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Abstract
We present and analyze coalitional affinity games,
a family of hedonic games that explicitly model the
value that an agent receives from being associated
with other agents. We provide a characterization
of the social-welfare maximizing coalition struc-
tures, and study the stability properties of affinity
games, using the core solution concept. Interest-
ingly, we observe that members of the core do not
necessarily maximize social welfare. We introduce
a new measure, the stability-gap to capture this dif-
ference. Using the stability gap, we show that for
an interesting class of coalitional affinity games,
the difference between the social welfare of a stable
coalition structure and a social welfare maximizing
coalition structure is bounded by a factor of two,
and that this bound is tight.

1 Introduction
Imagine the following scenario. You are organizing a party
and have to come up with a seating arrangement, but this
arrangement should take into consideration the relationships
between the guests. For example, Alice is a good friend of
Bob and would like to sit with him. However, Alice is feud-
ing with Chris, Bob’s best friend, and refuses to remain at any
table with Chris. You want to make all the guests as happy as
possible, but you also do not want guests changing the seat-
ing arrangement when they arrive. How should you assign
the guests to tables?

The scenario just described has some interesting features.
First, the agents (or guests) have value from interacting or
being associated with others, and this value may be positive
or negative. Second, the agents would like to coordinate with
others, but ideally only with agents with whom they have a
positive relationship. Finally, we would like stability. That
is, once a group is seated at a table, they have no incentive to
move.

In this paper we propose a model which explicitly captures
the value, which we call the affinity, that an agent receives
from being associated with another agent. In particular we
study situations where an agent is interested in belonging to
groups (coalitions) that contain agents for which it has high
affinity, while avoiding groups that contain agents for which

it has negative affinity. By placing our affinity model into
the context of non-transferable utility coalitional games [Pe-
leg and Sudhölter, 2003], we are able to characterize and
compare cooperative structures (i.e. coalition structures) that
maximize social welfare with those that are stable (i.e. in the
core). We argue that our affinity model is a rich representa-
tion that can be used to model many situations, while at the
same time has enough structure to provide interesting charac-
terizations of coalitions and coalition structures.

We organize the rest of the paper as follows. In the next
section we introduce our affinity model, the affinity graph
and coalitional affinity game. We also introduce the impor-
tant concepts from the literature on coalitions that we use
throughout the paper. In Section 3 we provide a complete
characterization of the social-welfare maximizing coalition
structure. We then study stability properties of the coalitional
affinity game, using the core as the solution concept. In Sec-
tion 5 we compare the social-welfare maximizing coalition
structure with stable coalition structures. We ask the question
“Assuming that stable coalition structures exist, how large a
sacrifice, in terms of social welfare, does the group of agents
have to make in order to be stable?” Experimental work, de-
scribed in Section 6, support our theoretical findings from
Section 5, while also showing that in practice, the core of
coalitional-affinity games is often non-empty.

2 The Model
Let there be a set of agents N = {x1, . . . , xn}. For any
pair of agents, we denote the affinity that agent xi has for xj

as a(xi, xj) ∈ R which represents the value that agent xi

receives from being associated with agent xj . We represent
the agents and their affinities with an affinity graph.

Definition 1 An affinity graph, A = (N, E), is a weighted
directed graph where

• N is a set of agents, N = {x1, . . . , xn},

• edge (xi, xj) ∈ E represents an affinity relation be-
tween agents xi and xj , and

• weight a(xi, xj) ∈ R is the value that agent xi receives
from being associated with agent xj .1

1If (xi, xj) �∈ E then a(xi, xj) = 0.
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Figure 1: An affinity graph. Here agent x and y have equal
affinity, as do y and z. However, while x has positive affinity
for agent z (a(x, z) = 5), agent z has negative affinity for
agent x (a(z, x) = −3).

Figure 1 is an example of an affinity graph. While the def-
inition of an affinity graph is general, we will sometimes be
interested in symmetric affinity graphs.
Definition 2 An affinity graph A = (N, E) is symmetric if
a(xi, xj) = a(xj , xi) for all (xi, xj), (xj , xi) ∈ E.

