Activity Recognition with Intended Actions

Alfredo Gabaldon
Center for Artificial Intelligence
New University of Lisbon
ag@di.fct.unl.pt

Abstract
The following activity recognition problem is considered: a description of the action capabilities of an agent being observed is given. This includes the preconditions and effects of atomic actions and of the activities (sequences of actions) the agent may execute. Given this description and a set of propositions, called history, about action occurrences, intended actions and properties of the world all at various points in time, the problem is to complete the picture as much as possible and determine what has already happened, what the intentions of the agent are, and what may happen as a result of the agent acting on those intentions. We present a framework to solve these activity recognition problems based on a formal language for reasoning about actions that includes a notion of intended actions, and a corresponding formalization in answer set programming.

1 Introduction
We consider the following problem: given a partial record of what an agent being observed is doing, including a) intended actions, b) action executions, c) fluent values, all at various time points, determine a complete picture of what the agent has done, intends and may do in the future. This activity recognition problem is what we are concerned with in this paper. We develop a new approach that is based on logical reasoning with partial information about the activities of an observed agent and a background knowledge base that includes a formal action theory representing how the world evolves as the agent executes actions, knowledge about non-elementary actions, called activities, that the agent might be executing, and a theory of intended actions.

For illustration of our approach we shall use the following adapted version of an example from [Kautz and Allen, 1986].

Example 1 The observed agent in this domain is capable of executing various meal preparation activities: it can cook chicken marinara which consists in making marinara sauce and putting it together with chicken by mixing chicken marinara. It can cook fettuccini alfredo by making fettuccini, making alfredo sauce and putting it together by elementary actions, called evokes as the agent executes actions, knowledge about non-atomic actions, called activities, that the agent might be executing, and a theory of intended actions.

There is a substantial body of work on activity or plan recognition. Among the influential early work on this problem is [Kautz and Allen, 1986], which presents a formal framework for plan recognition using logic and circumscription. Our approach is also logic-based and aims at a fairly general solution. However, we build on a more recent and general framework for reasoning about actions that allows us to account for aspects of the problem that are beyond the capabilities of other approaches, for instance, taking into account knowledge about the state of the world at various time points. Another advantage of using a general action theory is that the reasoner would be able to solve an activity recognition problem and then plan its own actions, possibly in response to what the observed agent is doing, using the same action domain description and observations, in the same formal framework. Some of the recent approaches to activity recognition are based on Hidden Markov Models, e.g. [Bui et al., 2002; Geib and Goldman, 2005; Blaylock and Allen, 2006], and Probabilistic Grammars, e.g. [Pynadath and Wellman, 2000]. These approaches achieve high efficiency, but are limited in several respects. One major limitation is an inability to handle multiple activities occurring simultaneously. Other limitations of some of these approaches include an inability to utilize negative information, such as an observation that some action did not occur, observations about properties of the world, and a focus on answering a single type of query: what is the top-level activity being executed by the observed agent. In contrast, our approach based on a general theory of actions allows computing a more complete picture of the situation, that in addition to the top-level activities includes what the agent has done in the past, what is true of the world at each stage, what the agent may intend to do next, etc. There are also symbolic approaches, such as [Avrahami-Zilberbrand and Kaminka, 2005], which typically focus on matching observed actions to plans, achieving high efficiency at the cost of ignoring dynamic domain prop-
2 Reasoning about Intended Actions

The action description language \(\mathcal{ALI}\) [Baral and Gelfond, 2005] extends similar action languages, in particular \(\mathcal{AL}\) [Baral and Gelfond, 2000], with the capability of reasoning about intended actions. Next we give an overview of \(\mathcal{ACT}\).

