
A Theoretical Framework for Studying Random Walk Planning

Hootan Nakhost
University of Alberta, Edmonton, Canada

nakhost@ualberta.ca

Martin Müller
University of Alberta, Edmonton, Canada

mmueller@ualberta.ca

Abstract

Random walks are a relatively new component used in several
state of the art satisficing planners. Empirical results have
been mixed: while the approach clearly outperforms more
systematic search methods such as weighted A* on many
planning domains, it fails in many others. So far, the explana-
tions for these empirical results have been somewhat ad hoc.
This paper proposes a formal framework for comparing the
performance of random walk and systematic search methods.
Fair homogenous graphs are proposed as a graph class that
represents characteristics of the state space of prototypical
planning domains, and is simple enough to allow a theoretical
analysis of the performance of both random walk and system-
atic search algorithms. This gives well-founded insights into
the relative strength and weaknesses of these approaches. The
close relation of the models to some well-known planning do-
mains is shown through simplified but semi-realistic planning
domains that fulfill the constraints of the models.
One main result is that in contrast to systematic search meth-
ods, for which the branching factor plays a decisive role, the
performance of random walk methods is determined to a large
degree by the Regress Factor, the ratio between the probabil-
ities of progressing towards and regressing away from a goal
with an action. The performance of random walk and sys-
tematic search methods can be compared by considering both
branching and regress factors of a state space.

Random Walks in Planning
Random walks, which are paths through a search space
that follow successive randomized state transitions, are a
main building block of prominent search algorithms such
as Stochastic Local Search techniques for SAT (Selman,
Levesque, and Mitchell 1992; Pham et al. 2008) and Monte
Carlo Tree Search in game playing and puzzle solving
(Gelly and Silver 2008; Finnsson and Björnsson 2008;
Cazenave 2009).

Inspired by these methods, several recent satisficing plan-
ners also utilize random walk (RW) techniques. Identi-
dem (Coles, Fox, and Smith 2007) performs a hill climbing
search that uses random walks to escape from plateaus or
saddle points. All visited states are evaluated using a heuris-
tic function. Random walks are biased towards states with

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lower heuristic value. Roamer (Lu et al. 2011) enhances its
best-first search (BFS) with random walks, aiming to escape
from search plateaus where the heuristic is uninformative.

Arvand (Nakhost and Müller 2009) takes a more radical
approach: it relies exclusively on a set of random walks to
determine the next state in its local search. For efficiency, it
only evaluates the endpoints of those random walks. Arvand
also learns to bias its random walks towards more promising
actions over time, by using the techniques of Monte Carlo
Deadlock Avoidance (MDA) and Monte Carlo with Helpful
Actions (MHA). In (Nakhost, Hoffmann, and Müller 2012),
the local search of Arvand2 is enhanced by the technique of
Smart Restarts, and applied to solving Resource Constrained
Planning (RCP) problems. The hybrid Arvand-LS system
(Xie, Nakhost, and Müller 2012) combines random walks
with a local greedy best first search.

Compared to all other tested planners, Arvand2 performs
much better in RCP problems (Nakhost, Hoffmann, and
Müller 2012), which test the ability of planners in utilizing
scarce resources. In IPC domains, RW-based planners tend
to excel on domains with many paths to the goal. For ex-
ample, scaling studies in (Xie, Nakhost, and Müller 2012)
show that RW planners can solve much larger problem in-
stances than other state of the art planners in the domains of
Transport, Elevators, Openstacks, and Visitall. However, the
planners perform poorly in Sokoban, Parking, and Barman,
puzzles with a small solution density in the search space.

While the success of RW methods in related research ar-
eas such as SAT and Monte Carlo Tree Search serves as a
good general motivation for trying them in planning, it does
not provide an explanation for why RW planners perform
well. Previous work has highlighted three main advantages
of random walks for planning:

• Random walks are more effective than systematic search
approaches for escaping from regions where heuris-
tics provide no guidance (Coles, Fox, and Smith 2007;
Nakhost and Müller 2009; Lu et al. 2011).

• Increased sampling of the search space by random walks
adds a beneficial exploration component to balance the
exploitation of the heuristic in planners (Nakhost and
Müller 2009).

• Combined with proper restarting mechanisms, random
walks can avoid most of the time wasted by systematic

57

Proceedings of the Fifth Annual Symposium on Combinatorial Search

search in dead ends. Through restarts, random walks can
rapidly back out of unpromising search regions (Coles,
Fox, and Smith 2007; Nakhost, Hoffmann, and Müller
2012).

