Regular Path Queries in Expressive Description Logics with Nominals*

Diego Calvanese
KRDB Research Centre
Free University of Bozen-Bolzano
Piazza Domenicani 3, Bolzano, Italy
calvanese@inf.unibz.it

Thomas Eiter and Magdalena Ortiz
Institute of Information Systems
Vienna University of Technology
Favoritenstraße 9-11, Vienna, Austria
(eiter|ortiz)@kr.tuwien.ac.at

Abstract

Reasoning over complex queries in the DLs underlying OWL 2 is of importance in several application domains. We provide decidability and (tight) upper bounds for the problem of checking entailment and containment of positive regular path queries under various combinations of constructs used in such expressive DLs; specifically: regular expressions and (safe) Booleans over roles, and allowing for the combination of any two constructs among inverse roles, qualified number restrictions, and nominals. Our results carry over also to the DLs of the SR family, and thus have a direct impact on OWL 2.

1 Introduction

OWL 2, the upcoming W3C Web Ontology Language [Cuenca Grau et al., 2008], is based on the expressive Description Logic (DL) $SROIQ$ [Horrocks et al., 2006] and features several constructs considered important in ontology-based applications. A crucial challenge is to access OWL 2 ontologies via expressive, database inspired, query languages, such as unions of conjunctive queries, (U)CQs, or variants of regular path queries, RPQs (allowing for binary query atoms that are regular expressions), used in semi-structured data.

Reasoning over complex queries had yet to be addressed for expressive DLs that support expressive concept and role constructs plus different combinations of qualified number restrictions (Q), inverse roles (I), and nominals (O). In particular, this applies to SRO, $SROI$, and $SRIQ$, three mutually incomparable sublogics of $SROIQ$. Indeed, the only algorithms for query entailment in expressive DLs with O are for UCQs in $SROI$ [Glimm et al., 2008], and for UCQs without transitive roles in $SROIQ$ [Ortiz et al., 2008]; none of them supports complex role assertions as in the SR family. Calvanese et al. [2007] consider the DL $ALCQITbreg$ which lacks nominals but supports I, Q, and regular expressions and (safe) Booleans over roles, capturing a large fragment of $SRIQ$. Their algorithm answers positive 2-way reg-

icular path queries (P2RPQs), which capture all the aforementioned query languages and are, to our knowledge, the most expressive query language considered so far.

In this paper, we address KB satisfiability, as well as entailment and containment of P2RPQs in the sublogics of $SROIQ$ that allow for any two among Q, I, and O. Specifically, we show that KB satisfiability in $SRIQ$, $SROI$, and $SROIQ$ can be solved in 2EXP TIME. For $SROIQ$ and $SROI$, these are, to our knowledge, the first such bounds, and they all hold even when the numbers in the number restrictions are coded in binary. We also show that P2RPQ entailment is decidable, and so is containment $q_1 \subseteq q_2$ if the DL has O or q_1 has no regular expressions. These are the first decidability results for reasoning on queries in the DLs of the SR family, and hence in significant sublogics of OWL 2.

Our results are based on automata theoretic techniques, and are achieved indirectly by reducing (with an unavoidable exponential blowup) $SROIQ$ to the novel DL $ZOIQ$, and tackling KB satisfiability and P2RPQ entailment and containment in its sublogics that allow for any two among Q, I, and O. $ZOIQ$ is the DL that extends $ALCQITbreg$ with O and concepts $\exists S$.Self. Specifically, we exploit the recently introduced fully enriched automata (FEA) [Bonatti et al., 2008] and reduce KB satisfiability in $ZOIQ$ to their emptiness. Our construction yields a decision procedure for KB satisfiability in all sublogics of $ZOIQ$ that enjoy the quasi-forest model property (see Section 3.1), and in particular for ZIQ, ZOQ, and ZOI. This is, to our knowledge, the first automata procedure that simultaneously handles Q, I, and O; it additionally considers Boolean role expressions and Self concepts. Relying on the results in [Bonatti et al., 2008], we obtain a tight EXP TIME upper bound for these logics, even with binary coding of numbers.

We then build on the techniques in [Calvanese et al., 2007] and reduce entailment of P2RPQs in the sublogics of $ZOIQ$ to automata emptiness. This requires us to show how FEAs can be reduced to a simpler automata model. Further, we show that in DLs with O (and regular role expressions), containment of P2RPQs can be reduced to entailment, and hence obtain the first decidability and complexity results for containment of recursive queries in DLs. Specifically, we obtain (with unary coding of numbers), an optimal 2EXP TIME upper bound for P2RPQ entailment in ZIQ, ZOQ, and ZOI, and for P2RPQ containment in ZOQ and ZOI. For ZIQ,
the same bound holds for containment of CQs in P2RPQs.

2 Preliminaries

Description Logics (DLs). The DL \mathcal{ALC} is the basic DL \mathcal{ALC} with nominals (O), inverse roles (I), qualified number restrictions (Q), regular expressions over roles (reg), safe Boolean role expressions (b) and inclusion axioms, and concepts of the form $\exists S Self$ as in \mathcal{SROIQ} [Horrocks et al., 2006]. In the following, we use $\exists S$ as an abbreviation for $\mathcal{ALCQ_{\exists S}}$; thus we will deal with the logics \mathcal{ZOTQ} and its sublogics \mathcal{ZTQ}, and \mathcal{ZOT}.

Syntax. Let C, R, and I be fixed, countably infinite sets of concept, role, and individual names, respectively. We assume that C contains \top and \bot, denoting respectively the universal and the empty concept, and that R contains T and B, denoting respectively the universal and the empty role. Atomic concepts B, concepts C, atomic roles R, simple roles S, and roles T, obey the following EBNF grammar, where $\alpha \in I$, $\gamma \in C$, $P \in R$, and $\gamma \neq T$: \mathcal{ZOTQ} is a concept or a role. Subconcepts, subroles, and subexpressions are defined in the natural way.

