

Search-Based Planning with Provable Suboptimality Bounds
for Continuous State Spaces

 Juan Pablo Gonzalez Maxim Likhachev
 Autonomous Perception Research Robotics Institute
 General Dynamics Robotic Systems Carnegie Mellon University
 Pittsburgh, PA 15221 Pittsburgh, PA 15213
 jpgonzal@gdrs.com maxim@cs.cmu.edu

Abstract

Search-based planning is widely used for mobile robot
motion planning because of its guarantees of optimality and
completeness. In continuous state-spaces, however, most
existing approaches have significant limitations in terms of
optimality and completeness because of the underlying grid
used. We propose an approach that eliminates the
dependency on grids by using more general equivalence
classes to quickly find an initial solution and instead of
pruning states that fall within an equivalence class and have
higher cost, we use an inflated heuristic to lower the priority
of these states in the search. In further iterations, we reduce
the inflated heuristic in a principled way, thus providing fast
solutions with provable suboptimality bounds that can be
improved as time allows. The proposed approach produces
smooth paths with the resolution dictated by the action set.
Finer action sets produce higher resolution paths that are
more computationally intensive to calculate and coarser
action sets produce lower resolution paths that are faster to
compute. To the best of our knowledge, this is the first
algorithm that is able to plan in continuous state-spaces with
provable guarantees on completeness and bounds on
suboptimality for a given action set. Experimental results on
3D (x,y,�) path planning show that, on average, this
approach is able to find paths in less than two seconds that
are within 2% of the optimal path cost in worlds of up to
1000x1000 m with a minimum step size of one meter.

Introduction
Search-based planning is widely used for mobile robot
motion planning because of its guarantees of optimality
and completeness. In continuous state-spaces, however,
most existing approaches have significant limitations in
terms of optimality and completeness. Existing approaches
to search-based planning in continuous state-spaces
generally belong to two categories: grid-based planners
and lattice-based planners. Grid-based planners for
planning in continuous state-spaces were first introduced
by Barraquand and Latombe (Barraquand and Latombe

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1993). Their approach uses a fixed-cell decomposition that
defines implicit grid-like equivalence classes. States are
generated as part of an A* search driven by a forward
simulation through an action set. States that fall within
cells with states that have already been expanded
(CLOSED) are pruned. This approach produces high-
quality paths and is relatively fast. However, it can prune
states that are needed to find optimal solutions in
constrained environments, as can be seen in Figure 1.

Lattice-based planners (Pivtoraiko and Kelly 2005;

Figure 1. Comparison of grid-based planning (top left), lattice-based
planning (top right) and our approach (bottom). Dashed transitions with
cross at the end correspond to pruned transitions. In grid-based planning,
states that are within an existing equivalence class and have higher cost
are pruned. In lattice-based planning the action set is modified to always
land on the center of grid locations. Our approach overcomes both
limitations and plans with provable guarantees on suboptimality, allowing
the path to the goal to be found independently of the characteristics of the
equivalence classes

60

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)

Likhachev and Ferguson 2009) use state lattices, a
discretization of the configuration space into a set of states
that represent configurations and connections between
these states, and where every connection represents a
feasible path. They guarantee feasibility of the paths while
allowing search-based planning on the resulting graph. The
main drawback of lattice-based planners is that they need
to convert the desired action set into an action set that
always starts and ends on a node in the grid. This
requirement increases the design complexity of the
planners and artificially restricts the paths to go through a
series of specific points. Figure 1 also shows an example
where the constraints in the location of the path points
prevents the planner from finding a solution. In this
example, in order to find a path to the goal using a lattice-
based planner, a higher resolution would be needed for the
lattice since the obstacles in the world are not aligned with
the cell centers.

Sampling-based planners (Kavraki et al 1996; LaValle
1998) use forward search in continuous coordinates and are
able to find smooth paths in high-dimensional spaces
without the need for an underlying grid. Sampling based
approaches are probabilistic-complete, but usually produce
highly suboptimal paths that require post-processing to
find locally-optimal solutions, and cannot optimize
continuous cost functions. RRT* (Karaman and Frazzoli
2010) is a unique variant of sampling-based planners that
reconnects vertices within a d-dimensional ball whose
radius shrinks as the search progresses. RRT* guarantees
asymptotic optimality, but does not provide any
deterministic suboptimality bounds if the search terminates
before finding an optimal path.