A domain description in \(\mathcal{ACT}\) includes a set of dynamic causal laws, static causal laws and executability propositions. A set of such statements, called action description, describes a transition system which models how the world moves from one state to another as actions are executed. A separate set of constructs in the language is used to capture a history: a set of statements about observed values of fluents and occurrences of actions at specified time points. Given a domain description and a possibly incomplete history, the reasoning task is then to determine a complete trajectory that the world may have followed and that is compatible with the history. Additionally, the language \(\mathcal{ACT}\) allows for reasoning about intended actions, thus it includes a construct for specifying in a history that at a given time the agent intends to execute a given action. The underlying principle is: normally, unfulfilled intentions persist, meaning that if the agent is not able to execute an intended action at a specified time (e.g. because the action was not executable at that time) then the intention persists until the agent successfully executes the action. The formal syntax and semantics of \(\mathcal{ACT}\) follows.

A signature consists of two disjoint, finite sets: a set of elementary action names \(A\), and a set of symbols \(F\), called fluents, which represent properties of the domain that change when actions are executed. A fluent literal is a fluent \(f\) or its negation, denoted by \(\neg f\). A set of literals \(Y\) is called complete if for every \(f \in F\), \(f \in Y\) or \(\neg f \in Y\), and \(Y\) is called consistent if there is no \(f\) s.t. \(f\), \(\neg f \in Y\). A state is a complete and consistent set of fluent literals and represents one possible state of the domain. An action is a set \(\{a_1, \ldots, a_n\}\) of elementary actions representing their simultaneous execution. Sequences of actions are lists of actions separated by commas and enclosed by \(\langle\rangle\).

Given a signature \(\Sigma = (A,F)\), a transition diagram over \(\Sigma\) is defined as a directed graph \(T\) where:

- the states of \(T\) are the states of \(\Sigma\), denoted by \(\sigma_i\)’s;
- the arcs of \(T\) are labeled by actions of \(\Sigma\).

A path \(\langle\sigma_0, a_1, \sigma_1, \ldots, a_n, \sigma_n\rangle\) of a transition diagram is called a trajectory of the domain.

As mentioned above, an action description consists of a set of statements understood as describing a transition diagram. These statements are of the following three forms (\(a_e\) denotes an elementary action and \(l_i\)’s denote fluent literals):

- **dynamic causal laws**: \(\text{causes}(a_e, l_0, \{l_1, \ldots, l_n\})\), stating that executing \(a_e\) in a state where \(l_1, \ldots, l_n\) hold causes \(l_0\) to be true in the resulting state;
- **static causal laws**: \(\text{caused}(l_0, \{l_1, \ldots, l_n\})\), stating that \(l_0\) is caused to hold in every state where \(l_1, \ldots, l_n\) hold;
- **executability propositions**: \(\text{impossible}\ \text{if}\ (a_e, \{l_1, \ldots, l_n\})\), stating that \(a_e\) cannot be executed in a state where \(l_1, \ldots, l_n\) hold.

The definition of the transition diagram specified by an action description requires the following notions and notation: An action \(a\) is executable in a state \(\sigma\) if there is no proposition \(\text{impossible}\ \text{if}\ (a_e, \{l_1, \ldots, l_n\})\) s.t. \(a_e \in a\) and \(\{l_1, \ldots, l_n\} \subseteq \sigma\). A set \(S\) of fluent literals is closed under
a set Z of static causal laws if S includes the head l_0 of every static causal law s.t. $\{l_1, \ldots, l_n\} \subseteq S$. The set $Cn_Z(S)$ of consequences of S under Z is the smallest set of fluent literals that contains S and is closed under Z. The notation $E(a, \sigma)$ is used to denote the set of all literals l_0 s.t. there is a dynamic causal law $\text{causes}(a, l_0, [l_1, \ldots, l_n])$ and $\{l_1, \ldots, l_n\} \subseteq \sigma$. Moreover, $E(a, \sigma) = \bigcup_{l \in \sigma} E(a, \sigma)$.