These explanations are intuitively appealing, and give a
qualitative explanation for the observed behavior on plan-
ning benchmarks such as IPC and IPC-2011-LARGE (Xie,
Nakhost, and Müller 2012). Typically, random walk plan-
ners are evaluated by measuring their coverage, runtime, or
plan quality in such benchmarks.

Studying Random Walk Methods
There are many feasible approaches for gaining a deeper un-
derstanding of these methods.

• Scaling studies, as in Xie et al. (2012).
• Algorithms combining RW with other search methods, as

in (Lu et al. 2011; Valenzano et al. 2011).
• Experiments on small finite instances where it is possible

to “measure everything” and compare the choices made
by different search algorithms.

• Direct measurements of the benefits of RW, such as faster
escape from plateaus of the heuristic.

• A theoretical analysis of how RW and other search algo-
rithms behave on idealized classes of planning problems
which are amenable to such analysis.

The current paper pursues the latter approach. The main
goal is a careful theoretical investigation of the first advan-
tage claimed above - the question of how RW manage to
escape from plateaus faster than other planning algorithms.

A First Motivating Example
As an example, consider the following well-known plateau
for the FF heuristic, hFF , discussed in (Helmert 2004). Re-
call that hFF estimates the goal distance by solving a re-
laxed planning problem in which all the negative effects of
actions are ignored. Consider a transportation domain in
which trucks are used to move packages between n loca-
tions connected in a single chain c1, · · · , cn. The goal is
to move one package from cn to c1. Figure 1 shows the
results of a basic scaling experiment on this domain with
n = 10 locations, varying the number of trucks T from 1 to
20. All trucks start at c2. The results compare basic Monte
Carlo Random Walks (MRW) from Arvand-2011 and basic
Greedy Best First Search (GBFS) from LAMA-2011. Fig-
ure 1 shows how the runtime of GBFS grows quickly with
the number of trucks T until it exceeds the memory limit of
64 GB. This is expected since the effective branching factor
grows with T . However, the increasing branching factor has
only little effect on MRW: the runtime grows only linearly
with T .

Choice of Basic Search Algorithms
All the examples in this paper use state of the art imple-
mentations of basic, unenhanced search methods. GBFS as
implemented in LAMA-2011 represents systematic search
methods, and the MRW implementation of Arvand-2011

represents random walk methods. Both programs use hFF

for their evaluation. All other enhancements such as pre-
ferred operators in LAMA and Arvand, multi-heuristic
search in LAMA, and MHA in Arvand are switched off.

The reasons for selecting this setup are: 1. A focus on
theoretical models that can explain the substantially differ-
ent behavior of random walk and systematic search methods.
Using simple search methods allows a close alignment of
experiments with theoretical results. 2. Enhancements may
benefit both methods in different ways, or be only applica-
ble to one method, so may confuse the picture. 3. A main
goal here is to understand the behavior of these two search
paradigms in regions where there is a lack of guiding infor-
mation, such as plateaus. Therefore, in some examples even
a blind heuristic is used. While enhancements can certainly
have a great influence on search parameters such as branch-
ing factor, regress factor, and search depth, the fundamental
differences in search behavior will likely persist across such
variations.

Contributions of this Paper
Regress factor and goal distance for random walks: The
key property introduced to analyze random walks is the
regress factor rf , the ratio of two probabilities: progress-
ing towards a goal and regressing away from it. Besides rf ,
the other key variable affecting the average runtime of ba-
sic random walks on a graph is the largest goal distance D
in the whole graph, which appears in the exponent of the
expected runtime.

Homogenous graph model: In the homogenous graph
model, the regress factor of a node depends only on its goal
distance. Theorem 3 shows that the runtime of RW mainly
depends on rf . As an example, the state space of Gripper is
close to a homogenous graph.

Bounds for other graphs: Theorem 4 extends the the-
ory to compute upper bounds on the hitting time for graphs
which are not homogeneous, but for which bounds on the
progress and regress chances are known.

Strongly homogenous graph model: In strongly ho-
mogenous graphs, almost all nodes share the same rf . The-
orem 5 explains how rf and D affect the hitting time. A
transport example is used for illustration.

Model for Restarting Random Walks: For large values
ofD, restarting random walks (RRW) can offer a substantial
performance advantage. At each search step, with probabil-
ity r a RRW restarts from a fixed initial state s. Theorem 6
proves that the expected runtime of RRW depends only on
the goal distance of s, not on D.

Background and Notation
Notation follows standard references such as (Norris 1998).
Throughout the paper the notation P (e) denotes the proba-
bility of an event e occuring, G = (V,E) is a directed graph,
and u, v ∈ V are vertices.