We propose an approach that improves upon grid-based
planners by using equivalence classes to find an initial
solution, but instead of pruning states that fall within an
equivalence class and have higher cost, we use an inflated
heuristic to lower the priority of these states in the search.
In further iterations, we use ARA* (Likhachev, Gordon,
and Thrun 2003b) to reduce the inflated heuristic in a
principled way. This allows us to provide fast solutions
with provable suboptimality bounds that can be improved
as time allows. The proposed approach produces smooth
paths with the resolution dictated by the action set. Finer
action sets produce higher resolution paths that are more
computationally intensive to calculate and coarser action
sets produce lower resolution paths that are faster to
compute. To the best of our knowledge, this is the first
algorithm that is able to plan in continuous state-spaces
with provable guarantees on suboptimality for a given
action set.

Experimental results on 3D (x,y,�) path planning show
that, on average, this approach is able to find paths in less
than two seconds that are within 2% of the optimal path

cost in worlds of up to 1000x1000 m with a minimum step
size of 1m.

Outline
To simplify the presentation we present three variants of
the algorithm in order of complexity. The first one, A*
with equivalence classes, prunes higher-cost states that are
already represented in an equivalence class (equivalence-
class state dominance). It is somewhat similar to the
Barraquand-Latombe approach, although it does not use
the grid to define equivalence classes. This version does
not have explicit guarantees on suboptimality bounds. The
second version, �-optimal A* with equivalence classes,
does not prune states and instead uses an inflated heuristic
� >1 to penalize dominated states. This algorithm is
guaranteed to find a solution that is within � of the optimal
solution for the given action set. The final version,
Anytime Repairing A* with equivalence classes, combines
the previous two versions in an anytime fashion to quickly
obtain an initial solution with large � and then reduces �
while reusing previous results in order to achieve the
minimum � possible within the time and space available.
The solution found is also guaranteed to be within � of the
optimal solution for the given action set.

Anytime Repairing A* with Equivalence
Classes

A* with Equivalence Classes – AE*
In order to plan paths that don’t depend on a grid, we use a
dynamically generated graph created by applying an action
set to each state expanded. As in regular A*, we use two
lists, OPEN and CLOSED. The OPEN list contains states
that are candidates for expansion, ordered by their f value
f(s) = g(s) + h(s), where g(s) is the accumulated cost from
the start, and h(s) is an admissible heuristic that
underestimates the cost to the goal. The CLOSED list
contains states that have already been expanded. The nodes
of the graph are made up of the states belonging to the
OPEN and CLOSED lists together, and the edges are
created as nodes are generated.
 Initially sstart is placed in the OPEN list (Figure 2, line
02) with f(sstart) = h(sstart). The state with the lowest f value
is popped off the OPEN list, put in the CLOSED list, and
expanded, with its successors s’ generated and determined
by the action set (lines 04 to 06). A state s’ can lie
anywhere in the state space (as determined by the action
set) and therefore it is not discretized. We calculate the
cost to transition from s to s’ and update g(s’) if the state s’
has not been generated before or if its g value can be
improved (lines 07 to 09). Then, out of all the states in the
graph G that we have constructed so far, we look for the

61

nearest neighbor snearest within the equivalence class of s’
according to a given distance function D(s,s’).

 We define the equivalence relationship between two
states as
 ~ ' (, ')s s D s s �� � (1)
where D is the same distance function used to evaluate the
nearest neighbor, and δ defines the size of the equivalence
class. If there are no neighbors within the same
equivalence class, then s’ is considered a new state and it’s
placed in the OPEN list with f(s’) = g(s’) + h(s’) (lines 11
and 12). If there is a neighbor within the same equivalence
class, then s’ is only added to the open list (and to the
graph) if its g value is lower than that of the nearest
neighbor (lines 13 to 16). Figure 3 illustrates this process.
Every time a state is placed in the OPEN list, backpointers
representing connecting edges to its parent are also stored
with it. Lines 03 to 16 are repeated until a state in the same
equivalence class as the goal state is expanded or until the
OPEN list is empty. The size of the equivalence class
together with the action set determines the resolution of the
solution. Smaller equivalence classes achieve higher
resolution at the expense of computation time and space.
The upper bound on the size of the equivalence class is
determined by the action set since the successors of a node

need to belong to a separate equivalence class than its
parent
 (, ').D s s� � (2)

