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Abstract 

Search-based planning is widely used for mobile robot 
motion planning because of its guarantees of optimality and 
completeness. In continuous state-spaces, however, most 
existing approaches have significant limitations in terms of 
optimality and completeness because of the underlying grid 
used. We propose an approach that eliminates the 
dependency on grids by using more general equivalence 
classes to quickly find an initial solution and instead of 
pruning states that fall within an equivalence class and have 
higher cost, we use an inflated heuristic to lower the priority 
of these states in the search. In further iterations, we reduce 
the inflated heuristic in a principled way, thus providing fast 
solutions with provable suboptimality bounds that can be 
improved as time allows.  The proposed approach produces 
smooth paths with the resolution dictated by the action set. 
Finer action sets produce higher resolution paths that are 
more computationally intensive to calculate and coarser 
action sets produce lower resolution paths that are faster to 
compute. To the best of our knowledge, this is the first 
algorithm that is able to plan in continuous state-spaces with 
provable guarantees on completeness and bounds on 
suboptimality for a given action set. Experimental results on 
3D (x,y,�) path planning show that, on average, this 
approach is able to find paths in less than two seconds that 
are within 2% of the optimal path cost in worlds of up to 
1000x1000 m with a minimum step size of one meter.   

Introduction   
Search-based planning is widely used for mobile robot 
motion planning because of its guarantees of optimality 
and completeness. In continuous state-spaces, however, 
most existing approaches have significant limitations in 
terms of optimality and completeness. Existing approaches 
to search-based planning in continuous state-spaces 
generally belong to two categories: grid-based planners 
and lattice-based planners. Grid-based planners for 
planning in continuous state-spaces were first introduced 
by Barraquand and Latombe (Barraquand and Latombe 
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1993). Their approach uses a fixed-cell decomposition that 
defines implicit grid-like equivalence classes. States are 
generated as part of an A* search driven by a forward 
simulation through an action set. States that fall within 
cells with states that have already been expanded 
(CLOSED) are pruned. This approach produces high-
quality paths and is relatively fast. However, it can prune 
states that are needed to find optimal solutions in 
constrained environments, as can be seen in Figure 1.  

Lattice-based planners (Pivtoraiko and Kelly 2005; 

 
Figure 1. Comparison of grid-based planning (top left), lattice-based 
planning (top right) and our approach (bottom).  Dashed transitions with 
cross at the end correspond to pruned transitions. In grid-based planning, 
states that are within an existing equivalence class and have higher cost 
are pruned. In lattice-based planning the action set is modified to always 
land on the center of grid locations. Our approach overcomes both 
limitations and plans with provable guarantees on suboptimality, allowing 
the path to the goal to be found independently of the characteristics of the 
equivalence classes  
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Likhachev and Ferguson 2009) use state lattices, a 
discretization of the configuration space into a set of states 
that represent configurations and connections between 
these states, and where every connection represents a 
feasible path. They guarantee feasibility of the paths while 
allowing search-based planning on the resulting graph. The 
main drawback of lattice-based planners is that they need 
to convert the desired action set into an action set that 
always starts and ends on a node in the grid. This 
requirement increases the design complexity of the 
planners and artificially restricts the paths to go through a 
series of specific points. Figure 1 also shows an example 
where the constraints in the location of the path points 
prevents the planner from finding a solution. In this 
example, in order to find a path to the goal using a lattice-
based planner, a higher resolution would be needed for the 
lattice since the obstacles in the world are not aligned  with 
the cell centers. 

Sampling-based planners (Kavraki et al 1996; LaValle 
1998) use forward search in continuous coordinates and are 
able to find smooth paths in high-dimensional spaces 
without the need for an underlying grid. Sampling based 
approaches are probabilistic-complete, but usually produce 
highly suboptimal paths that require post-processing to 
find locally-optimal solutions, and cannot optimize 
continuous cost functions. RRT* (Karaman and Frazzoli 
2010) is a unique variant of sampling-based planners that 
reconnects vertices within a d-dimensional ball whose 
radius shrinks as the search progresses. RRT* guarantees 
asymptotic optimality, but does not provide any 
deterministic suboptimality bounds if the search terminates 
before finding an optimal path. 