An action description specifies a transition diagram that satisfies certain properties. One is that all the states of the transition diagram must satisfy the static causal laws. Second, if there is a transition from σ to σ' labeled by a, then a must be executable in σ. Furthermore, σ' must include the direct effects $E(a, \sigma)$ of a, the indirect effects that follow from the static causal laws and it must contain literals that are otherwise not affected by a but are preserved by the common sense law of inertia. Formally, the transition system specified by an action description AD is defined as follows.

Definition 1 An action description AD with signature Σ describes the transition system $T = (S, R)$ where:

1. S is the set of all the states of Σ that are closed under the static causal laws of AD;
2. R is the set of all triples $\langle \sigma, a, \sigma' \rangle$ s.t. a is executable in σ and σ' is the fixpoint of the equation:
 \[\sigma' = Cn_Z(E(a, \sigma)) \]
 where Z is the set of all the static causal laws in AD.

Definition 2 A history is a set of propositions of the forms (σ denotes an action sequence, i a time point, and l a fluent literal):

1. $\text{intended}(a, i)$: action a is intended at time point i;
2. $\text{happened}(a, i)$: a (did not) happen at time point i;
3. $\text{observed}(l, i)$: l was observed to hold at time point i.

The semantics of happened and observed is defined in the usual way for A-like languages (see Definition 3 below). The semantics of intended is based on the following assumptions:

- once an agent establishes the intention to execute an action, it does so as soon as the action is executable;
- for an intended sequence $\langle a_1, \ldots, a_n \rangle$, a_1 is intended first and each a_{i+1} in turn intended after a_i executes;
- if an intended action is not executable, the intention to execute it persists until it becomes possible to execute it.

A history is interpreted by trajectories of the background transition system. The following definition describes when a trajectory is a model of a history.

Definition 3 Let AD be an action description, H a history, $P = \langle \sigma_0, a_1, \sigma_1, \ldots, a_n, \sigma_n \rangle$ a trajectory and $1 \leq i \leq n$.

1. P satisfies $\text{observed}(l, i)$ if l is true in σ_i ($l \in \sigma_i$).
 Similarly for initial state statements, P satisfies $\text{observed}(l, 0)$ if l is true in σ_0.
2. P satisfies $\text{happened}(a, i)$ if $a \subseteq a_i$. In this case, a is said to be supported at i. P satisfies $\neg \text{happened}(a, i)$ if $a \not\subseteq a_i$.
3. P satisfies $\text{intended}(a, i)$ if a) $a \subseteq a_i$; or b) a is not executable in σ_{i-1} (i.e. there is a proposition $\text{impossible}, if \langle a, l \rangle \in AD \text{s.t. } a_e \in a$ and $l \subseteq \sigma_{i-1}$), $i < n$ and P satisfies $\text{intended}(a, i+1)$.

If $a \subseteq a_i$, we say that a ends at $i+1$ and that each element of a is supported at i.

4. P satisfies $\text{intended}(a, i)$ where $a = \langle a_1', \ldots, a_m' \rangle$ and $m > 1$, if P satisfies $\text{intended}(a_1', i)$ and P satisfies $\text{intended}(\langle a_2', \ldots, a_m' \rangle, j)$ where a_i' ends at j in P. We say that a ends at k in P, if a_m' ends at k in P.

5. P is a model of a history H if it satisfies all the statements of H and, for all $1 \leq i \leq n$, all the elements of a_i are supported at i in P.

3 Activity Recognition

Reasoning about intended actions in the language ACT is done in terms of the trajectories specified by the history. Our goal here is to characterize activity recognition similarly in terms of models of the recorded history. The differing nature of the activity recognition problem requires some elaboration of the framework. For once, intuitively activity recognition is done from the perspective of an external observer of the agent that is executing the actions. Also, in addition to the background action description and the history, in activity recognition the reasoner typically has additional knowledge in the form of a set of activities that the agent being observed may do and sometimes information about which actions are “purposeful.” Let us elaborate these two points a bit further.