An assertion has the form $C(\alpha)$, $\neg C(\alpha)$, or $C(\alpha)$, where C and S are as above and $a, b \in I$. A concept inclusion axiom (CIA) has the form $C \subseteq C'$, where C and C' are concepts, and a role inclusion axiom (RIA) has the form $\gamma \subseteq \delta$, where γ and δ are simple roles. A \mathcal{ZOT} knowledge base (KB) is a pair $K = (A, T)$, where A is a finite set of assertions (called ABox), and T is a finite set of CIAs and RIAs (called TBox). W.l.o.g. we assume that A is non-empty.

We also consider three sublogics of \mathcal{ZOTQ} that result by disallowing different constructors in concepts and roles:

- \mathcal{ZOTQ} disallows $\{a\}$ (nominal concepts);
- \mathcal{ZOTQ} disallows $\neg C$ (inverse roles);
- \mathcal{ZOTQ} disallows $\exists S Self$ (number restrictions).

Semantics. We rely on the usual notion of interpretation $I = (\Delta^I, ^I)$, consisting of a domain $\Delta^I \neq \emptyset$ and a valuation function I [Baader et al., 2003]. The semantics of concept and role constructs (including the constructs for regular expressions over roles) are the standard one. We just note that $(\exists S Self)^I = \{ x | (x, x) \in S^I \}$ and $(id(C))^I = \{ (x, x) | x \in C^I \}$.

I is a model of a concept C, denoted $I \models C$, if $C^I \neq \emptyset$. Satisfaction of an assertion (resp., CIA, RIA) γ by I, denoted $I \models \gamma$, is defined as usual. I is a model of an ABox (resp., TBox) Γ, denoted $I \models \Gamma$, if $I \models \gamma$ for each γ in Γ. I is a model of a KB $K = (A, T)$ if $I \models A$ and $I \models T$.

The knowledge base satisfiability problem consists of deciding whether a given KB K has a model.

Query Entailment and Containment. A positive 2-way regular path query (P2RPQ) is a formula $q = \exists \vec{x}. \phi(\vec{x})$, where $\phi(\vec{x})$ is built using \wedge and \vee from atoms $C(z)$ and $T(z, z')$, where z, z' are variables from \vec{x} or individuals, C is a concept and T a role. If all atomic concepts and roles in ϕ occur in a KB K, then q is a query over K. Note that P2RPQs generalize conjunctive RPQs [Calvanese et al., 2000], in which the formula $\phi(\vec{x})$ is built using only conjunction, and ordinary conjunctive queries (CQs), where in addition only atomic concepts and roles may be used in ϕ.

Given an interpretation I, a match π for I and q is an assignment of an element $\pi(x) \in \Delta^I$ to each variable x in \vec{x} that makes ϕ true in the usual sense. I satisfies q, denoted $I \models q$, if there is a match π for I and q.

- Query entailment is the problem of deciding, given a KB K and a query q over K, whether $I \models q$ for each model I of K, denoted $K \models q$.

- Query containment is the problem of deciding, given a KB K and two queries q_1 and q_2 over K, whether $I \models q_1$ implies $I \models q_2$ for each model I of K, denoted $K \models q_1 \subseteq q_2$.

We observe that KB (un)satisfiability trivially reduces to query entailment: K is unsatisfiable iff $K \models \exists \vec{x}. \bot(\vec{x})$.

3 Reasoning with automata in the \mathcal{Z} family

In this section, we reduce KB satisfiability to emptiness of automata that run over infinite labeled forests.

Reducing KB to concept satisfiability. We rewrite a \mathcal{ZOTQ} KB $K = (A, T)$ into a normal concept C_K, which is a concept in negation normal form (NNF) not containing \top, \bot, or \vec{x}. To do so, we first eliminate all BRIAs, replacing each $S \subseteq S'$ in T by a CIA $\exists (S \setminus S'), T \subseteq \bot$ (cf. [Rudolph et al., 2008]). The special symbols \top, \bot and \vec{x} are simulated via fresh concept names A_\top, A_\bot and a fresh role name P_\bot, by adding $C \subseteq \neg C \subseteq A_\top$ and $A_\bot \subseteq \neg A_\bot$ for some concept C, and adding $A_\top \subseteq \forall P_\bot A_\bot$.

To eliminate \bot, we additionally add an assertion $P_\bot(a, b)$ for each pair of individuals a, b occurring in A, where P_\bot is a fresh role name. Then we replace in K each occurrence of T by the role R_T, where $R_T = (P_\bot \cup \{ P | P \in R \text{ occurs in } K \})^*$ if no inverse roles P^- occur in K, and $R_T = (P_\bot \cup \{ P, P^- | P \in R \text{ occurs in } K \})^*$ otherwise.

As usual, using nominals, the ABox is internalized into the TBox: assertions $C(\alpha)$, $\neg C(\alpha)$, and $a \neq b$ become CIAs \{ \{a\} \subseteq C, \{a\} \subseteq \exists S(b), \{a\} \subseteq \neg \{a\}, \} respectively. Finally, using the role R_T, the BRIA-free TBox T is internalized into a concept $C_T = \forall R_T, (\bigcup_{C_1 \subseteq C_2 \subseteq T}(\neg C_1 \cup C_2))$. We thus obtain:

Proposition 3.1. Given a \mathcal{ZOTQ} KB K, one can construct in linear time a normal concept C_K such that: (i) if K is in \mathcal{L}, then C_K is in \mathcal{L} for any of \mathcal{ZOTQ}, \mathcal{ZOL}, or \mathcal{ZQ}; (ii) if K is in \mathcal{ZIT} then C_K is in \mathcal{ZOTQ} and all nominals in it stem from ABox internalization; (iii) for every P2RPQ q, $K \models q$ if and only if there is some Γ such that $\Gamma \models C_K$ and $\Gamma \models \neg q$.

1Such queries are called Boolean; it is well known that queries with answer variables are reducible to Boolean ones.

