AAAI Publications, Twenty-Second International Joint Conference on Artificial Intelligence

Font Size: 
Reinforcement Learning to Adjust Robot Movements to New Situations
Jens Kober, Erhan Oztop, Jan Peters

Last modified: 2011-06-29

Abstract


Many complex robot motor skills can be represented using elementary movements, and there exist efficient techniques for learning parametrized motor plans using demonstrations and self-improvement. However with current techniques, in many cases, the robot currently needs to learn a new elementary movement even if a parametrized motor plan exists that covers a related situation. A method is needed that modulates the elementary movement through the meta-parameters of its representation. In this paper, we describe how to learn such mappings from circumstances to meta-parameters using reinforcement learning. In particular we use a kernelized version of the reward-weighted regression. We show two robot applications of the presented setup in robotic domains; the generalization of throwing movements in darts, and of hitting movements in table tennis. We demonstrate that both tasks can be learned successfully using simulated and real robots.

Full Text: PDF