We propose an approach that improves upon grid-based 
planners by using equivalence classes to find an initial 
solution, but instead of pruning states that fall within an 
equivalence class and have higher cost, we use an inflated 
heuristic to lower the priority of these states in the search. 
In further iterations, we use ARA* (Likhachev, Gordon, 
and Thrun 2003b) to reduce the inflated heuristic in a 
principled way. This allows us to provide fast solutions 
with provable suboptimality bounds that can be improved 
as time allows.  The proposed approach produces smooth 
paths with the resolution dictated by the action set. Finer 
action sets produce higher resolution paths that are more 
computationally intensive to calculate and coarser action 
sets produce lower resolution paths that are faster to 
compute.  To the best of our knowledge, this is the first 
algorithm that is able to plan in continuous state-spaces 
with provable guarantees on suboptimality for a given 
action set. 

Experimental results on 3D (x,y,�) path planning show 
that, on average, this approach is able to find paths in less 
than two seconds that are within 2% of the optimal path 

cost in worlds of up to 1000x1000 m with a minimum step 
size of 1m.   

Outline 
To simplify the presentation we present three variants of 
the algorithm in order of complexity. The first one, A* 
with equivalence classes, prunes higher-cost states that are 
already represented in an equivalence class (equivalence-
class state dominance). It is somewhat similar to the 
Barraquand-Latombe approach, although it does not use 
the grid to define equivalence classes. This version does 
not have explicit guarantees on suboptimality bounds. The 
second version, �-optimal A* with equivalence classes, 
does not prune states and instead uses an inflated heuristic 
� >1 to penalize dominated states. This algorithm is 
guaranteed to find a solution that is within �  of the optimal 
solution for the given action set. The final version, 
Anytime Repairing A* with equivalence classes, combines 
the previous two versions in an anytime fashion to quickly 
obtain an initial solution with large � and then reduces � 
while reusing previous results in order to achieve the 
minimum � possible within the time and space available. 
The solution found is also guaranteed to be within � of the 
optimal solution for the given action set. 

Anytime Repairing A* with Equivalence 
Classes 

A* with Equivalence Classes – AE* 
In order to plan paths that don’t depend on a grid, we use a 
dynamically generated graph created by applying an action 
set to each state expanded. As in regular A*, we use two 
lists, OPEN and CLOSED. The OPEN list contains states 
that are candidates for expansion, ordered by their  f value 
f(s) = g(s) + h(s), where g(s) is the accumulated cost from 
the start, and h(s) is an admissible heuristic that 
underestimates the cost to the goal. The CLOSED list 
contains states that have already been expanded. The nodes 
of the graph are made up of the states belonging to the 
OPEN and CLOSED lists together, and the edges are 
created as nodes are generated.  
 Initially sstart is placed in the OPEN  list (Figure 2, line 
02) with f(sstart) = h(sstart). The state with the lowest f value 
is popped off the OPEN list, put in the CLOSED list, and 
expanded, with its successors s’ generated and determined 
by the action set (lines 04 to 06). A state s’ can lie 
anywhere in the state space (as determined by the action 
set) and therefore it is not discretized. We calculate the 
cost to transition from s to s’ and update g(s’) if the state s’ 
has not been generated before or if its g value can be 
improved (lines 07 to 09). Then, out of all the states in the 
graph G that we have constructed so far, we look for the 
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nearest neighbor snearest within the equivalence class of s’ 
according to a given distance function D(s,s’). 