2The restriction in CQs to atomic concept names is w.l.o.g., since complex concepts can be defined in the TBox. Instead, roles containing regular expressions cannot be defined in the TBox, and hence conjunctive RPQs and P2RPQs properly extend CQs.
3.1 Quasi-Forest Model Properties

We show now that ZIQ, ZOI, and ZOQ enjoy the quasi-forest model property. This allows us to decide concept satisfiability (and query entailment) by deciding the existence of quasi-forest models (where the query has no match).

A forest is a set $F \subseteq \mathbb{N}^+$ such that $x \cdot c \in F$ and $x \in \mathbb{N}^+$ imply $x \in F$; its elements are called nodes. For each $x \in F$, $\text{succ}(x) = \{x \cdot c \in F | c \in \mathbb{N}\}$ is the set of successors of x; z is their predecessor. F has branching degree k, if $|\text{succ}(x)| \leq k$ for each $x \in F$. By roots(F) we denote the roots of F, i.e., the nodes with no predecessor. F is a tree if $|\text{roots}(F)| = 1$.

The tree of F rooted at c is $T_c = \{c \cdot x | x \in \mathbb{N}^+\} \cap F$.

An (infinite) path in F is an (infinite) tree $P \subseteq F$ with branching degree 1. By convention, $x \cdot z = x$ and $(x \cdot i) - 1 = x$.

A Σ-labeled forest (resp. tree) is a pair $\langle F, V \rangle$, where F is a forest (resp. tree) and $V : F \rightarrow \Sigma$ is a labeling function.

Definition 3.2 (Quasi-forest models). Let C be a ZIQ concept. An interpretation I is a quasi-forest model of C if:

- Δ^I is a forest,
- $\alpha^I \in \text{roots}(\Delta^I)$ for each individual a occurring in C,
- $\alpha^I \in C^I$ for some individual a occurring in C, and
- for every $x, y \in \Delta^I$ such that $(x, y) \in R^I$ for some role R, either (i) $(x, y) \cap \text{roots}(\Delta^I) \neq \emptyset$, (ii) $x = y$, (iii) $y \in \text{succ}(x)$, or (iv) $y \in \text{succ}(x)$.

Note that $(x, y) \in R^I$ may hold if (i) or y is a root of Δ^I (due to nominals), (ii) y is x itself (due to $\exists S$.Self concepts), or, as usual in logics with inverses, (iii) y is in $\text{succ}(x)$ or (iv) y is the predecessor of x.

The above definition generalizes those of related logics (e.g., in [Bonatti et al., 2008; Calvanese et al., 2007; Sattler & Vardi, 2001]), and accommodates all constructs of ZIQ.

The following proposition states that to decide query entailment, we only need to consider quasi-forest models.

Proposition 3.3. Let C be a normal ZIQ concept such that (a) C is a ZQ or ZOQ concept, or (b) C is obtained from a ZIQ KB as in Proposition 3.1. Then, for every $P2RPQ$ q, if C has a model I with $I \models q$, then it has a quasi-forest model I' with $I' \not\models q$.

Proof (sketch). Every model I of C can be used to obtain a quasi forest model I' of C, such that I' is a counterexample to query entailment whenever I is. If C is a ZIQ or ZOQ concept, we can proceed along the lines of the proofs in [Bonatti et al., 2008; Sattler and Vardi, 2001], respecting Boolean role constructs and Self. When C is a ZIQ concept obtained from a rewriting a ZIQ KB, the impact of its nominals (which all stem from ABox internalization) can be confined to the roots of the quasi-forest model. In this case, we can proceed as in [Bonatti et al., 2008], again respecting Boolean role constructs and Self. \Box

Note that Proposition 3.3 does not hold for arbitrary ZIQ concepts, even in the absence of Boolean roles, regular expressions, and concepts of the form $\exists S$.Self [Tobies, 2000].

3.2 Enriched Automata

For deciding KB satisfiability in the sublogics of ZOQ, we build on the techniques of [Bonatti et al., 2008] that use fully enriched automata (FEAs). FEAs extend two-way alternating parity tree automata by adding graded and root transitions.

For a set W, let $B(W)$ be the set of Boolean formulas constructible with atoms $W \cup \{\top, \bot\}$ and \land, \lor. We say that $V \subseteq W$ satisfies $\varphi \in B(W)$, if assigning t to all $v \in V$ and f to all $w \in W \setminus V$ makes φ true. For $b > 0$, let $D_b = \{-1, \varepsilon\} \cup \{0\}, \ldots, \{b\}$ such that $\{\langle \text{root}, \text{root} \rangle\}$.

Definition 3.4. A fully enriched automaton (FEA) with index n is a tuple $A = (\Sigma, b, Q, \delta, q_0, F)$, where Σ is a finite input alphabet, $b > 0$ is a counting bound, Q is a finite set of states, $\delta : Q \times \Sigma \rightarrow B(D_b \times Q)$ is a transition function, $q_0 \in Q$ is an initial state, and $F = (G_1, \ldots, G_n)$, with $G_1 \subseteq G_2 \subseteq \cdots \subseteq G_n = Q$, is a parity acceptance condition.

Intuitively, a graded transition $\langle (i), q \rangle$ (resp., $\langle [i], q \rangle$), sends off a copy of A in state q to $i+1$ (resp., to all but i) successor nodes, and a root transition $\langle \text{root}, q \rangle$ (resp., $\langle \text{root} \rangle$), sends off a copy of A in state q to one (resp., to all) roots.

The acceptance of a forest F by A can be formalized through the notion of run, which is a tree labeled by elements of $F \times Q$. Intuitively, in a run, a node y labeled by (x, q) describes a copy of A that is in state q and reads node x of F. The conditions on a run ensure that the labels of adjacent nodes satisfy the transition function of A.