Definition 1 (Markov Chain). The discrete-time random
process X0, . . . , XN defined over a set of states S is
Markov(S,P) iff P (Xn = jn|Xn−1 = jn−1, . . . , X0 = j0) =
P (Xn = jn|Xn−1 = jn−1). The matrix P(pij) where pij =

58

Figure 1: Average runtime of GBFS and MRW varying the
number of trucks (x-axis) in Transport domain. Missing data
means memory limit exceeded.

P (Xn = jn|Xn−1 = in−1) are the transition probabilities
of the chain. In time-homogenous Markov chains as used in
this paper, P does not depend on n.

Definition 2 (Distance dG). dG(u, v) is the length of a short-
est path from u to v in G. The distance dG(v) of a single
vertex v is the length of a longest shortest path from a node
in G to v: dG(v) = maxx∈V dG(x, v).

Definition 3 (Successors). The successors of u ∈ V is the
set of all vertices in distance 1 of u:
SG(u) = {v|v ∈ V ∧ dG(u, v) = 1}.

Definition 4 (Random Walk). A random walk on G is a
Markov chain Markov(V,P) where puv = 1

|SG(u)| if (u, v) ∈
E, and puv = 0 if (u, v) /∈ E.

The restarting random walk model used here is a random
walk which restarts from a fixed initial state swith probabil-
ity r at each step, and uniformly randomly chooses among
neighbour states with probability 1− r.

Definition 5 (Restarting Random Walk). Let s ∈ V be
the initial state, and r ∈ [0, 1]. A restarting random walk
RRW (G, s, r) is a Markov chain MG with states V and tran-
sition probabilities puv:

puv =

1− r
|SG(u)|

if (u, v) ∈ E, v 6= s

r +
1− r
|SG(u)|

if (u, v) ∈ E, v = s

0 if (u, v) /∈ E, v 6= s

r if (u, v) /∈ E, v = s

A RW is the special case of RRW with r = 0.

Definition 6 (Hitting Time). Let M = X0, X1, . . . , XN be
Markov(S,P), and u, v ∈ S. Let Huv = min{t ≥ 1 : Xt =
v ∧X0 = u}. Then the hitting time huv is the expected num-
ber of steps in a random walk on G starting from u which
reaches v for the first time: huv = E[Huv].

Definition 7 (Unit Progress Time). The unit progress time
uuv is the expected number of steps in a random walk after
reaching u for the first time until it first gets closer to v. Let
R = RRW (G, s, r). Let Uuv = min{t ≥ Hsu : dG(Xt, v) =
dG(u, v)− 1}. Then uuv = E[Uuv].

Definition 8 (Progress, Regress and Stalling Chance;
Regress Factor). Let X : V → V be a random variable
with the following probability mass function:

P (X(u) = v) =

1

|SG(u)|
if (u, v) ∈ E

0 if (u, v) /∈ E
(1)

Let Xu be short for X(u). The progress chance pc(u, v),
regress chance rc(u, v), and stalling chance sc(u, v) of u
regarding v, are respectively: the probabilities of getting
closer, further away, or staying at the same distance to v
after one random step at u.

pc(u, v) = P (dG(Xu, v) = dG(u, v)− 1)

rc(u, v) = P (dG(Xu, v) = dG(u, v) + 1)

sc(u, v) = P (dG(Xu, v) = dG(u, v))

In a Markov Chain, the probability transitions play a key
role in determining the hitting time. In all the models consid-
ered here, the movement in the chain corresponds to moving
between different goal distances. Therefore it is natural to
choose progress and regress chances as the main properties.
The regress factor of u regarding v is rf(u, v) = rc(u,v)

pc(u,v)
if

pc(u, v) 6= 0, and undefined otherwise.

Theorem 1. (Norris 1998) Let M be Markov(V,P). Then
for all u, v ∈ V , huv = 1 +

∑
x∈V puxhxv.

Theorem 2. Let s ∈ V , D = dG(u, v), R = RRW (G, s, r),
Vd = {x : x ∈ V ∧ dG(x, v) = d}, and Pd(x) be the proba-
bility of x being the first node in Vd reached by R. Then the
hitting time huv =

∑D
d=1

∑
x∈Vd

Pd(x)uxv.