 We define the equivalence relationship between two 
states as  
 ~ ' ( , ')s s D s s �� �  (1) 
where D is the same distance function used to evaluate the 
nearest neighbor, and δ defines the size of the equivalence 
class. If there are no neighbors within the same 
equivalence class, then s’ is considered a new state and it’s 
placed in the OPEN list with f(s’) = g(s’) + h(s’) (lines 11 
and 12). If there is a neighbor within the same equivalence 
class, then s’ is only added to the open list (and to the 
graph) if its g value is lower than that of the nearest 
neighbor (lines 13 to 16). Figure 3 illustrates this process. 
Every time a state is placed in the OPEN list, backpointers 
representing connecting edges to its parent are also stored 
with it. Lines 03 to 16 are repeated until a state in the same 
equivalence class as the goal state is expanded or until the 
OPEN list is empty. The size of the equivalence class 
together with the action set determines the resolution of the 
solution. Smaller equivalence classes achieve higher 
resolution at the expense of computation time and space. 
The upper bound on the size of the equivalence class is 
determined by the action set since the successors of a node 

need to belong to a separate equivalence class than its 
parent 
 ( , ').D s s� �  (2) 

Equivalence classes affect the quality of the solution in 
an indirect way (Gonzalez and Stentz 2009). Within an 
equivalence class states are dominated based on their g 
value (total cost from the start). If there is a state with a 
higher g value within the same equivalence class that 
would be needed to achieve a better solution later in the 
search, then this state would be pruned, and the better 
solution would not be achieved. The likelihood of this 
event depends on the topology of the problem and the size 
of the equivalence class. As the equivalence class gets 
smaller, this is less likely to occur and in the limit (if the 
size of the equivalence class is zero), it will never happen. 
In practice we usually set the size of the equivalence 
classes at the upper bound determined by the action set, as 
the resulting paths are of high quality and this reduces 
planning time. 

For example, if we are planning paths in {x,y,θ}  for a 
car-like robot moving forward with velocity v and 
minimum turning radius �min (Dubins car), the action set U 
in { ,v � } is 
 	 
min minU  ,0,/ /v vv t � �� � � �  (3) 
where Δt is the time step in the action set. The longitudinal 
motion determines the maximum size of the equivalence 
class in xy (δxy = v t�  ) and the heading change determines 
the maximum size of the equivalence class in θ 
( min/v t�� �� �  ). For a given speed and turning radius, 
increasing Δt increases the size of the equivalence class 
and produces a coarser solution in (x,y, θ). However, since 
the successors are generated based on a feasible action set 
and there is no quantization, the resulting path is always 
continuous in all variables.  

Figure 4 shows the resulting paths for v = 1m/s and Δt = 
1s and Δt = 5s, as well as a path using A* on a grid in xy. 
For Δt =1, each motion on the xy plane is 1 meter long, and 
the maximum change of heading in the action set 
corresponds to approximately 6 degrees. For Δt = 5s, each 
motion on the xy plane is 5 meters long, and the maximum 
change in heading in the action set is 30 degrees. Although 
a quantization in heading is not imposed, the action set 
selected effectively limits the possible angles to multiples 
of 6 degrees for Δt = 1s and to multiples of 30 degrees for 
Δt = 5s. The xy values are not quantized by the action set 
selected.   

This approach is similar to the approach proposed by 
Barraquand and Latombe, but it uses a more general 
definition of equivalence classes. Where their approach 
was defined for grid-like equivalence classes, the approach 
presented here is not restricted in the shape of the 
equivalence class. Like the Barranquand-Latombe 
approach, this approach lacks completeness guarantees and 

01 g(sstart) = 0; OPEN = �  ; CLOSED = �  
02 insert sstart  into OPEN with f(sstart) = h(sstart) 
03 while sgoal is not expanded  
04  remove s with the smallest f value from OPEN 
05  CLOSED =CLOSED {s} 
06  for each succesor s’ of s 
07   if ( s’ hasn’t been generated ) OR 
08     (g(s) + c(s,s’) < g(s’)) 
09    g(s’) = g(s) + c(s,s’)  
10    snearest=Nearest(OPEN  CLOSED, s’) 
11    if  (snearest = { � }) 
12     insert s’ into OPEN with f(s’) = g(s’) + h(s’) 
13    else if  g(s’) < g(snearest)  
14      if snearest � OPEN  
15        remove snearest from OPEN 
16      insert s’ into OPEN with f(s’) = g(s’) + h(s’)               