Definition 3.5. A run of A over a labeled forest $\langle F, V \rangle$ is a $F \times Q$-labeled tree (T_r, r) such that:

(i) $r(\text{root}(T_r)) = (c, q_0)$ for some $c \in \text{roots}(F)$, and

(ii) for every $y \in T_r$, with $r(y) = (x, q)$, some $W \subseteq D_b \times Q$ satisfying $\delta(q, V(x))$ exists such that, for all (d, s) in W:

- if $d \in \{-1, \varepsilon\}$, then $x \cdot d$ is defined and there is some $j \in \mathbb{N}$ such that $x \cdot j \in T_r$ and $r(x \cdot j) = (x \cdot d, s)$;

- if $d = \langle i \rangle$, then there is some $M \subseteq \text{succ}(x)$ with $|M| > n$ such that, for each $z \in M$, there is some $j \in \mathbb{N}$ such that $x \cdot j \in T_r$ and $r(x \cdot j) = (z, s)$;

- if $d = \{n\}$, then there is some $M \subseteq \text{succ}(x)$ with $|M| \leq n$ such that, for each $z \in \text{succ}(x) \setminus M$, there is some $j \in \mathbb{N}$ such that $x \cdot j \in T_r$ and $r(x \cdot j) = (z, s)$;

- if $d = \langle \text{root} \rangle$, then there is some $c \in \text{roots}(F)$ and $j \in \mathbb{N}$ such that $x \cdot j \in T_r$ and $r(x \cdot j) = (c, s)$;

- if $d = [\text{root}]$, then for each $c \in \text{roots}(F)$ there is some $j \in \mathbb{N}$ such that $x \cdot j \in T_r$ and $r(x \cdot j) = (c, s)$.

The run (T_r, r) is accepting if, for each infinite path P of T_r, there is an even i such that $\text{Inf}(P, r) \cap G_i \neq \emptyset$ and $\text{Inf}(P, r) \cap G_{i+1} = \emptyset$, where $\text{Inf}(P, r)$ is the set of all states $q \in Q$ such that $\{y \in P | \exists x. r(y) = (x, q)\}$ is infinite.

A FEA A accepts a labeled forest (F, V) if it has some accepting run over (F, V). The set of all forests accepted by A is $Z(A)$. The non-emptiness problem is the problem of deciding whether $Z(A) \neq \emptyset$ for a given FEA A.

Theorem 3.6 ([Bonatti et al., 2008]). The non-emptiness problem for a FEA $A = (\Sigma, b, Q, \delta, q_0, F)$ with index k can be solved in time $(b + 2)^{O(|Q|^{k^2 \log k \cdot k \log b})}$.

716
3.3 Reducing Satisfiability to Automata Emptiness

In the rest of this section, C denotes a normal $ZOIQ$-concept. To represent a quasi-forest model I of C as a labeled forest, we label each individual with the set of atomic concepts (i.e., concept names and nominals) it satisfies. For atomic roles, we add R to the label of x whenever $(x, x') \in R^2$ and x' is not a root. Arcs leading to roots are handled as in [Bonatti et al., 2008], by adding a special symbol $\uparrow R$ to the label of x whenever $(x, a^2) \in R^2$. Finally, we represent loops $(x, x) \in R^2$ using special labels R_{set}.

Definition 3.7. We denote by R_C and I_C respectively the sets of role and individual names occurring in C, by CI_C the set of atomic concepts occurring in C, and we define $R_C = R_C \cup \{P^- \mid P \in R_C\}$. We also define:

$$\Theta(C) = CI_C \cup R_C \cup \{R_{\text{self}} \mid R \in R_C\} \cup \{\| R \mid R \in R_C \text{ and } a \in I_C\},$$

and

$$\Sigma_C = 2^{\Theta(C)}.$$

The forest encoding of a quasi-forest model I of C is the Σ_C-labeled forest $\langle \Delta^I, L^I \rangle$ such that for each $x \in \Delta^I$:

$$L^I(x) = \{B \in CI_C \mid x \in B^2\} \cup \{R_{\text{set}} \mid R \in R_C \text{ and } (x, x) \in R\} \cup \{R \in R_C \mid (x', x) \in R^2 \text{ and } x \in \text{succ}(x')\} \cup \{\| R \mid R \in R_C \text{ and } (a, a^2) \in R^2, \text{ and } a \in I_C\}.$$

Now we define a FEA A_C that accepts a labeled forest $F = (\Delta, L)$ if F represents a quasi-forest model I of C, or if it can be homomorphically embedded into such a forest. Note that A_C cannot ensure that an accepted forest is nominal unique, i.e., that each $a \in I_C$ occurs in exactly one root; instead, it enforces that any two roots sharing a nominal are indistinguishable by its transition function.

The construction, given for a normal $ZOIQ$ concept, combines in a novel way techniques that had been used separately for different combinations of nominals, inverses, and counting [Bonatti et al., 2008; Sattler and Vardi, 2001], with techniques for Boolean roles [Calvanese et al., 2002; 2007] and $\exists S Self$ concepts [Ortiz, 2008]. As Bonatti et al., we employ FEAs: however, while they and Sattler and Vardi build an automaton for a specific guess (a partition of the nominals into equivalence classes that are interpreted as the same root, and a set of atomic concepts satisfied by each class), we defer the existence of a guess to the emptiness test of A_C. This is more convenient for query answering, although it requires additional states and more involved transitions to properly handle the connections from each node to the nominals.

In what follows, we extend the syntax to allow for negation of simple roles and of the symbols in $\Theta(C)$. We let $\sim ✔$ denote the NNF of an expression E, and $\text{inv}(S)$ denote the role obtained from a simple role S by replacing P by $\sim P$ and $\sim P$ by P, for each $P \in R_C$. The (syntactic) closure $Cl(C)$ of a $ZOIQ$ concept C contains all concepts and simple roles that are relevant for deciding the satisfiability of C. It contains C and is closed under subconcepts, subroles, \sim, and $\text{inv}(S)$. Concerning concepts with regular role expressions, it is analogous to the standard Fischer-Ladner closure of PDL. Formally, $Cl(C)$ is as in [Ortiz, 2008] (where atomic concepts may now be nominal concepts), extended with $\geq 1 S.C$ for each $\exists S.C \in Cl(C)$, and with $\leq S.\neg C$ for each $\forall S.C \in Cl(C)$, with S a simple role.