Given an affinity graph, A = (N, E), we are interested in
understanding how agents will choose to interact with each
other by forming coalitions. We define the utility of agent xi

from belonging in coalition S ⊆ N as follows:

u(S, xi) =
{

0 if |S| = 1∑
(xi,xj)∈E|xj∈S a(xi, xj) otherwise

Referring back to Figure 1 where N = {x, y, z}, we have
u(N, x) = 1 + 5 = 6, u(N, y) = 1 + 0 = 1 and u(N, z) =
−3+0 = −3. Since an agent can always decide to not belong
to a coalition, we are interested in coalitions where the utility
of an agent is at least zero. If for agent xi ∈ S, u(S, xi) ≥ 0
then we say that S is individually rational for agent xi.

It is now possible to define a coalitional affinity game
which is modeled as a characteristic function game with non-
transferable utility [Peleg and Sudhölter, 2003].
Definition 3 Given an affinity graph A = (N, E), the coali-
tional affinity game, G(A), is the pair 〈N, v〉 where
• N is the set of agents defined by A, and
• for any S ⊆ N , v(S) ⊂ R

|S|, such that for xi ∈ S,
vi(S) = u(S, xi).

If A is symmetric, then we say that G(A) is a symmetric affin-
ity game. While the value function, v, of a coalitional affinity
game returns a vector given a coalition, where entry i is the
value that agent xi receives from being in the coalition, we
will sometimes abuse notation and say that the value of coali-
tion S is

V (S) =
∑
xi∈S

vi(S) =
∑
xi∈S

u(S, xi) =
∑

xi,xj∈S

a(xi, xj).

This definition implicitly assumes that agents’ utilities are
comparable. While this assumption is quite strong, it is com-
monly made in much of the coalition literature (see, for ex-
ample [Bachrach and Rosenschein, 2008]) including work
studying coalitions in networks (see, for example [Jackson
and Wolinsky, 1996]).

As is standard, we define a coalition structure, P , to be a
partition of the set of agents into coalitions. We are interested
in properties of different coalition structures, such as the so-
cial welfare of a coalition structure and whether it is stable.

Definition 4 The social welfare of coalition structure P =
(S1, . . . , Sm) is SW (P ) =

∑m
i=1

∑
xj∈Si

u(Si, xj).

The notion of stability we use in this paper is the core so-
lution concept. We emphasize that this definition does not
rely on any assumptions concerning inter-agent utility com-
parisons.
Definition 5 A coalition structure P = (S1, . . . , Sm) is in
the core if there is no coalition B ⊆ N such that ∀x ∈ B, if
x ∈ Si then u(B, x) ≥ u(Si, x) and for some j, 1 ≤ j ≤ m,
∃y ∈ Sj such that u(B, y) > u(Sj , y). If the inequality is
strict then P is in the weak core.
If a coalition structure P is in the core, then it is resistant
against group deviations. No set of agents, B, can break away
by forming a new coalition and improve the utility for at least
one member, while not degrading the other agents. If such a
coalition exists, then it is called a blocking coalition.

We introduce a weaker stability concept, inner stability,
which limits the type of group deviations that can occur.
Definition 6 A coalition structure, P = (S1, . . . , Sm) ex-
hibits inner stability if there is no blocking coalition B such
that B ⊂ Si for some i, 1 ≤ i ≤ m.
If a coalition structure exhibits inner stability then any block-
ing coalition must “cross coalition boundaries” by drawing
members from at least two different coalitions.

2.1 Related Models
In this section we describe two models which are closely
related to coalitional affinity games. Coalitional affinity
games are a special subclass of hedonic games [Drèze and
Greenberg, 1980; Bogomolnaia and Jackson, 2002]. Hedonic
games are non-transferable utility games where each agent’s
utility depends on the identity of the other members of its
coalition. Thus our model represents hedonic games where
the pair-wise relationships between coalition members are
important.2 While we cannot represent all hedonic games, we
capture an interesting subclass and our representation allows
us to leverage the underlying relationships between agents
when providing characterizations of social-welfare maximiz-
ing and stable coalition structures.