Figure 2. Algorithm 1: A* with equivalence classes 

 
Figure 3. Using equivalence classes, states are allowed to lie where the 
action set dictates. The solid gray circles show the equivalence classes for 
θ = 0o, and dashed circles show the equivalence classes for other angles. 
The red “x” shows a state that is dominated (pruned) because it is within 
an existing equivalence class and has a higher g value. 
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provable suboptimality bounds, as it prunes states within 
equivalence classes that could be necessary later on in the 
search.  

��-optimal A* with Equivalence Classes  
Equivalence class state-dominance can prune states that are 
necessary to achieve truly optimal paths. In order to obtain 
provable suboptimality bounds and to allow the solution to 
be improved beyond the limits of the equivalence class 
defined, we modify it as follows. 
 Instead of pruning states that are dominated within the 
equivalence class, we put them in the OPEN list with an 
inflated heuristic such that f(s) = g(s) + �·h(s), with �
This is similar to implementing A* with a weighted 
heuristic, but only the dominated nodes are weighted. 
Figure 5 shows the modified algorithm, highlighting the 
changes that implement the inflated heuristic. Since the 
heuristic is at most � times the admissible heuristic h(s), 
the solution will be at most � times the optimal solution 
(Likhachev, Gordon, and Thrun 2003a). With large � the 
solution is the same as that found with algorithm 1. With 
smaller � more states will be considered in the solution, 
overcoming the limitations imposed by the equivalence 
classes but also requiring more time and space.  

In order to implement weighted A* with equivalence 
classes, a number of additional changes are required. We 
create a new list NOTDOM to contain all the non-
dominated states generated so far. Each non-dominated 
state defines an equivalence class, and has lower g value 
than any other states within the same equivalence class. As 
such, in line 10, we only check for the nearest neighbor 
within NOTDOM. We maintain this list by adding new 
states that don’t have a non-dominated state nearby (line 
12) and by checking each generated state against its nearest 
non-dominated neighbor. If a successor s’ has a lower g 
value than the nearest non-dominated neighbor within its 
equivalence class, then the nearest neighbor is removed 

from NOTDOM and s’ inserted instead (lines 15 and 16). If 
snearest was in the OPEN list, then its f value changed to that 
of dominated states (lines 19 and 20).  If a successor s’  has 
a greater or equal g value than snearest  then  s’  is put in the 
OPEN  list as a dominated state (line 24), unless, s’  is 
equal to snearest. If s’  is equal to snearest. then s’  is non-
dominated and its g value  was updated to a better value in 
line 09. In such case, s’ is put in the OPEN  list as a non-
dominated state (line 26). 

Theorem: If there exists a finite-cost path for the 
given action set, then the algorithm is guaranteed to 
terminate and to return a path whose cost is no more 
than � times the cost of the least-cost path for the given 
action set. 

We prove termination by contradiction. Let us consider 
a least-cost path from sstart to s, and in particular the state s' 
on it that has never been expanded and is closest to sstart. s' 
was generated and inserted into OPEN with a finite 
priority. Given a finite set of actions for each state and 
strictly positive costs, there is only a finite number of states 
whose g values will be smaller than any finite g value 
including the g value of s'. Thus, s' must have been 
selected for expansion, which is a contradiction. 

According to the theoretical analysis of weighted A* 
(Likhachev, Gordon, and Thrun 2003a), inflating h values 
of states with �� �  1 guarantees that whenever a state s is 
expanded, the cost of the found path from sstart to s is 
bounded from above by the g value of s, which in turn is 
no more than � times the cost of an optimal path from sstart 
to s. This means that the cost of the path returned by our 
algorithm is no more than � times the cost of a least-cost 
path. 