Equivalence classes affect the quality of the solution in
an indirect way (Gonzalez and Stentz 2009). Within an
equivalence class states are dominated based on their g
value (total cost from the start). If there is a state with a
higher g value within the same equivalence class that
would be needed to achieve a better solution later in the
search, then this state would be pruned, and the better
solution would not be achieved. The likelihood of this
event depends on the topology of the problem and the size
of the equivalence class. As the equivalence class gets
smaller, this is less likely to occur and in the limit (if the
size of the equivalence class is zero), it will never happen.
In practice we usually set the size of the equivalence
classes at the upper bound determined by the action set, as
the resulting paths are of high quality and this reduces
planning time.

For example, if we are planning paths in {x,y,θ} for a
car-like robot moving forward with velocity v and
minimum turning radius �min (Dubins car), the action set U
in { ,v � } is
 	
min minU ,0,/ /v vv t � �� � � � (3)
where Δt is the time step in the action set. The longitudinal
motion determines the maximum size of the equivalence
class in xy (δxy = v t�) and the heading change determines
the maximum size of the equivalence class in θ
(min/v t�� �� �). For a given speed and turning radius,
increasing Δt increases the size of the equivalence class
and produces a coarser solution in (x,y, θ). However, since
the successors are generated based on a feasible action set
and there is no quantization, the resulting path is always
continuous in all variables.

Figure 4 shows the resulting paths for v = 1m/s and Δt =
1s and Δt = 5s, as well as a path using A* on a grid in xy.
For Δt =1, each motion on the xy plane is 1 meter long, and
the maximum change of heading in the action set
corresponds to approximately 6 degrees. For Δt = 5s, each
motion on the xy plane is 5 meters long, and the maximum
change in heading in the action set is 30 degrees. Although
a quantization in heading is not imposed, the action set
selected effectively limits the possible angles to multiples
of 6 degrees for Δt = 1s and to multiples of 30 degrees for
Δt = 5s. The xy values are not quantized by the action set
selected.

This approach is similar to the approach proposed by
Barraquand and Latombe, but it uses a more general
definition of equivalence classes. Where their approach
was defined for grid-like equivalence classes, the approach
presented here is not restricted in the shape of the
equivalence class. Like the Barranquand-Latombe
approach, this approach lacks completeness guarantees and

01 g(sstart) = 0; OPEN = � ; CLOSED = �
02 insert sstart into OPEN with f(sstart) = h(sstart)
03 while sgoal is not expanded
04 remove s with the smallest f value from OPEN
05 CLOSED =CLOSED {s}
06 for each succesor s’ of s
07 if (s’ hasn’t been generated) OR
08 (g(s) + c(s,s’) < g(s’))
09 g(s’) = g(s) + c(s,s’)
10 snearest=Nearest(OPEN CLOSED, s’)
11 if (snearest = { � })
12 insert s’ into OPEN with f(s’) = g(s’) + h(s’)
13 else if g(s’) < g(snearest)
14 if snearest � OPEN
15 remove snearest from OPEN
16 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

Figure 2. Algorithm 1: A* with equivalence classes

Figure 3. Using equivalence classes, states are allowed to lie where the
action set dictates. The solid gray circles show the equivalence classes for
θ = 0o, and dashed circles show the equivalence classes for other angles.
The red “x” shows a state that is dominated (pruned) because it is within
an existing equivalence class and has a higher g value.

62

provable suboptimality bounds, as it prunes states within
equivalence classes that could be necessary later on in the
search.