Another related model was proposed by Deng and Pa-
padimitriou [Deng and Papadimitriou, 1994]. They also used
a weighted (undirected) graph to model the relationship be-
tween agents, and defined the value of a coalition S, v(S),
as we do in this paper. However, an important distinction
between their work and ours is that they assumed transfer-
able utility, and thus agents were able to freely redistribute
the value of a coalition amongst themselves. This key differ-
ence in the models (transferable vs. non-transferable utility)
means that the results obtained (and the techniques used) do
not apply in our setting, as we illustrate later.

3 Social Welfare and Affinity Games
Given an affinity graph one question we are interested in is
how the agents should be assigned to coalitions so as to max-
imize the social welfare. In general, this coalition-structure

2We can also model certain situations where the utility depends
on the number of members, and not on their identities.
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generation problem is challenging since if there are n agents,
then there are O(nn) possible coalition structures. While
there has been much work on searching for social-welfare
maximizing coalitions for general coalition problems (see,
for example [Rahwan et al., 2007], we are interested in un-
derstanding whether there are any particular properties in the
affinity-graph representation that can be used to characterize
the social-welfare maximizing coalition structure.

In this section we note the relationship between the social-
welfare maximizing coalition structure and the minimal cut of
the affinity graph. This observation provides us with a com-
plete characterization of the structure of social-welfare max-
imizing coalition structures. Recall that a k-cut of weighted
graph G = (N, E) is a partition of N into k disjoint sets
P = (S1, S2, . . . , Sk), where Si ⊆ N and Si ∩ Sj = ∅ if
i = j. The size of the cut is equal to the sum of the weight
of the edges between each Si, Sj ∈ P . A minimal k-cut is a
k-cut that is no larger than any other k-cut.

Lemma 1 Given an affinity game G(A) , and a fixed value
k, 1 ≤ k ≤ n, a minimal k-cut of A has the highest social
welfare amongst all coalition structures of size k.
Proof: For any coalition structure of size k, Pk = (S1,
. . . , Sk), let w(Si, Sj) be the sum of the weights of the edges
in the cut between coalitions Si and Sj . That is

w(Si, Sj) =
∑

(x,y)|x∈Si,y∈Sj

a(x, y).

Then, the weight of the cut of Pk is

Cut(Pk) =
k∑

i=1

k∑
j=1,j �=i

w(Si, Sj).

Since the value of a coalition, Si is equal to
∑

x,y∈Si
a(x, y),

the social welfare of Pk is

SW (Pk) =
k∑

i=1

∑
x,y∈Si

a(x, y).

Therefore, the social welfare of Pk is equal to the sum of all
edges in A minus the edges in the cut. That is

SW (Pk) =
n∑

i=1

n∑
j=1

a(i, j) − Cut(Pk).

Therefore, the coalition structure of size k that maximizes
social welfare, P ∗

k , is the one that minimizes Cut(P ∗
k ). �

Theorem 1 Given affinity game G(A), let P ∗
k be a minimal

k-cut of affinity graph A = (N, E). Then a social welfare
maximizing coalition is P ∗ = maxk[P ∗

1 , . . . , P ∗
n ].

Proof: Proof follows immediately from Lemma 1. �
Theorem 1 provides a characterization of the social-

welfare maximizing coalition structure for an arbitrary affin-
ity graph. If the affinity graph is symmetric (Definition 2) then
we are able to describe additional properties of the social-
welfare maximizing coalition structure, P ∗.

Figure 2: An affinity graph for which the coalitional affinity
game has an empty core.

Theorem 2 Let G(A) be a symmetric affinity game, and let
P ∗ = (S∗

1 , . . . , S∗
k) be the social-welfare maximizing coali-

tion structure. Then, for any S∗
i ∈ P ∗, any cut of S∗

i is non-
negative.

