AAAI Publications, Twenty-First International Joint Conference on Artificial Intelligence

Font Size: 
Multi-Class Classifiers and Their Underlying Shared Structure
Volkan Vural, Glenn Fung, Romer Rosales, Jennifer G. Dy

Last modified: 2009-06-26

Abstract


Multi-class problems have a richer structure than binary classification problems. Thus, they can potentially improve their performance by exploiting the relationship among class labels. While for the purposes of providing an automated classification result this class structure does not need to be explicitly unveiled, for human level analysis or interpretation this is valuable. We develop a multi-class large margin classifier that extracts and takes advantage of class relationships. We provide a bi-convex formulation that explicitly learns a matrix that captures these class relationships and is de-coupled from the feature weights. Our representation can take advantage of the class structure to compress the model by reducing the number of classifiers employed, maintaining high accuracy even with large compression. In addition, we present an efficient formulation in terms of speed and memory.

Full Text: PDF