Anytime Repairing  A* with Equivalence Classes  
Since different environments have very different values of 
� that can be solved in a given amount of time and space, it 
is desirable to have an approach that explores different 
values of � in an efficient manner. Anytime Repairing A* 
(ARA*, Likhachev, Gordon, and Thrun 2003b) is an 
anytime algorithm similar to weighted A*, but rather than 
having a fixed value of �, it starts with a large � and it 
decreases it while reusing previous search results. In 
Figure 6 we introduce ARAE*, which extends ARA* to 
use equivalence classes. The procedure ImprovePath() is 
very similar to � optimal A* with equivalence classes, 
except for the differences highlighted. Like ARA*, 
ARAE* uses local inconsistencies to propagate 
improvements in the solution in an efficient manner. 
ARAE* uses three mutually exclusive lists: OPEN, 
CLOSED and INCONS. OPEN contains all the states that 
have never been expanded within the current iteration of 
ImprovePath. These states have been discovered for the 
first time within the current search iteration or had their g-
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Figure 4. Comparison of A* with equivalence classes in (x,y,θ) for a car-
like robot with v=1, ρnin=10 and  Δt=1 s (dots) and Δt=5 s (circles) as well 
as A* in (x,y) with a 1-meter grid (squares). The robot starts in the lower 
left corner, heading east.  Light gray areas are low cost, dark dray areas 
are higher cost and green areas are non-traversable. Notice the smaller 
steps and smaller heading changes for Δt=1. For Δt=5 steps and heading 
changes are larger, but the path is still continuous.  
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values decreased within the current search iteration-. 
CLOSED contains all states that have been expanded 
within the current iteration of ImprovePath and whose g-
values have not decreased after their last expansion. 
INCONS contains all the states that have been expanded 
within the current search iteration and whose g-values did 
decrease after the expansion (lines 22, 26 and 31) 

The main difference between ARA* and weighted A* is 
the use of the INCONS list. ARA* postpones the expansion 
of any inconsistent states until the next iteration of 
ImprovePath. By doing this ARA* prevents states from 
expanding more than once during each iteration, which 
usually produces a faster initial solution. In ARAE* we 
generalize this idea to equivalence classes by using an �-
inflated f value for states s’ with lower g value than snearest 
if snearest  has already been expanded in the current iteration 
(line 25).  The termination condition of ImprovePath() is 
also different from that of weighted A*. Since the goal 
node may not become inconsistent, ARAE* terminates 
when the f value of sgoal  is equal to the minimum f value of 
the states in the OPEN list. 

 The main loop calls ImprovePath repeatedly, decreasing 
� between calls. Before each call to ImprovePath, the states 
in INCONS are added to the OPEN list. Then the OPEN 
list is re-ordered using the new � (line 10). Unlike ARA*, 
ARAE* differentiates dominated and non-dominated states 
by only inflating the heuristics of the dominated states in 

fvalue(s). Also notice that states that had a lower g value 
than snearest when snearest had already been expanded will 
change their priority to that of non-dominated states, 
therefore no longer discouraging their expansion.  

01 g(sstart) = 0; OPEN = � ; CLOSED = �  
02 insert sstart  into OPEN with f(sstart) = h(sstart) 
03 while sgoal is not expanded  
04  remove s with the smallest f value from OPEN 
05  CLOSED =CLOSED  {s} 
06  for each succesor s’ of s 
07   if ( s’ hasn’t been generated ) OR 
08     (g(s) + c(s,s’) < g(s’)) 
09        g(s’) = g(s) + c(s,s’) 
10    snearest = Nearest(NOTDOM, s’)  
11    if  (snearest = { � }) 
12           NOTDOM = NOTDOM   {s’} 
13     insert s’ into OPEN with f(s’) = g(s’) + h(s’) 
14      else if  g(s’) < g(snearest)    
15     remove snearest from NOTDOM 
16     NOTDOM = NOTDOM   {s’}  
17         if snearest   �  OPEN  
18          remove snearest from OPEN 
19            insert snearest  into OPEN with  
20                f(snearest) = g(snearest) + �·h(snearest) 
21        insert s’ into OPEN with f(s’) = g(s’) + h(s’) 
22        else // g(s’)  g(snearest)  
23     if ( s’ �  snearest) 
24            insert s’ into OPEN with f(s’) = g(s’) + ��·h(s’) 
25      else 
26            insert s’ into OPEN with f(s’) = g(s’) + h(s’) 