Due to space limitations we are unable to include the proof
of Theorem 2. However, the proof involves assuming that a
social-welfare maximizing coalition structure, P ∗, has a neg-
ative cut, and then deriving a contradiction by finding another
coalition structure P ′ such that SW (P ′) > SW (P ∗).

Theorem 2 does not imply that coalition structures that
maximize social welfare in symmetric affinity games only
contain coalitions who’s members all have positive affinity.
Instead, if agents x, y ∈ S∗

i and a(x, y) < 0, then there must
exist other agents in S∗

i \ {y} such that∑
z∈S∗

i \{y}
a(x, z) ≥ −a(x, y).

Informally, if a coalition belongs to the social-welfare maxi-
mizing coalition structure, and if two agents in the coalition
dislike each other, then there must be other agents in the coali-
tion that the two agents like.

Corollary 1 follows directly from Theorem 2.
Corollary 1 If G(A) is a symmetric affinity game and P ∗ =
(S∗

1 , . . . , S∗
k) is a social-welfare maximizing coalition struc-

ture, then ∀S∗
i ∈ P ∗, S∗

i is individually rational.
Proof: Let x ∈ S∗

i . If |S∗
i | = 1 then u(S∗

i , x) = 0 and
so S∗

i is individually rational. Assume that |S∗
i | > 1. Then

u(S∗
i , x) =

∑
(x,y)|y∈S∗

i
a(x, y). From Theorem 2, we know

that every cut of S∗
i is non-negative. Therefore,∑
(x,y)|y∈S∗

i

a(x, y) ≥ 0

since otherwise we could find a cut ({x}, S∗
i \ {x}) which is

strictly negative. That is u(S∗
i , x) ≥ 0. �

4 Stability and Affinity Games
In this section we study the stability of different coalition
structures for affinity games, and in particular how the exis-
tence of stable coalition structures (where we use the core as
our definition of stability) depends on the underlying affinity
graph. We first note that for a general affinity game, the core
may be empty. Figure 2 is an example of an affinity game
for which there is no coalition structure in the core.3 While

3The grand coalition, ({x, y, z}) is blocked by coalition {z},
({x}, {y}, {z}) is blocked by {x, z}, ({x}, {y, z}) is blocked by
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for general affinity games, the core may be empty, there are
interesting affinity-graph structures for which there are posi-
tive results. Our first two results follow immediately from the
definition of the utility functions of the agents.

Theorem 3 Let G(A) be an affinity game. If for all
(xi, xj) ∈ E, a(xi, xj) ≥ 0, then the grand coalition is in
the core.

Theorem 4 Let G(A) be an affinity game. If for all
(xi, xj) ∈ E, a(xi, xj) ≤ 0 then the coalition structure
P = ({x1}, {x2}, . . . , {xn}) is in the core.

We contrast Theorem 4 with the transferable-utility case.
In particular, if agents have transferable utilities then the core
is non-empty if and only if there is no negative cut (Lemma
2) [Deng and Papadimitriou, 1994]. This discrepancy high-
lights the differences in our models.

If the affinity graph is symmetric then we can further ex-
pand our understanding of stable coalition structures. Our
next result shows that the social-welfare maximizing coali-
tion structure, while not necessarily belonging in the core,
still satisfies an interesting stability property.

Theorem 5 If affinity game G(A) is symmetric, then the
social-welfare maximizing partition, P ∗ exhibits inner sta-
bility.
Proof: Let P ∗ = (S∗

1 , . . . , S∗
k) be the social-welfare max-

imizing coalition structure. Assume that there exists S∗
j

with blocking coalition B ⊂ S∗
j . Since B blocks S∗

j then
for all xi ∈ B, u(B, xi) ≥ u(S∗

j , xi) and the inequality
is strict for at least one agent. However, since B ⊂ S∗

j ,
u(S∗

j , xi) = u(B, xi) +
∑

xk∈S∗
j \B a(xi, xk), and so

V (S∗
j ) =

∑
xi∈S∗

j

u(S∗
j , xi)