��-optimal A* with Equivalence Classes
Equivalence class state-dominance can prune states that are
necessary to achieve truly optimal paths. In order to obtain
provable suboptimality bounds and to allow the solution to
be improved beyond the limits of the equivalence class
defined, we modify it as follows.
 Instead of pruning states that are dominated within the
equivalence class, we put them in the OPEN list with an
inflated heuristic such that f(s) = g(s) + �·h(s), with �
This is similar to implementing A* with a weighted
heuristic, but only the dominated nodes are weighted.
Figure 5 shows the modified algorithm, highlighting the
changes that implement the inflated heuristic. Since the
heuristic is at most � times the admissible heuristic h(s),
the solution will be at most � times the optimal solution
(Likhachev, Gordon, and Thrun 2003a). With large � the
solution is the same as that found with algorithm 1. With
smaller � more states will be considered in the solution,
overcoming the limitations imposed by the equivalence
classes but also requiring more time and space.

In order to implement weighted A* with equivalence
classes, a number of additional changes are required. We
create a new list NOTDOM to contain all the non-
dominated states generated so far. Each non-dominated
state defines an equivalence class, and has lower g value
than any other states within the same equivalence class. As
such, in line 10, we only check for the nearest neighbor
within NOTDOM. We maintain this list by adding new
states that don’t have a non-dominated state nearby (line
12) and by checking each generated state against its nearest
non-dominated neighbor. If a successor s’ has a lower g
value than the nearest non-dominated neighbor within its
equivalence class, then the nearest neighbor is removed

from NOTDOM and s’ inserted instead (lines 15 and 16). If
snearest was in the OPEN list, then its f value changed to that
of dominated states (lines 19 and 20). If a successor s’ has
a greater or equal g value than snearest then s’ is put in the
OPEN list as a dominated state (line 24), unless, s’ is
equal to snearest. If s’ is equal to snearest. then s’ is non-
dominated and its g value was updated to a better value in
line 09. In such case, s’ is put in the OPEN list as a non-
dominated state (line 26).

Theorem: If there exists a finite-cost path for the
given action set, then the algorithm is guaranteed to
terminate and to return a path whose cost is no more
than � times the cost of the least-cost path for the given
action set.

We prove termination by contradiction. Let us consider
a least-cost path from sstart to s, and in particular the state s'
on it that has never been expanded and is closest to sstart. s'
was generated and inserted into OPEN with a finite
priority. Given a finite set of actions for each state and
strictly positive costs, there is only a finite number of states
whose g values will be smaller than any finite g value
including the g value of s'. Thus, s' must have been
selected for expansion, which is a contradiction.

According to the theoretical analysis of weighted A*
(Likhachev, Gordon, and Thrun 2003a), inflating h values
of states with �� � 1 guarantees that whenever a state s is
expanded, the cost of the found path from sstart to s is
bounded from above by the g value of s, which in turn is
no more than � times the cost of an optimal path from sstart
to s. This means that the cost of the path returned by our
algorithm is no more than � times the cost of a least-cost
path.

Anytime Repairing A* with Equivalence Classes
Since different environments have very different values of
� that can be solved in a given amount of time and space, it
is desirable to have an approach that explores different
values of � in an efficient manner. Anytime Repairing A*
(ARA*, Likhachev, Gordon, and Thrun 2003b) is an
anytime algorithm similar to weighted A*, but rather than
having a fixed value of �, it starts with a large � and it
decreases it while reusing previous search results. In
Figure 6 we introduce ARAE*, which extends ARA* to
use equivalence classes. The procedure ImprovePath() is
very similar to � optimal A* with equivalence classes,
except for the differences highlighted. Like ARA*,
ARAE* uses local inconsistencies to propagate
improvements in the solution in an efficient manner.
ARAE* uses three mutually exclusive lists: OPEN,
CLOSED and INCONS. OPEN contains all the states that
have never been expanded within the current iteration of
ImprovePath. These states have been discovered for the
first time within the current search iteration or had their g-

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
dt = 5

dt = 1
grid = 1

po
si

tio
n,

 m
et

er
s

10 15 20 25

16

18

20

22

24

26

28

30

32

34

36

Figure 4. Comparison of A* with equivalence classes in (x,y,θ) for a car-
like robot with v=1, ρnin=10 and Δt=1 s (dots) and Δt=5 s (circles) as well
as A* in (x,y) with a 1-meter grid (squares). The robot starts in the lower
left corner, heading east. Light gray areas are low cost, dark dray areas
are higher cost and green areas are non-traversable. Notice the smaller
steps and smaller heading changes for Δt=1. For Δt=5 steps and heading
changes are larger, but the path is still continuous.