3.1 Named Activities

Our approach to activity recognition is based on the availability of a set of background activities that the observed agent may do. These serve as hypothesis space to the recognition system. In our case these activities will be represented as pairs (s, α) where s is the name of the activity and α a sequence of actions (including other activities). Thus we extend the signature of the language with an additional set C of activity names. An action description will contain a set of pairs (s, α) with one pair for each $s \in C$. We will often use s to refer to activity (s, α). For the sake of simplicity, sequences α in named activities are assumed not to repeat actions.

Two examples from the cooking domain are:

\[
ccm, (mk_marinara, mix_chicken_marinara) \\
(cfm, (mk_fettuccini,mk_marinara,mix_fettuccini_marinara))
\]

We assume that only actions can be observed to occur and thus will not use activity names in happened statements. On the other hand, we do allow activity names in intended statements as part of the history, as we consider the possibility that the observed agent declares its intentions or that the activity recognizer is otherwise informed of those intentions.

3.2 Purposeful Actions

By purposeful actions we mean actions whose execution in isolation, as opposed to as part of a more complex activity, is considered reasonable. For example, one may consider the action of taking a bus as not purposeful since normally a person does not take a bus for the sake of taking a bus, but does so as part of a more complex activity such as commuting to work. Here we treat purposefulness as a fixed (non fluent) property of activities. A more elaborate treatment of purposefulness intuitively seems to require this notion to be context
dependent and to be captured as a default. We plan to consider more general notions of purposefulness in future work.

Purposeful actions are simply declared to be so by means of statements of the form $\text{purposeful}(c)$, where c is an action or an activity. Actions not declared to be purposeful are assumed not to be purposeful. The next section describes how this knowledge influences reasoning about intended actions.

3.3 Formal Characterization

In our formalization of activity recognition we do not allow a history to state that a named activity happened, only elementary actions can be observed. We moreover assume that all the observed actions were intentional.

The definition of satisfaction of history statements by a trajectory is given in Def. 3. While activities cannot be observed to happen, we allow that the reasoner may be informed that the observed agent intends to execute a named activity. This means that we must extend histories by allowing statements $\text{intended}(s, i)$ where s is an activity name, and extend the definition of satisfaction of such statements by a trajectory P.

Definition 4 For a named activity (s, α), a trajectory P satisfies a statement $\text{intended}(s, i)$ if P satisfies $\text{intended}(\alpha, i)$.

For simplicity we will assume that sequences α relevant to a history are given a name s and that $\text{intended}(s, i)$ is used instead of $\text{intended}(\alpha, i)$. We will also overload actions to include named activities and actions as defined earlier.

Before we introduce models of a history, we need some terminology. We say that an action (including named activities) c starts at i in a trajectory P if P satisfies $\text{intended}(c, i)$ but does not satisfy $\text{intended}(c, i - 1)$, i.e. it is said to start when it becomes intended. A named activity $(s, (a_1, \ldots, a_n))$ ends at i in P if a_n ends at i in P (as in Def. 3).

Furthermore, an action c is said to be in progress at k in P if c starts at i and ends at j in P and $i \leq k < j$. Henceforth we will omit P when clear from context and say c starts at i, c ends at j, etc.

Next we define the key notion of justified actions. This notion captures the intuition that if an action that is not purposeful is believed to occur or be intended at i, then it must be part of an activity in progress at the same time i.

Definition 5 Let AD be an action description, P be a trajectory and c be an action.

1. c is justified by c at i if $\text{purposeful}(c) \in AD$,
2. c is justified by s at i if

 (a) (s, α) is a named activity in AD,
 (b) c appears in α,
 (c) s is in progress at i,
 (d) s does not justify c at an earlier time point in its current execution, that is, if l is the latest start time of s such that $l < i$, then s does not justify c at k such that $l \leq k < i$.

We say c is justified at i if c is justified by b at i for some b.

We are now ready to define models of a history. This definition must take into account whether actions are justified or not for the purpose of reasoning about activity recognition.