=
∑

xi∈B

u(B, xi) +
∑

xi∈B

∑
xk∈S∗

j \B

a(xi, xk)

= V (B) + Cut(B, S∗
j \ B)

where Cut(B, S∗
j \B) is the weight of the cut between B and

S∗
j . Therefore, Cut(B, S∗

j \ B) < 0. But this is not possible
(Theorem 2). Therefore B can not exist, and thus P ∗ exhibits
inner stability. �

5 Stability and Social Welfare
In this section we study the relationship between the core and
social welfare. Our first observation is that for affinity games,
if a coalition structure, P , is in the core, then this does not im-
ply that it must also be a social-welfare maximizing coalition
structure.4 Figure 3 illustrates this. The social-welfare max-
imizing coalition structure is P ∗ = ({x, t}, {y, z}). How-
ever P ∗ is not in the core when W > 3 since {x, y} is
a blocking coalition. In fact, the coalition structure PC =

{y}, and coalition structure ({x, z}, {y}) is blocked by {y, z} while
({y, z}, {x}) is blocked by {x, z}.

4Researchers on coalitions in other network-based games have
also made similar observations [Jackson and Wolinsky, 1996].

Figure 3: An affinity graph where if W > 3 then the (non-
empty) core does not contain the social-welfare maximizing
coalition structure.

({x, y}, {t, z}) is in the core but SW (PC) = 2W + 2 <
4W −4 = SW (P ∗). While the core members may not maxi-
mize social welfare, and the social welfare maximizing coali-
tion structure may not be in the core, we are still interested
in understanding the relationship between the two concepts.
In particular, we are interested in understanding the potential
loss of social welfare that comes from being in the core. We
call this loss the stability gap.

Definition 7 Let G(A) be an affinity game with a non-empty
core. Let P ∗ be the social-welfare maximizing coalition
structure, and let PC be a member of the core. The stabil-
ity gap of PC is

Gap(PC) =
SW (P ∗)
SW (PC)

.

If Gap(PC) = 1 then PC is a social-welfare maximizing
coalition structure. If Gap(PC) > 1 then PC sacrifices so-
cial welfare in exchange for stability. For a given affinity
game G(A) we are particularly interested in measuring the
stability gap of the member of the core with the lowest social
welfare,

Gapmin(A) =
SW(P∗)

minP∈Core(A) SW(P)

and the stability gap of the member of the core with the high-
est social welfare

Gapmax(A) =
SW(P∗)

maxP∈Core(A) SW(P)
.

Clearly, Gapmin(A) ≥ Gapmax(A) for any affinity graph
with a non-empty core. We also note that Gapmin(A) has
parallels with the price of anarchy while Gapmax(A) has par-
allels with the price of stability [Nisan et al., 2007].

We start by looking at general affinity graphs. Unfortu-
nately, our first result is negative.
Theorem 6 Let G(A) be an affinity game with a non-empty
core. Then, Gapmax(A) can be unbounded.
Proof: Consider the graph A = (N, E) where N =
{x0, x1, . . . , xn−1}. Let

E = {(x0, xi)|1 ≤ i < n} ∪ {(xi, x0)|1 ≤ i < n}.
That is, A is a star with x0 as the center. Now, let a(x0, x1) =
a(x1, x0) = 1 and for all xi such that 1 < i < n let
a(x0, xi) = −1 and a(xi, x0) = W for some W ≥ 1.
The social-welfare maximizing coalition structure P ∗ is the
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grand coalition, and SW (P ∗) = (n − 2)(W − 1) + 2.
The only coalition structure in the core, however, is PC =
({x0, x1}, {x2}, . . . , {xn−1}), and SW (PC) = 2. There-
fore, for arbitrary W > 1,

Gapmax(A) =
SW (P ∗)
SW (PC)

=
(n − 2)(W − 1) + 2

2
.

�
While Theorem 6 is distressing since it states that even core

members with the highest social welfare can still be arbitrar-
ily worse than the maximum social welfare, if we place some
restrictions on the affinity graph, then the sacrifice in terms of
social welfare is significantly reduced.