63

values decreased within the current search iteration-.
CLOSED contains all states that have been expanded
within the current iteration of ImprovePath and whose g-
values have not decreased after their last expansion.
INCONS contains all the states that have been expanded
within the current search iteration and whose g-values did
decrease after the expansion (lines 22, 26 and 31)

The main difference between ARA* and weighted A* is
the use of the INCONS list. ARA* postpones the expansion
of any inconsistent states until the next iteration of
ImprovePath. By doing this ARA* prevents states from
expanding more than once during each iteration, which
usually produces a faster initial solution. In ARAE* we
generalize this idea to equivalence classes by using an �-
inflated f value for states s’ with lower g value than snearest
if snearest has already been expanded in the current iteration
(line 25). The termination condition of ImprovePath() is
also different from that of weighted A*. Since the goal
node may not become inconsistent, ARAE* terminates
when the f value of sgoal is equal to the minimum f value of
the states in the OPEN list.

 The main loop calls ImprovePath repeatedly, decreasing
� between calls. Before each call to ImprovePath, the states
in INCONS are added to the OPEN list. Then the OPEN
list is re-ordered using the new � (line 10). Unlike ARA*,
ARAE* differentiates dominated and non-dominated states
by only inflating the heuristics of the dominated states in

fvalue(s). Also notice that states that had a lower g value
than snearest when snearest had already been expanded will
change their priority to that of non-dominated states,
therefore no longer discouraging their expansion.

01 g(sstart) = 0; OPEN = � ; CLOSED = �
02 insert sstart into OPEN with f(sstart) = h(sstart)
03 while sgoal is not expanded
04 remove s with the smallest f value from OPEN
05 CLOSED =CLOSED {s}
06 for each succesor s’ of s
07 if (s’ hasn’t been generated) OR
08 (g(s) + c(s,s’) < g(s’))
09 g(s’) = g(s) + c(s,s’)
10 snearest = Nearest(NOTDOM, s’)
11 if (snearest = { � })
12 NOTDOM = NOTDOM {s’}
13 insert s’ into OPEN with f(s’) = g(s’) + h(s’)
14 else if g(s’) < g(snearest)
15 remove snearest from NOTDOM
16 NOTDOM = NOTDOM {s’}
17 if snearest � OPEN
18 remove snearest from OPEN
19 insert snearest into OPEN with
20 f(snearest) = g(snearest) + �·h(snearest)
21 insert s’ into OPEN with f(s’) = g(s’) + h(s’)
22 else // g(s’) g(snearest)
23 if (s’ � snearest)
24 insert s’ into OPEN with f(s’) = g(s’) + ��·h(s’)
25 else
26 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

Figure 5. Algorithm 2: �-optimal A* with equivalence classes. Lines
in gray are functionally equivalent to the previous algorithm, while
lines in black are unique to this algorithm.

Procedure fvalue(s)

01 if s � NOTDOM
02 return g(s) + ��·h(s)
03 else
04 return g(s) + h(s)

Procedure: ImprovePath()

01 CLOSED = � ; INCONS = �
02 while () min (())

goal
s OPEN

fvalue s fvalue s
�

�
03 remove s with the smallest fvalue(s) from OPEN
04 CLOSED =CLOSED {s}
05 for each succesor s’ of s
06 snearest = Nearest(NOTDOM, s’)
07 if (s’ hasn’t been generated) OR (g(s) + c(s,s’) < g(s’))
08 g(s’) = g(s) + c(s,s’)
09 if (snearest ={� })
10 NOTDOM = NOTDOM {s’}
11 insert s’ into OPEN with f(s’) = g(s’) + h(s’)
12 else if (g(s’) < g(snearest))
13 remove snearest from NOTDOM
14 NOTDOM = NOTDOM {s’}
15 if snearest � CLOSED
16 if (snearest in OPEN)
17 re-insert snearest into OPEN with
18 f(snearest) = g(snearest) + �·h(snearest)
19 if (s’� CLOSED)
20 insert s’ into OPEN with
21 f(s’) = g(s’) + h(s’)
22 else INCONS =INCONS {s’}
23 else //snearest was CLOSED
24 if (s’ � CLOSED)
25 insert s’ into OPEN with f(s’) = g(s’) + �·h(s’)
26 else INCONS =INCONS {s’}
27 else // g(s’) >= g(snearest)
28 if (s’ � CLOSED)
29 insert s’ into OPEN with f(s’) = fvalue(s’)
30 else //s’ was CLOSED
31 INCONS =INCONS {s’}