In addition to satisfying the history, a trajectory must satisfy a number of additional conditions. Condition (2) below precludes vacuous actions from models. Condition (3) intuitively says that for every action in progress there must be at least one action that justifies it from start to end. Condition (4) says that an activity cannot end if an action that appears in its sequence is still intended, unless that action is justified by some other activity. Finally, Condition (5) says that at the end of the trajectory, no intended actions remain.

Definition 6 A trajectory $P = \langle \sigma_0, a_1, a_2, \ldots, a_n, \sigma_n \rangle$ is a model of a history H of an action description AD if the following conditions hold:

1. P satisfies all the statements of H;
2. for each $1 \leq i \leq n$, all elements of a_i are supported at i;
3. for every action c such that P satisfies $\text{intended}(c, i)$ and c starts at i and ends at j, there is an action c' such that c is justified by c' at k for every $i \leq k < j$;
4. for every activity $(s, (c_1, \ldots, c_m))$ s.t. s ends at $i + 1$, there is no action $c_k, 1 \leq k < m$, in the sequence of s s.t.

 (a) P satisfies $\text{intended}(c_k, i)$,
 (b) c_k is justified by s at i,
 (c) there is no $s' \neq s$ such that c_k is justified by s' at i;
5. for every action c, if c is in progress at n, c ends at $n + 1$.

Example 2 Consider again the cooking domain. Suppose that we have a history containing the following statements: $\text{intended}(mk_fettuccini, 1), \text{intended}(mix_chicken_marinara, 3)$. Assuming no concurrency, this history has no models of length less than 4. It has one model of length 4 with actions: $mk_fettuccini, mk_marinara, mix_chicken_marinara, mix_fettuccini_marinara$, occurring in that order. Intuitively, two activities are occurring: cook chicken marinara (ccm), in progress from time 2 to 3, and cook fettuccini marinara (cfm), in progress from 1 to 4. They share the action $mk_marinara$, which is justified by both ccm and cfm at time 2.

It has 4 models of length 5. One of which contains the actions $mk_marinara, mk_fettuccini, mix_chicken_marinara, mk_marinara, mix_fettuccini_marinara$. The same ccm and cfm are occurring, with ccm in progress from 1 to 3 and cfm from 1 to 5. In this case $mk_marinara$ is not shared as it occurs for ccm before it becomes intended for cfm. In the other two models, ccm and 'cook fettuccini alfredo' (cfal) occur. In one model $mk_marinara$ occurs at 1 and $mk_fettuccini$ at 2. In the other they occur in the opposite order.

4 Formalization in ASP

For lack of space we must rely on familiarity with ASP encodings of dynamic domains (e.g. [Baral, 2003]) which are a component of our formalization. We only describe the main components required on top of the transition system encoding. In the rules shown below, domain predicates should be used in the usual way making them safe. We do not show them to save space. In our experiments we use the Smodels construct #domain to specify domains for all the variables that appear in the rules. We start with the component that, given a statement $\text{intended}(c, i)$ in the history, conjectures that some activity s containing c is in progress.
inprogress(S,I):- component(C,K,S),
 intended(C,I), K <= I,
 not other_justified(C,I,S).

other_justified(C,I,S):- component(C,K,S),
 justified(C,I,S1),
 neq(S,S1).

From conjecturing that an activity is in progress one can conclude that it was intended at some point:

intended(S,I):- inprogress(S,I),
 not inprogress(S,I-1).

intended(S,I):- inprogress(S,I), ends(S,I).

Next we describe the component that captures the notion of justified actions, starting with self-justified actions:

justified(C,I,C):- inprogress(C,I),
 purposeful(C).

The following rule captures item 2 of Definition 5:

justified(C,I,S):- inprogress(C,I),
 component(K,S),
 inprogress(S,I),
 not justified_before(C,S,I).

The above rules conjecture activities to justify actions. One of the main components of the formalization “propagates” this knowledge across time. This component has two parts with respect to a time point i: one for inference about what holds at times preceding i and the other for times later than i. We start with the rules for reasoning about later time points.

