, but the average of v-neighborhood of each segment. The arrow points to the maximin point of the new curves.](image)

![Figure 3: An illustration of proof of Theorem 3, in which the v-neighborhood and v-minimal coincide (here $d = 9$, $t = 5$ and $v = 3$). The bold line represents the average of v-minimal / v-neighboring segments.](image)

5 Evaluation

In order to evaluate the performance of the suggested algorithms when working against different adversaries, we created a variation of the PenDet-game that was described in [Agmon et al., 2008b]. In this game, the adversary is played by a human subject, working against simulated robots in a Web-based environment. Using humans as adversaries models the realistic requirements of such a system, i.e., the robots will perform in real-world against human adversaries in various environments (similar evaluation methodology is also used in [Pita et al., 2009; Agmon et al., 2008b]).

The patrol algorithms executed by the robots were calculated according to the following:

- **v-Min** (with several v values)
- **v-Neighbor** (with several v values)
- **MaxiMin**, which maximizes the minimal ppd along the perimeter, proven by [Agmon et al., 2008a] to be optimal
against a full-knowledge adversary
\textbf{MidAvg}, a novel heuristic algorithm that averages between
the \(p \) value of the optimal algorithms against full and zero
knowledge adversaries (\textbf{MaxiMin} and deterministic algo-

\section*{5.1 Experimental setting}

The game was played by 71 human subjects, all undergraduate
Computer Science students, playing the role of the ad-
versary that tries to penetrate through the simulated robots.
The subjects received both an oral presentation explaining the
rules of the game, and were handed additional explanation
sheets.

Each trial was composed of 6 subgames. Each such sub-
game starts with an observation phase of 60 seconds, in which
the player studies the patrol algorithm by observing the ac-
tions of the robots in order to choose a penetration spot.

Preliminary experiments that included observation periods
of 5 and 30 seconds have shown that these observation pe-
riods were not long enough to enable learning of the robots’
patrol algorithm, hence the choices made by the subjects were
arbitrary. Thus we focused on an observation period of 60
seconds.

After the observation phase, the players chose a penetration
spot through which they assumed to maximize their chance of
negotiating without being detected by the patrolling robots.
Each player played 6 subgames, however the player did not
get feedback on whether the penetration attempt was success-
ful.

We checked two pairs of \((d,t)\) values: \((8,6)\), in which
the resulted patrol algorithm was different for the \textbf{v-Min}
and \textbf{v-Neighbor} for \(v = 2,3 \). In the second pair, \((16,9)\),
as proven also by Theorem 3, the results of \textbf{v-Min} and
\textbf{v-Neighbor} coincide, hence we checked the following \(v \)
values: \(v = 3,5,7,9 \). We considered only the uniform distribu-
tion of \(V \), i.e., \(v_i = 1/v \).

Each set of \((d,t)\) values and algorithm (characterized by
probability \(p \)) was played by 34 to 37 subjects. The order of
the subgames in the trial was randomly selected, and there
were no repetitions of sets in one trial.

\section*{5.2 Experimental results and discussion}

Figures 4, 5 describes the expected probability of penetration
detection given the players’ choice of penetration locations
for \(d = 8, t = 6 \) and \(d = 16, t = 9 \) (respectively) for all algo-
rithms described above, given an observation time of 60 sec-
onds, where the patrol algorithm was unknown to the player.
The bars represent the expected penetration detection ratio
given the actual choices of the players’ penetration spots.
In order to compare the performance results obtained by the
different algorithms, we used the Mann-Whitney U-test [Mann
and Whitney, 1947], which is a non-parametric test, suitable
for data with no normal distribution (like the data in our case).

For the first case in which \(d = 8, t = 6 \) we can clearly see
that the best-performing algorithm, i.e., the algorithm that
achieved the highest expected probability of penetration de-
tection based on the choices of the players, was \textbf{v-Min} for \(v = 3 \) (denoted by \(3-\text{Min} \)). Specifically, the results of \(3-\text{Min} \)
were statistically significantly better than \textbf{v-Neighbor} and

\textbf{v-Min for} \(v = 2 \) \((p - value = 0.001 \text{ and } p - value = 0.01, \]
respectively), \textbf{MaxiMin} \((p - value = 0.003)\) and \textbf{MidAvg}
\((p - value < 0.002)\). However, the results of \(3-\text{Min} \) were
not significantly better than \textbf{v-Neighbor} for \(v = 3 \) (denoted
by \(3-\text{Neighbor} \)).