Procedure: Main()

01 g(sstart) = 0; OPEN = �
02 NOTDOM = �
03 insert sstart into OPEN with f(sstart) = h(sstart)
04 improvePath()
05 ' (, () / (() ()))

goal s OPEN INCONS
min g s min g s h s� �

� �
� �

06 publish current '� -suboptimal solution
07 while '� > 1
08 decrease �
09 OPEN= OPEN INCONS
10 update priorities for all s � OPEN according to fvalue(s)
11 ImprovePath()
12 ' (, () / (() ()))

goal s OPEN INCONS
min g s min g s h s� �

� �
� �

13 publish current '� suboptimal solution

Figure 6. Algorithm 3: ARA* with equivalence classes

64

ARAE* then updates the suboptimality bound ' after
each iteration of ImprovePath according to

()

' ,
(() ())

goal

s OPEN INCONS

g s
min

min g s h s
� �

� �

� �
� � ��� �

 (4)

which is the minimum between � and the ratio between
the best solution found so far and the best uninflated f
value in the nodes that have yet to be expanded (OPEN
INCONS) (Hansen and Zhou 2007; Zhou and Hansen
2002).

For non-holonomic motion planning in (x,y,�) we have
found that in most scenarios the initial solution found is
within 10% of the optimal solution. However, there are
cases where the difference can be arbitrarily large. Figure 7
shows one scenario in which the solution found by ARAE*
is significantly better than the one found by AE*. Because
ARAE* is not limited to the equivalence classes it is able
to find a solution that could only be found using a much
smaller equivalence class. Figure 8 shows the difference in
cost between both solutions.

Case Study: Non-holonomic Global Planning
in Large Outdoor Environments

One of the most relevant applications of search-based
planning using equivalence classes is long range non-
holonomic global planning. Typically, global planning for

large, outdoor environments is performed using a 2D
planner that is unable to model the kinematic constraints of
the vehicle. This planner is usually coupled with a local
planner that does model the kinematic constraints of the
vehicle and that ensures that the paths the vehicle drives
are safe. While this approach performs well in many
scenarios, it often fails in complex terrain due to the large
disparity between the local and global planners. In order to
improve autonomous navigation in outdoor environments,
it is therefore important to have more complex global
planners that are able to model more of the kinematic
constraints of the vehicle while still being fast enough to be
updated regularly.

Lattice-based planners are some of the few existing
approaches that are able to plan long feasible global routes
in a timely manner. Their main drawback is that they need
to convert the desired action set into an action set that
always starts and ends on a node in the grid. This
requirement increases the design complexity of the
planners and artificially restricts the action set in ways that
introduce artifacts in the resulting paths.

ARAE* is a promising alternative since it is not limited
by a grid. The action set selection becomes much simpler,
and no artifacts are introduced by making the actions
terminate in grid nodes.

 Experimental Setup
In order to evaluate the suitability of this approach for
long-range planning in outdoor environments we
performed 400 simulations in simulated environments,
assuming a forward moving robot with minimum turning
radius of 10 m. The following describes the experimental
setup and its results.
Action Set
The action set used was the one described by equation (3),
with min� =10m, v =1 and t = 3.14, plus a straight
segment with v =1 and t = 1. The size of the
equivalence class was set to the maximum allowed by this
action set, xy� = 1 m and �� = 18 degrees. The action set
is the same for all headings, as can be seen in Figure 9.