The following two rules encode directly the definition of in progress:

inprogress(S,I) :- starts(S,I).

inprogress(S,I) :- inprogress(S,I-1),
 not ends(S,I).

The components of an activity become intended in sequence:

intended(C,I):- starts(S,I),
 component(C,1,S).

intended(C2,I):- inprogress(S,I),
 component(C2,K,S),
 component(C1,K-1,S),
 ends(C1,I),
 justified(Cl,1-1,S).

The component for inference at earlier time points includes a rule saying that if an activity is in progress and it justifies one of its components that is not the first, then it must have been in progress in the previous time point:

inprogress(S,I):- inprogress(S,I+1),
 intended(A,I+1),
 component(A,K,S), K > 1,
 justified(A,I+1,S).

From inferred action occurrences, it is possible to further infer intentions of the agent before the action was executed, especially if the action is not self-justified. The following rules say, roughly, that if the action is a component of an activity and the activity has an earlier component, then either the earlier component is intended in the preceding time point or the action that occurred was intended in the preceding time point.

intended(A1,I):- inprogress(S,I+1),
 occurs(A2,I+1),
 component(A2,K,S),
 component(A1,K-1,S),
 justified(A2,I+1,S),
 not -occurs(A1,I),
 not intended(A2,I).

intended(A2,I):- inprogress(S,I+1),
 occurs(A2,I+1),
 component(A2,K,S),
 component(A1,K-1,S),
 justified(A2,I+1,S),
 not intended(A1,I).

Finally, the following rules capture conditions (3–5) in Def. 6:

Condition (3):

full_justified(C, I, I1):- justified(C, I),
 not other_justified(C, I, S),
 not full_justified(C, C1, I, I1),
 not ends(S, I),
 justified(C, I, S),
 not -occurs(A1, I),
 not intended(A2, I).

Condition (4):

full_justified(C, Cl, I, I1):-
 justified(C, Cl, C1), I < I1,
 full_justified(C, Cl, I1, I1).

Condition (5):

:- intended(C, n).

In the last rule, n is a constant defined to be the maximum length of the trajectories to be considered, as typically done in ASP encodings of transition systems. In this case, however, it is not really necessary to find a minimal n to find solutions, since all actions must be justified. The only drawback of using too large an n is that the size of the grounded program increases.

The above set of rules, plus a few more omitted for space reasons, is denoted by \(\Pi_{AG} \). A history \(H \) is encoded directly as a set of facts and will be denoted by \(\pi(H) \). The translation of a domain description \(AD \) is denoted by \(\pi(AD) \). For each named activity \(s, \langle c_1, \ldots, c_m \rangle \) \(\pi(AD) \) includes the facts:

activity(s). length(s, m).
component(c1, l, s). ... component(cm, m, s).

It also includes a fact purposeful(c) for each purposeful action or named activity c. Dynamic causal laws, static causal laws and executability propositions describe a transition system that is encoded in the usual way for similar action languages. We omit those rules here.

One of the interesting aspects of this formalization is the reasoning about state properties that is captured. The reasoner may infer the values of fluents from intentions and action occurrences, for instance, that a precondition \(p \) of an action \(a \) is false from the observation that \(a \) was intended but did not occur. This is partly enabled by means of stating that in the initial state any fluent for which there is no information may be assumed true or it may be assumed false, as long as consistency is preserved. This is captured by a pair of rules for each fluent \(f \):
holds(f,1) :- not holds(-f,1).
holds(-f,1) :- not holds(f,1).

which results in multiple answer sets corresponding to the various alternatives.