In order to explain the advantage of using \(3-\text{Min} \), we in-
pected the actual choices the players made concerning their
penetration spots. Approximately 50\% of the players decided
to penetrate through one of the 3 segments with minimal \textbf{ppd},
and the expected \textbf{ppd} in these segments is 34\%. In contrast,
only approximately 29\% of the players detected the weak-
est spot when executing the \textbf{MaxiMin} algorithm (in this case
having an expected \textbf{ppd} of 24\%). This means that the \(3-\text{Min} \)
algorithm indeed had better predictions concerning the pen-
etration spots.

Another reason for the \(3-\text{Min} \)’s good performance lies in
the fact that the other 50\% of the players who didn’t choose
to penetrate through the weakest spots, had better chances of
getting caught by the \(3-\text{Min} \) algorithm also in the other seg-
ments. The \textbf{MaxiMin} algorithm attempts to strengthen the
weakest spot, and thus it substantially decreases the probabil-
ity of penetration detection in the other segments. For exam-
ple, for \(d = 8, t = 6 \), the expected \textbf{ppd} in the non-weakest
segments using the \textbf{MaxiMin} algorithm is 49\%, whereas with
the \(3-\text{Min} \) algorithm it is 83\%. The minimal \textbf{ppd}, though,
decreases from 24\% to 11\% with the \(3-\text{Min} \) algorithm.

Since the players did not obtain enough information to
identify the exact weakest spots and enter through those spots,
the use of the \textbf{MaxiMin} algorithm was not worthwhile. The
\(2-\text{Min} \) and \(2-\text{Neighbor} \) algorithms suffer from the same
problem, though not as profoundly as the \textbf{MaxiMin} does.
Therefore they did not perform as well as the \(3-\text{Min} \) or \(3-
neighbor \) algorithms. The \(3-\text{Min} \) algorithm performed better
than the \(3-\text{Neighbor} \) algorithm, yet not significantly better,
since they both assume similar uncertainty level (3 segments).

Note that it may be worthwhile to enlarge the level of un-
certainty, i.e., the \(v \) value in order to capture more choices
of penetration spots. However, if \(d = 8, t = 6, \) for \(v > 3 \)
the optimal algorithm is deterministic, which is highly pre-
dictable, and as shown in [Agmon et al., 2008b], it is easily
manipulated by an adversary with even a small amount of information.

For $d = 16, t = 9$ we see from the expected ppd values that v-Min / v-Neighbor for $v = 9$ (denoted by V – 9) performs considerably better than algorithms with smaller v’s (tested for $v = 3, 5, 7$), MaxiMin and MidAvg. However, we were not able to obtain statistical significance using the Mann-Whitney U-test. The reason lies in the fact that V – 9 expects the players to penetrate through one of the 9 weakest segments, and indeed 68% of the players chose to penetrate through these segments. Therefore the expected ppd consists of a large range of possible values that are not normally distributed, therefore even though the V – 9 produced highest levels of ppd, we could not show significance.

6 Conclusions and future work

In this paper, we considered the problem of multi-robot perimeter patrol in adversarial environments, under uncertainty of adversarial behavior. In this case, the adversary has some knowledge on the patrolling robots — on the scale between zero to full knowledge, yet it is uncertain in determining its best option for penetration spot. We bounded the uncertainty in such a way that enabled us to find an optimal patrol algorithm for the robots that will maximize their chances of detecting the adversary. We described two approaches for dealing with this problem. In the first, we assumed that the adversary will choose to penetrate through some spot which is in some physically proximity to the weakest spot of the patrol, and in the second we assumed the adversary would penetrate through one of the weakest spots. We described a polynomial time algorithm for determining the optimal patrol algorithm for each case, and have shown when these two approaches coincide. We performed a massive experiment, using 71 human subjects playing the role of the adversary against simulated robots, and have shown significant benefits in using our suggested algorithms.

For future work we consider the following points. We intend to further investigate uncertainties in the adversary’s choice. As a first step, we would like to perform additional empirical evaluation with a longer learning phase of the patrolling robots, and try to extract the transition points between possible v values. We would also like to examine possible uncertainties in the internal robotic system, originated for example in faulty movement and faulty sensing.

References