Theorem 7 Let G(A) be a symmetric affinity game with a
non-empty core. Then Gapmin(A) is bounded by 2, and this
bound is tight.
Proof: Let PC be a member of the core of affinity graph A.
We will show that SW (PC) ≥ 1

2SW (P ) for any coalition
structure P = (S1, . . . , Sm). Before starting the proof, we
need to introduce the notation used in the rest of the proof.
First, for agents i, j ∈ N define

e∗(xi, xj) =
{

a(xi, xj) if xi, xj ∈ Sk for some Sk ∈ P
0 otherwise.

Then
SW (P ) = 2

∑
1≤i<j≤n

e∗(xi, xj) (1)

since it is the sum of all weights of edges inside each coalition
of P (and does not count the cut edges between coalitions).

Second, for agents {x1, x2, . . . , xt} let P − x1 − . . . − xt
denote a new coalition structure

P ′ = (S1\{x1, . . . , xt}, . . . , Sm\{x1, . . . , xt}, {x1}, . . . , {xt}).

We say that a coalition structure P1 = (C1, . . . , Ck) blocks
another coalition structure P2 = (S1, . . . , Sm) if there exists
some Ci ∈ P1 such that ∀x ∈ Ci, u(C, x) ≥ u(Sj , x) where
x ∈ Sj .

Finally, we will abuse notation and for any partition P =
(S1, . . . , Sm) and agent x ∈ Si, we say u(P, x) = u(Si, x).

We can now start the proof. Since PC is in the core, by
definition of the core it follows that it is not blocked by P .
Therefore, there exists at least one agent, say x1, such that
u(P, x1) ≤ u(PC , x1). Now, consider coalition structure
P − x1. P − x1 does not block PC and so there must ex-
ist some agent x2 such that u(P − x1, x2) ≤ u(PC , x2) by
definition of the core. We can continue this process and it-
eratively remove agents in the order x1, x2, . . . , xn−1. Each
new coalition structure does not block PC since PC is in the
core. Therefore, we get the following inequalities;

u(P, x1) ≤ u(P C , x1)

u(P − x1, x2) ≤ u(P C , x2)

...
...

u(P − x1 − . . . − xn−1, xn) ≤ u(P C , xn)

Summing, we get

u(P, x1) +

nX

i=2

u(P − x1 − . . . − xi−1, xi) ≤
nX

i=1

u(P C , xi)

= SW (P C).

Since

u(P − x1 − . . . − xi−1, xi) = u(P, xi) −
i−1X

j=1

e∗(xi, xj)

we have
nX

i=1

u(P, xi) −
X

1≤i<j≤n

e∗(xi, xj) ≤ SW (P C)

and so

SW (P ) −
X

1≤i<j≤n

e∗(xi, xj) ≤ SW (P C).

Substituting in Equation 1 we get
1

2
SW (P ) ≤ SW (P C).

Since this holds for all coalition structures, it must also hold
for the social-welfare maximizing coalition structure, P ∗.

To show that the bound is tight, consider the example in
Figure 3. Recall that the coalition structure P ∗ = ({x, t},
{y, z}) maximizes welfare with SW (P ∗) = 4W − 4. The
coalition structure PC = ({x, y}, {t, z}) is in the core, and
SW (PC) = 2W + 2. The stability gap of PC is 4W−4

2W+2 ,
which converges to 2 as W → ∞. �

6 Experiments
Section 5 showed that for symmetric affinity games, the sacri-
fice in social welfare in order to achieve stability was bounded
by a constant (2), while in general affinity games it could
be unbounded. These results relied on the assumption that
the core was non-empty. In this section we describe a se-
ries of experiments that we conducted on randomly gener-
ated symmetric affinity games, to answer the following ques-
tions: i) How often is the core non-empty? and ii) What are
Gapmax(A) and Gapmin(A) in practice?