Figure 9. Action set used for experiment (red) and rotated versions for all
possible angles given the action set (blue)

LR LR

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 7. Left: comparison between A* with equivalence classes (circles)
and ARA* with equivalence classes (dots) for a more extreme scenario.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

x 10
4

0

2

4

6

8

10

12

expansions

bo
un

d

suboptimality factor

theoretical bound (�')

Figure 8. ARAE* showing the error bound '� (dashed line) and the
actual suboptimality factor (solid line). The first solution found by
ARAE* is the same solution found by AE*. The final solution is better by
a large margin.

AE*

ARAE*

65

Simulated Worlds
We created fractal worlds that resemble outdoor
environments with sizes from 100x100 to 1000x1000
meters, at 1 m resolution. Ten different random seeds were
used for each world size. For each world, we ran four
experiments, each with a different initial heading for the
robot. Figure 10 shows one of the simulated worlds with
the paths found at different initial headings plus the 2D
path found by A* on the grid (for reference). The non-
holonomic paths for the selected headings (-90 and 180
degrees) don’t match the 2D path for more than 300
meters, and would have caused a significant mismatch
between a 2D global planner and the local planner.

Heuristic
We used the cost-to-goal calculated by a 2-D grid search as
the heuristic for the 3-D planner. This heuristic provides an
improvement in performance of at least two orders of
magnitude compared to the Euclidean distance,
independently of which 3-D planner is used.

For our planner, the choice of heuristic also influences
the space requirements and the bounds reported. States in
the planner are allocated when they are generated, and as
such the space requirements of the planner vary greatly
with the number of states generated. At least two orders of
magnitude fewer states are generated when using the 2-D
cost heuristic compared to the Euclidean distance.

The bounds reported by our planner are affected by the
heuristic in two ways. The bound from equation (4) is the
minimum between � and the ratio between the best
solution found so far and the best uninflated f value in the
nodes that have yet to be expanded. Since a more informed
heuristic has a higher f value for these nodes, the bound
found is a tighter one. Furthermore, since a more informed
heuristic expands fewer nodes, it is possible to decrease
further the value of � for a given time or space allowance.

Results
The following figures summarize the results obtained after
running the simulations for the different worlds and initial
headings. The computing hardware used was an Intel
Core2 Duo CPU 2.5GHz, with 4GB of memory, without
parallelization or hyperthreading for the planner.

The planner was allowed up to 2.5 seconds to refine a
solution, allowing extra time if a solution was not found by
that time. Figure 11 (top) shows the planning time until the
first solution was found, and the error bounds for that
solution. Planning times were on average much smaller
than one second for worlds up to 600x600, and about one
second for worlds up to 1000x1000 (less than 2 seconds
95% of the time). The error bounds for smaller worlds are
on average less than 10% (1.10), but can be as high as 40%
(1.40). For larger worlds the initial error bound is on
average less than 2% (1.02), and it is less than 10% (1.10)
95% of the time.

Figure 11 (bottom) shows the planning time until the
last solution allowed within the allocated time. Planning
times are on average about 1 second, and less than 2.5
seconds 95% of the time. The error bounds have been
significantly reduced for the smaller worlds, with the
average errors bound at about 2% (1.02) and the 95%
confidence interval around 5% (1.05). Planning times do
not include the time required to calculate the heuristic for
the first time, as this time is a one-time cost at the
beginning of a mission and the heuristic can be quickly
repaired during the mission using D*Lite (Koenig and
Likhachev 2002).

position, meters

po
si

tio
n,

 m
et

er
s

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

position, meters

po
si

tio
n,

 m
et

er
s

50 100 150 200 250 300

100

150

200

250

300

350

Figure 10. Top: Fractal world used to test long-range planning. Black
squares (a) are 2D path (holonomic), yellow circles (b) and cyan dots (c)
are the non-holonomic 3-D paths found for initial headings of -90 and 180
degrees respectively. Bottom: detail of previous figure near start location.
Notice how different the holonomic and non-holonomic paths are for the
selected headings.