Figure 5. Algorithm 2: �-optimal A* with equivalence classes. Lines 
in gray are functionally equivalent to the previous algorithm, while 
lines in black are unique to this algorithm. 

Procedure fvalue(s) 

01 if s �  NOTDOM 
02  return g(s) + ��·h(s) 
03 else 
04  return g(s) + h(s) 

Procedure: ImprovePath() 

01 CLOSED = � ; INCONS = �  
02 while ( ) min ( ( ))

goal
s OPEN

fvalue s fvalue s
�

�  
03  remove s with the smallest fvalue(s) from OPEN 
04  CLOSED =CLOSED  {s} 
05  for each succesor s’ of s 
06   snearest = Nearest(NOTDOM, s’)  
07   if ( s’ hasn’t been generated ) OR (g(s) + c(s,s’) < g(s’)) 
08    g(s’) = g(s) + c(s,s’)  
09         if  (snearest ={� })  
10              NOTDOM = NOTDOM  {s’} 
11        insert s’  into OPEN  with  f(s’) = g(s’) + h(s’) 
12    else if  (g(s’) < g(snearest))   
13       remove snearest from NOTDOM 
14     NOTDOM = NOTDOM   {s’}  
15     if snearest �  CLOSED   
16      if (snearest  in OPEN) 
17       re-insert snearest  into OPEN  with 
18         f(snearest) = g(snearest) + �·h(snearest) 
19               if (s’�  CLOSED) 
20       insert s’  into OPEN  with 
21         f(s’) = g(s’) + h(s’) 
22      else INCONS =INCONS  {s’} 
23     else //snearest  was CLOSED  
24      if (s’ �  CLOSED) 
25       insert s’  into OPEN  with  f(s’) = g(s’) + �·h(s’) 
26      else INCONS =INCONS  {s’}  
27    else // g(s’) >= g(snearest)  
28     if (s’ �  CLOSED) 
29        insert s’  into OPEN  with f(s’) = fvalue(s’) 
30       else //s’ was CLOSED 
31                 INCONS =INCONS  {s’}  

Procedure: Main() 

01 g(sstart) = 0; OPEN = �  
02 NOTDOM = �  
03 insert sstart  into OPEN with f(sstart) = h(sstart) 
04 improvePath() 
05 ' ( , ( ) / ( ( ) ( )))

goal s OPEN INCONS
min g s min g s h s� �

� �
� �  

06 publish current '� -suboptimal solution 
07 while '�  > 1  
08  decrease �  
09    OPEN= OPEN  INCONS 
10   update priorities for all s �  OPEN according to fvalue(s) 
11   ImprovePath() 
12  ' ( , ( ) / ( ( ) ( )))

goal s OPEN INCONS
min g s min g s h s� �

� �
� �  

13  publish current '� suboptimal solution 

Figure 6. Algorithm 3: ARA* with equivalence classes 
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ARAE* then updates the suboptimality bound ' after 
each iteration of ImprovePath according to  

 
( )

' ,
( ( ) ( ))

goal

s OPEN INCONS

g s
min

min g s h s
� �

� �

� �
� � ��� �

 (4) 

which is the minimum between �  and the ratio between 
the best solution found so far and the best uninflated f 
value in the nodes that have yet to be expanded (OPEN  
INCONS) (Hansen and Zhou 2007; Zhou and Hansen 
2002). 