Definition 3.8. Let b_C denote the maximal number n occurring in a number restriction in C, and let a_1, \ldots, a_b be a fixed, arbitrary enumeration of the elements of I_C. The automaton $A_C = (\Sigma_C, b_C, Q_C, \delta_C, \sigma_C, F_C)$ is defined as follows:

- $\Sigma_C = 2^{\Theta(C)}$ is as in Definition 3.7;
- $Q_C = Cl(C) \cup \{q_G\} \cup \text{cl}(C) \cup Q_{\text{cl}} \cdots \cup Q_{\text{bin}}$,

where $\text{cl}(C) = \{s, \neg s \mid s \in Cl(C)\}$ and $Q_{\text{cl}}, \ldots, Q_{\text{bin}}$ are explained below, along with the transition function. Below, S and C respectively contain all simple roles S, $\sim S$ and concepts C, $\sim C$ such that $\geq n S.C$ or $\leq n S.C$ is in $Cl(C)$. I contains each $\{a\}$ and $\{\neg a\}$ such that $a \in I_C$, and $Cl = Cl(C) \cup \Theta(C)$.

- $Q_{\text{cl}} = \{(a, a), (a, \neg a) \mid a \in I_C, a \in Cl\}$
- $Q_{\text{set}} = \{S_{\text{self}} \mid S \in Cl(C)\}$ is a simple role and $a \in I_C$
- $Q_{\text{nom}} = \{\neg a \lor \neg \neg a \mid a \in I_C, a \neq a\}$
- $Q_{\text{root}} = \{(\text{root}^1, S, C) \mid 0 \leq i \leq |I_C|, S \in S, C \in C\} \cup \{(\text{root}^1, C, S) \mid 0 \leq i \leq |I_C|, S \in S, C \in C\}$
- $Q_{\text{bin}} = \{(\sigma, \alpha, C) \mid \sigma \in \{\text{true}, \text{false}\}, a \in S \cup I_C\}$.

- $F_C = (\emptyset, \{\forall R^* C \lor \forall R^* C \in Cl(C), Q_{\text{cl}}\}$ is the acceptance condition [Calvanese et al., 2002; 2007].

- There are transitions for each $\sigma \in \Sigma_C$ as defined below. First, we have:

$$\delta_C(q_G, (a, \alpha), \sigma) = (\text{root}, C) \land \bigwedge_{a \in I_C, \alpha \in Cl, \sigma} ((\text{root}^1), (a, \alpha)) \lor ((\text{root}), (a, \neg a)).$$

This initial transition checks that the input forest encodes a quasi-model of C. Its three conjuncts respectively check that (i) some root is in the interpretation of C, (ii) each nominal is interpreted as some root, and (iii) all pairs of roots interpreting the same nominals have identical labels and satisfy the same expressions in the closure. For testing (iii), A_C moves to the states in Q_{cl}. For each such state, there are transitions

$$\delta_C((a, a), \sigma) = (\varepsilon, \neg (a)) \lor (\varepsilon, \alpha).$$

Transitions that use the states $Cl(C)$ to inductively decompose simple roles, concepts (except number restrictions and $\exists S Self$ concepts), and regular role expressions within concepts are as usual, see e.g., [Calvanese et al., 2002; 2007]. We recall that propagation of $\forall T.C$ (resp., $\exists T.C$) in the case where $T = R^*$ is by $\delta_C(\forall R^* C, \sigma) = (\sigma, C) \land (\varepsilon, \forall R^* R^* C)$ (resp., $\delta_C(\exists R^* C, \sigma) = (\sigma, C) \lor (\varepsilon, \exists R^* R^* C)$).

For each $\exists S Self$ in $Cl(C)$, we have

$$\delta_C(\exists S Self, \sigma) = (\sigma, S_{\text{self}}),$$

as in [Ortiz, 2008]. For each $\exists S.C$ and $\forall S.C$ in $Cl(C)$ where S is simple, we respectively have

$$\delta_C(\exists S.C, \sigma) = (\sigma, \geq 1 S.C),$$

and

$$\delta_C(\forall S.C, \sigma) = (\sigma, \leq S.\neg C).$$

We next give the transitions that ensure satisfaction of the number restrictions. They are novel and differ from all previous approaches. In $ZOIQ$, to ensure that $\geq n S.C$ or
$\leq n S, C$ is satisfied at some node x of a forest F we must take all nodes x' into account for which $(x, x') \in S^T$ may hold in the encoded interpretation I. This x' may be (cf. Def. 3.2): (i) a root of F, (ii) x itself, (iii) a node in $\text{succ}(x)$, or (iv) the predecessor of x in F. Our transitions are more involved than those in [Bonatti et al., 2008] for two reasons. First, we must consider the four cases above, while they consider either just (i) and (iii) or (iii) and (iv). Second, as we are not building an automaton for a specific guess, verifying which roots of F take part in the satisfaction of a number restriction is more complicated, and special care is needed to ensure that roots interpreting more than one nominal are not counted more than once.

The transitions differ also from those in [Calvanese et al., 2002; 2007; Ortiz, 2008], which use non-graded automata and count the successors of x one-by-one; this requires exponentially many states if n is coded in binary.

