AAAI Publications, Twenty-First International Joint Conference on Artificial Intelligence

Font Size: 
Discriminative Semi-Supervised Feature Selection via Manifold Regularization
Zenglin Xu, Rong Jin, Michael R. Lyu, Irwin King

Last modified: 2009-06-26

Abstract


We consider the problem of semi-supervised feature selection, where we are given a small amount of labeled examples and a large amount of unlabeled examples. Since a small number of labeled samples are usually insufficient for identifying the relevant features, the critical problem arising from semi-supervised feature selection is how to take advantage of the information underneath the unlabeled data. To address this problem, we propose a novel discriminative semi-supervised feature selection method based on the idea of manifold regularization. The proposed method selects features throughmaximizing the classification margin between different classes and simultaneously exploiting the geometry of the probability distribution that generates both labeled and unlabeled data. We formulate the proposed feature selection method into a convex-concave optimization problem, where the saddle point corresponds to the optimal solution. To find the optimal solution, the level method, a fairly recent optimization method, is employed. We also present a theoretic proof of the convergence rate for the application of the level method to our problem. Empirical evaluation on several benchmark data sets demonstrates the effectiveness of the proposed semi-supervised feature selection method.

Full Text: PDF