For non-holonomic motion planning in (x,y,�) we have 
found that in most scenarios the initial solution found is 
within 10% of the optimal solution. However, there are 
cases where the difference can be arbitrarily large. Figure 7 
shows one scenario in which the solution found by ARAE* 
is significantly better than the one found by AE*. Because 
ARAE* is not limited to the equivalence classes it is able 
to find a solution that could only be found using a much 
smaller equivalence class. Figure 8 shows the difference in 
cost between both solutions. 

Case Study: Non-holonomic Global Planning 
in Large Outdoor Environments 

One of the most relevant applications of search-based 
planning using equivalence classes is long range non-
holonomic global planning. Typically, global planning for 

large, outdoor environments is performed using a 2D 
planner that is unable to model the kinematic constraints of 
the vehicle. This planner is usually coupled with a local 
planner that does model the kinematic constraints of the 
vehicle and that ensures that the paths the vehicle drives 
are safe. While this approach performs well in many 
scenarios, it often fails in complex terrain due to the large 
disparity between the local and global planners. In order to 
improve autonomous navigation in outdoor environments, 
it is therefore important to have more complex global 
planners that are able to model more of the kinematic 
constraints of the vehicle while still being fast enough to be 
updated regularly.  

Lattice-based planners are some of the few existing 
approaches that are able to plan long feasible global routes 
in a timely manner. Their main drawback is that they need 
to convert the desired action set into an action set that 
always starts and ends on a node in the grid. This 
requirement increases the design complexity of the 
planners and artificially restricts the action set in ways that 
introduce artifacts in the resulting paths. 

ARAE* is a promising alternative since it is not limited 
by a grid. The action set selection becomes much simpler, 
and no artifacts are introduced by making the actions 
terminate in grid nodes. 

 Experimental Setup 
In order to evaluate the suitability of this approach for 
long-range planning in outdoor environments we 
performed 400 simulations in simulated environments, 
assuming a forward moving robot with minimum turning 
radius of 10 m. The following describes the experimental 
setup and its results. 
Action Set 
The action set used was the one described by equation (3), 
with  min� =10m, v =1 and t  = 3.14, plus a straight 
segment  with v =1 and t  = 1. The size of the 
equivalence class was set to the maximum allowed by this 
action set, xy�  = 1 m and ��  = 18 degrees. The action set 
is the same for all headings, as can be seen in Figure 9. 

 
 

 
Figure 9. Action set used for experiment (red) and rotated versions for all 
possible angles given the action set (blue) 
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Figure 7. Left: comparison between A* with equivalence classes (circles) 
and ARA* with equivalence classes (dots) for a more extreme scenario.  
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Figure 8. ARAE* showing the error bound '� (dashed line) and the 
actual suboptimality factor (solid line). The first solution found by 
ARAE* is the same solution found by AE*. The final solution is better by 
a large margin. 
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Simulated Worlds 
We created fractal worlds that resemble outdoor 
environments with sizes from 100x100 to 1000x1000 
meters, at 1 m resolution. Ten different random seeds were 
used for each world size.  For each world, we ran four 
experiments, each with a different initial heading for the 
robot. Figure 10 shows one of the simulated worlds with 
the paths found at different initial headings plus the 2D 
path found by A* on the grid (for reference).  The non-
holonomic paths for the selected headings (-90 and 180 
degrees) don’t match the 2D path for more than 300 
meters, and would have caused a significant mismatch 
between a 2D global planner and the local planner.  

Heuristic 
We used the cost-to-goal calculated by a 2-D grid search as 
the heuristic for the 3-D planner. This heuristic provides an 
improvement in performance of at least two orders of 
magnitude compared to the Euclidean distance, 
independently of which 3-D planner is used.  

For our planner, the choice of heuristic also influences 
the space requirements and the bounds reported. States in 
the planner are allocated when they are generated, and as 
such the space requirements of the planner vary greatly 
with the number of states generated. At least two orders of 
magnitude fewer states are generated when using the 2-D 
cost heuristic compared to the Euclidean distance.  