For each $m \geq n S, C$ in $\text{Cl}(C)$, we define:

$$\delta_{C}(\geq n S, C, \sigma) = \bigvee_{0 \leq i < |C|} (\{ (\langle \sigma \rangle^i, S, C) \} \cap \text{NR}^\wedge(n-i, S, C))$$

where for $m \geq 0$, $\text{NR}^\wedge(m, S, C) = \varphi_1 \lor \varphi_2 \lor \varphi_3 \lor \varphi_4$ and

$$\begin{align*}
\varphi_1 & = (m) \land (\land, S, C), \\
\varphi_2 & = (m) \land (\land, S, C), \\
\varphi_3 & = (m) \land (\land, S, C), \\
\varphi_4 & = (m) \land (\land, S, C).
\end{align*}$$

To understand these transitions, suppose satisfaction of $\geq n S, C$ is verified at node x. Then, among the types of node x (i) to (iv) above, there must exist distinct nodes x'_1, \ldots, x'_n for which the following holds: (x) x is related to x'_i via S and x'_i satisfies C. These nodes are grouped further into two kinds: the roots, in (i), and nodes that are not roots, in (ii) to (iv). The first transition searches for some i such that i nodes of the first group and $m = n-i$ of the second group satisfy (φ_i). The latter check is done via $\text{NR}^\wedge(m, S, C)$. Its disjuncts φ_i to φ_4 correspond to the four possible ways in which the m nodes can be found among the nodes of types (ii) to (iv), viz.: (φ_1) m successors of x satisfy (φ_1), (φ_2) x itself and (at least) $m-1$ successors of x satisfy (φ_2), (φ_3) the predecessor of x and (at least) $m-1$ successors of x satisfy (φ_3), (φ_4) x itself, the predecessor of x, and (at least) $m-2$ successors of x satisfy (φ_4).

Finally, the following transitions for each $((\text{root})^i, S, C)$ in Q_roots check whether i roots satisfy (φ):

$$\vec{\delta}_C((\text{root})^i, S, C, \sigma) = \bigvee_{0 \leq i < |C|} (\text{NR}^\wedge(n-i, S, C))$$

where

$$R^\wedge(N, S, C) = \bigwedge_{a \in N} ((\langle \varphi \rangle^a) \land ((\text{root}) \land (\langle a \rangle, C)) \land \bigwedge_{a, a' \in N, a \neq a'} (\langle \text{root} \rangle \land \neg a \lor \neg a').$$

The automaton also moves to the states S_{Self} in Q_{Self} (resp. 1_{Self}^S in Q_{Self}), to verify whether a node x is connected by S to itself (resp. to a root where a holds). Then the simple role S is decomposed using, for each $q \in Q_T$,

$$\begin{align*}
\delta_C(1_{\text{Self}}^S, \sigma) & = (\epsilon, 1_{\text{Self}}^S) \land (\epsilon, 1_{\text{Self}}^S), \\
\delta_C(1_{\text{Self}}^S, \sigma) & = (\epsilon, 1_{\text{Self}}^S) \lor (\epsilon, 1_{\text{Self}}^S), \\
\delta_C(1_{\text{Self}}^S, \sigma) & = (\epsilon, 1_{\text{Self}}^S) \lor (\epsilon, \neg 1_{\text{Self}}^S),
\end{align*}$$

and similar transitions for all $q \in Q_{\text{Self}}$.

Finally, the automaton checks the label of the current node for atomic expressions and special symbols. For each $s \in \Theta(C)$,

$$\delta_C(s, \sigma) = \begin{cases} t & \text{if } s \in \sigma, \\
\mathbf{f} & \text{if } s \notin \sigma.
\end{cases}$$

The automata A_C provides the desired reduction.

Lemma 3.9. Let C be a normal ZOIQ concept. If $\mathcal{L}(A_C) \neq \emptyset$ then C is satisfiable, and if C has a quasi-forest model, then $\mathcal{L}(A_C) \neq \emptyset$.

Proof (sketch). If C has a quasi-forest model, it is routine to verify that A_C accepts its forest encoding. The converse is less direct, as A_C also accepts forests F that are not nominal unique. However, one can verify that if F has two subtrees whose roots r and r' have the same labels and satisfy the same concepts in the closure, then a run of A_C on F visiting both can be modified into one visiting only one of them. Hence, if $\mathcal{L}(A_C) \neq \emptyset$ then A_C accepts some nominal-unique F. To show that such an F corresponds to a model of C is easy.

From this and Propositions 3.1 and 3.3, we obtain:

Theorem 3.10. Let K be a ZIQ, ZOI, or ZOIQ KB. Then we can construct from K a concept C_K such that $\mathcal{L}(A_{C_K}) \neq \emptyset$ if K is satisfiable.

For a given KB K and the concept C_K obtained from it, one can easily verify that for A_{C_K} (i) the number of states is polynomial in the size of K, (ii) the alphabet size and the counting bound are at most single exponential, even when numbers are coded in binary, and (iii) the index is fixed. Hence Theorems 3.6 and 3.10 yield an EXPTIME upper bound for KB satisfiability in all sublogics of ZOIQ that enjoy the quasi-forest model property. Since a matching lower bound is known for much weaker DLs, we obtain our first main result.

Theorem 3.11. KB satisfiability is ZIQ, ZOI, and ZOIQ is EXPTIME-complete.

4 Query Entailment and Containment

To decide query entailment, we follow the ideas in [Calvanese et al., 2007], which use complementation, projection, and intersection of automata. How to complement and do projection on FEs is open. Therefore, we exploit the fact that root transitions can be easily removed from FEs [Bonatti et al., 2008], and then show how to eliminate also graded transitions, obtaining an automaton for which we know how to perform complementation and projection.

For $b > 0$, let $D_b = \{-1, b\} \cup \{(0), \ldots, (b)\} \cup \{(0), \ldots, [b]\}$. A two-way graded alternating parity tree automaton (2GAPA) is a FEA with transition function $\delta : Q \times \Sigma \rightarrow \mathcal{B}(D_b \times Q)$, i.e., there are no $\langle \text{root} \rangle$ or root transitions.
A FEA A with counting bound b and s states is convertible into a 2GAPA with the same index and counting bound and with $O(s \cdot b)$ states, accepting the tree-encoding of each forest in $\mathcal{L}(A)$ (Bonatti et al., 2008). The tree encoding of a forest F is the tree obtained from F by placing a new root above the roots of F.

We now show how to eliminate graded transitions from a 2GAPA. For this, we need to restrict the attention to trees with a bounded branching degree $k \geq 1$. We call a tree $T \subseteq \{1, \ldots, k\}^*$ with roots(T) = $\{\varepsilon\}$ a k-tree.