(b)

(a)

(c)

(b)

(a)

(c)

66

Conclusions and Future Work
We have presented a novel approach to search-based

planning that improves upon grid-based planners by using
equivalence classes to find an initial solution, but instead
of pruning states that fall within an equivalence class and
have higher cost, it uses an inflated heuristic to lower the
priority of these states in the search. In further iterations,
the algorithm uses ARA* to reduce the inflated heuristic in
a principled way. This allows us to provide fast solutions
with provable suboptimality bounds that can be improved
as time allows. The proposed approach produces smooth
paths with the resolution dictated by the action set. Finer
action sets produce higher resolution paths that are more
computationally intensive to calculate and coarser action
sets produce lower resolution paths that are faster to
compute. To the best of our knowledge, this is the first
algorithm that is able to plan in continuous state-spaces
with provable guarantees on suboptimality for a given
action set

The experimental results show that at least for long
range non-holonomic path planning this approach is
promising. It produces high quality feasible paths for

worlds up to 1000x1000 meters in less than 2 seconds. The
error bound on these paths is well under 5%, and it is often
as low as 1 or 2%. We still have to perform field
experiments to evaluate how planning times and error
bounds are affected by position errors and noisy sensor
data, and to evaluate the impact of the non-holonomic
global planner on mission performance.

We would like to explore the applicability of this
approach to other domains as well. Since the state space is
not explicitly instantiated, this approach may be useful for
higher dimensional planning when only a few of the
dimensions are relevant

Acknowledgements
This work was supported by the U.S. Army Research
Laboratory under the Robotics Collaborative Technology
Alliance program, Cooperative Agreement W911NF-10-2-
0016. The views and conclusions contained in this
document do not represent the official policies or
endorsements of the U.S. Government.

References
Barraquand, J. & Latombe, J. 1993. Nonholonomic Multibody Mobile
Robots: Controllability and Motion Planning in the Presence of Obstacles.
Algorithmica, 10 (2-4) , 121-155.
Gonzalez, J. & Stentz, A. 2009. Using linear landmarks for path planning
with uncertainty in outdoor environments. Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on, , 1203 -1210.
Hansen, E. A. & Zhou, R. 2007. Anytime heuristic search. Journal of
Artificial Intelligence Research (JAIR), 28 , 267-297.
Karaman, S. & Frazzoli, E. 2010. Incremental Sampling-based
Algorithms for Optimal Motion Planning. Proceedings of Robotics:
Science and Systems.
Kavraki, L. E.; Svestka, P.; Kavraki, L. E.; Latombe, J. & Overmars, M.
H. 1996. Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces. IEEE Transactions on Robotics and Automation,
12 , 566-580.
Koenig, S. & Likhachev, M. 2002. D*lite. Eighteenth national conference
on Artificial intelligence, American Association for Artificial Intelligence,
476-483.
LaValle, S. 1998. Rapidly-exploring random trees: A new tool for path
planning. TR 98-11, Computer Science Dept., Iowa State University.
Likhachev, M. & Ferguson, D. 2009. Planning Long Dynamically
Feasible Maneuvers for Autonomous Vehicles. Int. J. Rob. Res., Sage
Publications, Inc., 28 , 933-945.
Likhachev, M.; Gordon, G. & Thrun, S. 2003. ARA*: Formal Analysis.
Tech. Rep. CMU-. CS-03-148, Carnegie Mellon University, Pittsburgh,
PA.
Likhachev, M.; Gordon, G. & Thrun, S. 2003. ARA*: Anytime A* with
provable bounds on sub-optimality. Advances in Neural Information
Processing Systems (NIPS).
Pivtoraiko, M. & Kelly, A. 2005. Generating Near-Minimal Spanning
Control Sets for Constrained Motion Planning in Discrete State Spaces.
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3231-3237.
Zhou, R. & Hansen, E. A. 2002. Multiple sequence alignment using
anytime A*. Eighteenth national conference on Artificial intelligence,
American Association for Artificial Intelligence, 975-976.

0 200 400 600 800 1000 1200
0

1

2

3

world size

pl
an

ni
ng

 t
im

e

0 200 400 600 800 1000 1200
1

1.1

1.2

1.3

1.4

world size

�'

0 200 400 600 800 1000 1200
0

1

2

3

world size

pl
an

ni
ng

 t
im

e

0 200 400 600 800 1000 1200
1

1.05

1.1

1.15

world size

�'

Figure 11. Planning time and error bound for the first solution found(top
two images) and last solution found (bottom two images). Squares
indicate mean value, with bars for 95% confidence intervals. “x” indicate
the actual results for each run.

67