The bounds reported by our planner are affected by the 
heuristic in two ways. The bound from equation (4) is the 
minimum between �  and the ratio between the best 
solution found so far and the best uninflated f value in the 
nodes that have yet to be expanded. Since a more informed 
heuristic has a higher f value for these nodes, the bound 
found is a tighter one. Furthermore, since a more informed 
heuristic expands fewer nodes, it is possible to decrease 
further the value of �  for a given time or space allowance.  

Results 
The following figures summarize the results obtained after 
running the simulations for the different worlds and initial 
headings. The computing hardware used was an Intel 
Core2 Duo CPU 2.5GHz, with 4GB of memory, without 
parallelization or hyperthreading for the planner. 

The planner was allowed up to 2.5 seconds to refine a 
solution, allowing extra time if a solution was not found by 
that time. Figure 11 (top) shows the planning time until the 
first solution was found, and the error bounds for that 
solution. Planning times were on average much smaller 
than one second for worlds up to 600x600, and about one 
second for worlds up to 1000x1000 (less than 2 seconds 
95% of the time). The error bounds for smaller worlds are 
on average less than 10% (1.10), but can be as high as 40% 
(1.40). For larger worlds the initial error bound is on 
average less than 2% (1.02), and it is less than 10% (1.10)  
95% of the time.  

Figure 11 (bottom) shows the planning time until the 
last solution allowed within the allocated time. Planning 
times are on average about 1 second, and less than 2.5 
seconds 95% of the time. The error bounds have been 
significantly reduced for the smaller worlds, with the 
average errors bound at about 2% (1.02) and the 95% 
confidence interval around 5% (1.05). Planning times do 
not include the time required to calculate the heuristic for 
the first time, as this time is a one-time cost at the 
beginning of a mission and the heuristic can be quickly 
repaired during the mission using D*Lite (Koenig and 
Likhachev 2002).  
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Figure 10. Top: Fractal world used to test long-range planning. Black 
squares (a) are 2D path (holonomic), yellow circles (b) and cyan dots (c) 
are the non-holonomic 3-D paths found for initial headings of -90 and 180 
degrees respectively. Bottom: detail of previous figure near start location. 
Notice how different the holonomic and non-holonomic paths are for the 
selected headings. 
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Conclusions and Future Work 
We have presented a novel approach to search-based 

planning that improves upon grid-based planners by   using 
equivalence classes to find an initial solution, but instead 
of pruning states that fall within an equivalence class and 
have higher cost, it uses an inflated heuristic to lower the 
priority of these states in the search. In further iterations, 
the algorithm uses ARA* to reduce the inflated heuristic in 
a principled way. This allows us to provide fast solutions 
with provable suboptimality bounds that can be improved 
as time allows.  The proposed approach produces smooth 
paths with the resolution dictated by the action set. Finer 
action sets produce higher resolution paths that are more 
computationally intensive to calculate and coarser action 
sets produce lower resolution paths that are faster to 
compute.  To the best of our knowledge, this is the first 
algorithm that is able to plan in continuous state-spaces 
with provable guarantees on suboptimality for a given 
action set 

The experimental results show that at least for long 
range non-holonomic path planning this approach is 
promising. It produces high quality feasible paths for 

worlds up to 1000x1000 meters in less than 2 seconds. The 
error bound on these paths is well under 5%, and it is often 
as low as 1 or 2%. We still have to perform field 
experiments to evaluate how planning times and error 
bounds are affected by position errors and noisy sensor 
data, and to evaluate the impact of the non-holonomic 
global planner on mission performance. 

We would like to explore the applicability of this 
approach to other domains as well. Since the state space is 
not explicitly instantiated, this approach may be useful for 
higher dimensional planning when only a few of the 
dimensions are relevant 
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Figure 11. Planning time and error bound for the first solution found(top 
two images) and last solution found (bottom two images).  Squares 
indicate mean value, with bars for 95% confidence intervals. “x” indicate 
the actual results for each run. 
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