Definition 4.1. A two-way alternating parity automaton (2APA) over infinite Σ-labeled k-trees is a tuple $A = (\Sigma, k, Q, \delta, q_0, F)$, where Σ, Q, q_0, and F are as for FEAs, and the transition function is $\delta : Q \times \Sigma \rightarrow B([-1..k] \times Q)$, with $[-1..k] = \{-1, \varepsilon, 1, \ldots, k\}$.

A run (T_r, r) of a 2APA over a labeled k-tree (T, V) is a $T \times Q$-labeled tree satisfying: $\varepsilon \in T_r$; $r(\varepsilon) = (\varepsilon, q_0)$; and for each $y \in T_r$, with $r(y) = (x, q)$ and $\delta(q, V(x)) = \varphi$, there is (a possibly empty) set $\{(d_1, q_1), \ldots, (d_n, q_n)\} \subseteq [-1..k] \times Q$ that satisfies φ and such that, for all $i \in \{1, \ldots, n\}$, $y_i \in T_r, x_i = d_i$, and $r(y_i) = (x_i, d_i, q_i)$.

Lemma 4.2. Let $A = (\Sigma, b, Q, \delta, q_0, F)$ be a 2GAPA and $k \geq 1$. There is a 2APA A' with the same index and $O(|Q| \cdot b \cdot k)$ states accepting the same set of Σ-labeled k-trees as A.

Proof (sketch). We let $A' = (\Sigma, k, Q \uplus Q', \delta', q_0, F')$, where

$$Q' = \{(i, q, j), [i, q, j] | q \in Q, 0 \leq i \leq b+1, 1 \leq j \leq k+1\}.$$

For each $\sigma \in \Sigma$, the transition function δ' is defined as follows. First, for all $q \in Q$, $\delta'(q, \sigma)$ is obtained from $\delta(q, \sigma)$ by replacing each (n_i, q) with $(\varepsilon, (n_i+1, q, 1))$ and each (ε, q) with $(\varepsilon, [n+1, q, 1])$. For $1 \leq i \leq b+1$ and $1 \leq j \leq k$, we define:

$$\delta'((i, q, j), \sigma) = ((j, q) \land (\varepsilon, (i-1, q, j+i))) \lor (\varepsilon, (i, q, j+1)) \lor (\varepsilon, (i, q, j+1))$$

and additionally, we have:

$$\delta'((0, q, j), \sigma) = \tau, \ \delta'((0, q, j), \sigma) = \sigma, \text{for } 1 \leq j \leq k+1;$$

$$\delta'(i, q, k+1), \sigma) = \sigma, \ \delta'(i, q, k+1), \sigma) = \tau, \text{for } 1 \leq i \leq b+1.$$

Intuitively, from state (i, q, j), a copy of A' is sent off in state q, to at least i successor nodes starting from the j-th one. Similarly, from state $[i, q, j]$, no copy of A' is sent off in state q, for at most i successor nodes starting from the j-th. Finally, if $F = (G_1, \ldots, G_n, \varepsilon)$, we have

$$F' = (G_1, \ldots, G_n, Q \uplus Q').$$

One can show that a Σ-labeled k-tree is accepted by A' iff it is accepted by A.

Note that Lemma 4.2 does not ensure equivalence between the 2GAPA and the resulting 2APA, since a 2GAPA may accept trees of arbitrary degree. However, it is sufficient for our purposes: an analysis of the proof of Proposition 3.3 reveals that, if $K \neq q$ for $K \in \mathcal{L}Q, \mathcal{L}Q$, or $\mathcal{O}T$, then there is a counterexample quasi-forest model T of degree bounded by $b_2 \cdot |C(C)|$. Hence, the tree encoding of T has degree bounded by the maximum k of $b_2 \cdot |C(C)|$ and $|X|$.

For deciding the entailment of a P2RPO q, we use the technique in [Calvanese et al., 2007] extended to $\mathcal{Z}Q$ (nominals in q are handled essentially as the query constants there, while Self is handled as in [Ortiz, 2008]). For a k-tree T whose nodes are labeled with subsets of $\Theta(C)$, let I_T be the interpretation of K represented by T. We define from q a 2APA A^X_q that accepts a labeled k-tree T^X iff it explicitly finds a match for I_{T^X} and q on the nodes of T^X. Technically, the node labels of T^X are allowed to contain, besides elements of $\Theta(C)$, also elements of \mathcal{X}, where \mathcal{X} is the set of (existentially quantified) variables in q. The elements of \mathcal{X} are treated as atomic concepts that are enforced to hold in a single node of T^X (on a tree-structure, such a condition can be easily enforced by means of a 2APA), and A^X_q relies on such elements to check for a match for I_{T^X} and q. We then convert A^X_q to a one-way nondeterministic parity automaton (1NPA) A^X_q, from which we then project out the elements of \mathcal{X}, obtaining a 1NPA A^X_q. In this way, A^X_q accepts a k-tree T whose nodes are labeled with subsets of $\Theta(C)$, iff there exists a match for I_T and q. By complementing A^X_q, we obtain a 1NPA $A^X_{\neg q}$ accepting a k-tree T iff there is no match for I_T and q. Finally, to check $K \models q$, we transform the FEA A_{KQ} to a 2GAPA, then to a 2APA (cf. Lemma 4.2), and finally to a 1NPA, which we intersect with $A_{\neg q}$. A complexity analysis of the various operations allows us to show the following:

Theorem 4.3. Given a KB K in $\mathcal{L}Q$, $\mathcal{Z}Q$, or $\mathcal{O}T$ and a P2RPO q, deciding $K \models q$ is in 2ExpTime in the total size of q and K (under unary number coding in number restrictions).