To generate random symmetric affinity games we gener-
ated graphs with |N | ranging from 4 to 10. For each edge
in the graph we assigned an integer weight from interval
[−W, W ], chosen uniformly at random. We generated 1000
graphs for each W . In the rest of this section we show results
for W ∈ {1, 5, 25, 125, 700} since these were illustrative of
general trends, irrespective of the number of agents. For each
graph we exhaustively searched the space of coalition struc-
tures to find the social-welfare maximizing coalition struc-
ture, and if the core was non-empty, we found the member of
the core with the highest social welfare, and with the lowest
social welfare.

In our first set of experiments we studied the frequency
with which the core and weak core actually exists. Table 1
presents our findings. We note that the weak core was never
empty, and that core was non-empty for a significant number
of the random affinity games.
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Core Weak Core
W % non-empty % non-empty
1 73.3% 100%
5 93.3% 100%
25 99.1% 100%
125 99.7% 100%
700 100% 100%

Table 1: The percentage of graphs which had a non-empty
core and weak core. Note the weak core was always non-
empty.

Core Weak Core
W Gapmax Gapmin Gapmax Gapmin

1 1.0017 1.0159 1.0000 1.6886
5 1.0089 1.1210 1.0019 1.3070
25 1.0104 1.1841 1.0063 1.2161
125 1.0090 1.1894 1.0091 1.2008
700 1.0100 1.1936 1.0065 1.2005

Table 2: Average values for Gapmax(A) and Gapmin(A) for
games where the core and weak core were non-empty.

In our next set of experiments we restricted ourselves to
affinity games where the core is non-empty. Table 2 contains
our findings. We note that the stability gap is always very
close to one, indicating that the sacrifice with respect to so-
cial welfare in order to gain stability is actually very low, and
for many instances we found that the core and weak core did
contain the social-welfare maximizing coalition structure.5 In
the rest of this section we propose a hypothesis as to why this
was so.

In Theorem 5 we proved that for any symmetric affin-
ity game, the social-welfare maximizing coalition structure,
P ∗ = (S∗

1 , . . . , S∗
k), satisfies inner stability. This means that

in order for P ∗ to not belong in the core, there must exist a
blocking coalition, B, that draws its members from different
coalitions in P ∗. Thus, these agents, once inside B, derive
their utility from edges that belong to the minimum cut. Since
we allow negative affinities, then it is likely that many of the
edges in the minimal cut will also be negative while edges
inside coalitions in P ∗ will likely be positive. Therefore, it
is unlikely that agents in B will actually be able to improve
their utility compared to if they stay in S∗

i . Thus, we hypoth-
esize that on many randomly generated graphs, the existence
of such a blocking coalition, B, is rare.

7 Conclusion and Future Work
In this paper we introduced coalitional affinity games, a fam-
ily of non-transferable utility games that explicitly model the
values that agents receive from being associated with oth-
ers. In these games, an agent is interested in joining coali-
tions with agents for which it has high affinity, while avoiding
coalitions that contain agents for which it has low affinity.

5For both the core and weak core, the standard deviation for
Gapmax was always less than 0.05 and for Gapmin it was always
less than 0.2.

Given our model, we provided a characterization of the
social-welfare maximizing coalition structure, and showed
that it corresponds to the minimal k-cut of the underlying
affinity graph. We then studied stability properties of affin-
ity games using the core as the solution concept. We inves-
tigated the relationship between the core and social welfare
and proposed a new measure, the stability gap, that repre-
sents the sacrifice in social welfare that is made in exchange
for stability. We showed that for general affinity games, this
sacrifice is unbounded. However, for a subclass of affinity
games (symmetric affinity games), we showed that the bound
is two.

There are several research directions we would like to pur-
sue. First, our experimental results illustrated that for sym-
metric affinity games, the core was rarely empty. We are in-
terested in general properties of random graphs and would
like, if possible, to prove that with high probability, the core
is non-empty. Second, our current model only captures affini-
ties between pairs of agents. We would like to extend this so
that affinities among groups of agents could be captured, thus
modelling all hedonic games. Preliminary work using hyper-
graphs looks promising.
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