Intention of atomic actions is captured by a set Π_I including:

\[
\text{intended}(A,I) \leftarrow \text{happened}(A,I).
\]

\[
\text{occurs}(A,I) \leftarrow \text{intended}(A,I), \text{not} \ -\text{occurs}(A,I).
\]

\[
\text{intended}(A,I+1) \leftarrow \text{intended}(A,I), \text{not} \ -\text{intended}(A,I+1).
\]

\[
\text{inprogress}(A,I) \leftarrow \text{inprogress}(A,I-1),
\]

\[
\text{inprogress}(A,I) \leftarrow \text{starts}(A,I).
\]

\[
\text{intended}(A,I+1) \leftarrow \text{intended}(A,I), \text{not} \ -\text{intended}(A,I+1),
\]

\[
\text{occurs}(A,I) \leftarrow \text{intended}(A,I), \text{not} \ -\text{occurs}(A,I).
\]

\[
\text{intended}(A,I) \leftarrow \text{happened}(A,I).
\]

\[
\text{Intention of atomic actions is captured by a set \(\pi\) including:}
\]

\[
\langle \pi \rangle \text{occurs occurring.}
\]

in progress trajectories as follows.

Definition 7 Let A be a subset of the literals of a given program $\pi(AD,H)$. A is said to define the trajectory $\langle \sigma_0, a_1, \sigma_1, a_2, \ldots, a_n, \sigma_n, a_n \rangle$ if $\sigma_i = \{ l \mid \text{holds}(l,i) \in A \}$ and $\text{occurs}(a_j, i) \in A$ for all $0 \leq i \leq n$ and $1 \leq j \leq n$

The complete formalization of an activity recognition problem is given by $\pi(AD,H) = \Pi_I \cup \Pi_tr \cup \pi(AD) \cup \pi(H)$. The models $\pi(AD,H)$ induce trajectories as follows.

Theorem 1 For an action description AD and history H, a trajectory P without concurrency (i.e. all actions are singletons or empty sets) is a model of H if P is defined by an answer set of the program $\pi(AD,H)$.

Example 3 For the Cooking domain, using the facts:

\[
\text{intended}(\text{make_fettuccini},1).
\]

\[
\text{happened(\text{mix_chicken_marinara},3)}.
\]

and max trajectory length of 4 yields an answer set with:

\[
\text{inprogress(cf,1)}
\]

\[
\text{inprogress(cf,2)} \text{ inprogress(cc,2)}
\]

\[
\text{inprogress(cf,3)} \text{ inprogress(cc,2)}
\]

\[
\text{inprogress(cf,4)}
\]

\[
\text{justified(\text{make_fettuccini},1,cfm)}
\]

\[
\text{justified(\text{make_marinara},2,ccm)}
\]

\[
\text{justified(\text{make_marinara},2,cfm)}
\]

\[
\text{justified(\text{mix_chicken_marinara},3,ccm)}
\]

\[
\text{justified(\text{mix_fettuccini_marinara},3,cfm)}
\]

\[
\text{justified(\text{mix_fettuccini_marinara},4,cfm)}
\]

\[
\text{occurs(\text{make_fettuccini},1)}
\]

\[
\text{occurs(\text{make_marinara},2)}
\]

\[
\text{occurs(\text{mix_chicken_marinara},3)}
\]

\[
\text{occurs(\text{mix_fettuccini_marinara},4)}
\]

\[
\text{5 Conclusion}
\]

We have introduced a new approach to activity recognition based on a formal theory of actions and a notion of intended actions. Our approach is based on using knowledge about the intention and the occurrences of non-purposeful actions to conjecture that more complex purposeful activities may be occurring. In addition to \mathcal{A}-type action language domain descriptions with a transition system-based semantics, we provide a formalization in ASP. Some advantages of our approach are a strong temporal reasoning component that allows taking into account observations about the dynamic properties of the world in addition to observations about action occurrences. It is also allows simultaneous activities, shared actions, use of observations about non-occurrence of actions, and explicit statements about intention to execute actions. Consequently, the set of queries that can be answered is also much larger than in other approaches.

There are a number of directions the framework can be extended: adding probabilities using e.g. a language like P-log [Baral et al., 2004]; recognition of failed actions and the persistence of the intention to execute those; recognition that an agent abandoned an activity in the middle of the execution. We plan to look at this in future work.

References