To address query containment, we extend the relationship with query answering, which is well-known for plain CQs in the relational case, to our richer setting. Indeed, $K \models q_1 \subseteq q_2$ iff $K_{q_1} \models q_2$, where $K_{q_1} = (A_{q_1}, T)$ is the KB obtained from $K = (A, T)$ by first “freezing” $q_1 = \exists \bar{x}. \phi(\bar{x})$, i.e., considering each variable in \bar{x} as a fresh individual in K_{q_1}, and then asserting $\phi(\bar{x})$ to hold in A_{q_1}. When $\phi(\bar{x})$ is (or can be reduced to) a conjunction $\bigwedge_{1 \leq i \leq \varepsilon} a_i$ of atoms, where each a_i is of the form $C(z)$ or $S(z, z')$, with S a simple role, we have that $A_{q_1} = A \cup \{a_i | 1 \leq i \leq \varepsilon\}$, i.e., the frozen q_1 can be directly represented as an ABox. Otherwise, we can represent the whole of $\phi(\bar{x})$ by means of a single ABox assertion $C_{\phi(\bar{x})}(a)$, where a is a fresh individual, and $C_{\phi(\bar{x})}$ is the concept obtained from $\phi(\bar{x})$ by replacing \bigwedge by \bigvee by \sqcap, each atom $C(z)$ by $\neg \{z\} \sqcap C$, and each atom $T(z, z')$ by $\neg \{z\} \sqcup \exists T\{z\}$. Note that in the latter case we need to introduce nominals, even when they were not present in K.

Theorem 4.4. $K \models q_1 \subseteq q_2$ is in 2ExpTime wrt. the total size of q_1, q_2, and K (i) if K is a $\mathcal{Z}Q$ or $\mathcal{Z}O$ KB and q_1, q_2 are P2RPOs over K, or (ii) if K is a $\mathcal{Z}Q$ KB, q_1 is a conjunctive query, and q_2 is a P2RPO over K.

5 Reasoning in the $\mathcal{S}\mathcal{R}$ family

The automata techniques devised above can be also fruitfully exploited for fragments of the DL.
SROIQ is similar to ZOIQ, but lacks Boolean and regular role expressions. Instead, it has an RBox R comprising (i) role inclusions $R_1 \cdots \circ R_n \sqsubseteq R$ under certain restrictions, and (ii) assertions about roles $\text{Ir}(R)$, $\text{Ref}(R)$, $\text{Sym}(R)$, $\text{Dis}(R, R')$ [Horrocks et al., 2008]. Its sublogics SRIQ, SROQ, SROIQ are analogous to ZOIQ, ZOIQ, ZOIQ.

To exploit our automata-based algorithms for reasoning in (sublogics of) SROIQ, we can transform each SROIQ KB K into a ZOIQ KB $\Psi(K)$. The rewriting $\Psi(K)$ is like the one in [Ortiz, 2008] from SRIQ to ZIQ (alias $\text{ALCQI}^b_{\text{tw}}$), as nominal concepts cause no change, we do not repeat it here. Intuitively, the rewriting replaces each role R in K with a regular expression r_R. We note that this need not be done for the RBoxes, which can be treated by closing the role assertions wrt. the RBox. The models of K are models of the resulting $\Psi(K)$, and conversely, each model I of $\Psi(K)$ can be turned into a model of K by setting $R^I = (r^I)_R$ (cf. [Kazakov, 2008]). Assertions about roles are simulated using BRIAs and CIAs. Based on this, we obtain:

Proposition 5.1. A SROIQ KB K can be rewritten into an equisatisfiable ZOIQ KB $\Psi(K)$. Further, if K is in SRIQ, SROQ, or SROIQ, then $\Psi(K)$ is in ZIQ, ZOQ, or ZOIQ, respectively.

The ZOIQ KB $\Psi(K)$ can be constructed in time polynomial in the combined sizes of A, T, and the largest regular expression r_K used, denoted by ρ_K (which can be exponential in $|R|$) [Ortiz, 2008]. Hence we obtain:

Theorem 5.2. Satisfiability of a KB $K = \langle A, T, R \rangle$ in any of SRIQ, SROQ, and SROIQ is in EXPTIME wrt. the total size of T, A, and ρ_K, and in 2EXPTIME wrt. the size of K.

For SRIQ, this is known to be optimal [Kazakov, 2008]. Note that this holds even if the number restrictions are coded in binary, and that we obtain a single exponential upper bound whenever ρ_K is polynomial in R.

By making again use of the rewriting above, we can reduce also query answering in SROIQ to ZIQ:

Proposition 5.3. Let K be a SROIQ KB and q a P2RPQ over A, and let q' be obtained from q by replacing each occurrence of each role R by r_R. Then $K \models q$ iff $\Psi(K) \models q'$.

Note that the rewriting of q into q' may introduce regular expressions, even if they were not originally present in q. To verify $K \models q_1 \sqsubseteq q_2$, for two P2RPQs q_1 and q_2, we can proceed by “freezing” q_1 and treating it as an ABox, as described in Section 4. We obtain the following upper bounds:

Theorem 5.4. Given a $K = \langle A, T, R \rangle$ and q_1, q_2 P2RPQs over K, $K \models q_1 \sqsubseteq q_2$ and $K \models q_2 \sqsubseteq q_1$ are decidable in 2EXPTIME in the total size of $\langle A, T, \rho_K, q_1, q_2 \rangle$ and in 3EXPTIME in the total size of K, q_1 and q_2 (assuming unary coding of numbers in the number restrictions) when (i) K is a SROQ or SROI KB, or (ii) K is a SROIQ KB and q_1 is a conjunctive query.

Our results also apply to the corresponding SR logics extended with safe Boolean rules, as in [Rudolph et al., 2008].

6 Conclusion

In this paper, we have substantially pushed the frontier of decidability for query entailment and containment over very expressive DLs, and in particular for the DLs of the SR family that underlie relevant fragments of OWL. Our techniques rely heavily on the quasi-forest model property of the considered DLs, and their applicability for settings where this fails is not apparent. Indeed, the fact that Proposition 3.3 fails in ALCB, the extension of ALC with arbitrary role negation, already implies undecidability of query entailment [Pratt-Hartmann, 2008]. We remark that [Pratt-Hartmann, 2008] shows also decidability of CQ answering for the guarded two-variable fragment of FOL, but the latter captures neither nominals nor regular expressions over roles. In fact, the decidability of ZOIQ remains open, even for KB satisfiability.

References