Proof. Let Huv and Xd be two random variables respec-
tively denoting the length of a RRW that starts from u and
ends in v for the first time, and the first vertex x ∈ Vd reached
by R. Then

Huv =

D∑
d=1

∑
x∈Vd

1{Xd}(x)Uxv (2)

where Uxv is a random variable measuring the length of the
fragment of the walk starting from x and ending in a smaller
goal distance for the first time, and 1{Xd}(x) is an indicator
random variable which returns 1 if Xd = x and 0 if Xd 6= x.
Since random variables x and Uxv are independent,

E[Huv] =

D∑
d=1

∑
x∈Vd

E[1{Xd}(x)]E[Uxv]

huv =

D∑
d=1

∑
x∈Vd

Pd(x)uxv

59

Heuristic Functions, Plateaus, Exit Points and Exit
Time
What is the connection between the models introduced here
and plateaus in planning? Using the notation of (Hoos and
Stützle 2004), let the heuristic value h(u) of vertex u be the
estimated length of a shortest path from u to a goal vertex v.
A plateau P ⊆ V is a connected subset of states which share
the same heuristic value hP . A state s is an exit point of P if
s ∈ SG(p) for some p ∈ P , and h(s) < hP . The exit time of a
random walk on a plateau P is the expected number of steps
in the random walk until it first reaches an exit point. The
problem of finding an exit point in a plateau is equivalent to
the problem of finding a goal in the graph consisting of P
plus all its exit points, where the exit points are goal states.
The expected exit time from the plateau equals the hitting
time of this problem.

Fair Homogenous Graphs
A fair homogeneous (FH) graph G is the main state space
model introduced here. Homogenuity means that both
progress and regress chances are constant for all nodes at
the same goal distance. Fairness means that an action can
change the goal distance by at most one.

Definition 9 (Homogenous Graph). For v ∈ V , G is v-
homogeneous iff there exist two real functions pcG(x, d) and
rcG(x, d), mapping V × {0, 1, . . . , dG(v)} to the range [0, 1],
such that for any two vertices u, x ∈ V with dG(u, v) =
dG(x, v) the following two conditions hold:

1. If dG(u, v) 6= 0, then
pcG(u, v) = pcG(x, v) = pcG(v, dG(u, v)).

2. rcG(u, v) = rcG(x, v) = rcG(v, dG(u, v)).

G is homogeneous iff it is v-homogeneous for all v ∈ V .
pcG(x, d) and rcG(x, d) are called progress chance and
regress chance of G regarding x. The regress factor of G
regarding x is defined by rfG(x, d) = rcG(x, d)/pcG(x, d).

Definition 10 (Fair Graph). G is fair for v ∈ V iff for all
u ∈ V , pc(u, v) + rc(u, v) + sc(u, v) = 1. G is fair if it is fair
for all v ∈ V .

Lemma 1. Let G = (V,E) be FH and v ∈ V . Then for all
x ∈ V , hxv depends only on the goal distance d = dG(x, v),
not on the specific choice of x, so hxv = hd.

Proof. This lemma holds for both RW and RRW. The proof
for RRW is omitted for lack of space. Let pd = pcG(v, d),
qd = rcG(v, d), cd = scG(v, d), D = dG(v), and Vd = {x :
x ∈ V ∧ dG(x, v) = d}. The first of two proof steps shows
that for all x ∈ Vd, uxv = ud.

Let Ix(d) be the number of times a random walk start-
ing from x ∈ Vd visits a state with goal distance d be-
fore first reaching the goal distance d − 1, and let Jx(d)
be the number of steps between two consecutive such vis-
its. Then, uxv = E[Ix(d) × Jx(d) + 1]. Claim: both
Ix(d) and Jx(d) are independent of the specific choice of
x ∈ Vd, so Ix(d) = I(d) and Jx(d) = J(d). This implies
uxv = E[Ix(d)×Jx(d)+1] = E[I(d)×J(d)+1] independent
of the choice of x, so uxv = ud.

First, the progress chance for all x ∈ Vd is pd, therefore
E[Ix(d)] = 1

pd
= I(d), the expected value of a geometric

distribution with the success probability pd.
Second, E[Jx(d)] = J(d) and therefore uxv = ud are

shown by downward induction for d = D, · · · , 1. For the
base case d = D, since the random walk can only stall
between visits, E[Jx(D)] = J(D) = 1. Now assume the
claims about J and u hold for d + 1, so for all x′ ∈ Vd+1,
E[Jx′(d+1)] = J(d+1) and ux′ = ud+1. Call the last step at
distance d, before progressing to d − 1, a successful d-visit,
and all previous visits, which do not immediately proceed to
d − 1, unsuccessful d-visits. After an unsuccessful d-visit, a
random walk starting at any x ∈ Vd stalls at distance d with
probability cd, and transitions to a node with distance d + 1
with probability qd, after which it reaches distance d again
after an expected ud+1 steps. Therefore,

E[Jx(d)] =
(cd + qd(ud+1 + 1))

1− pd
= J(d)

independent of x. As the second proof step, the lemma now
follows from Theorem 2:

hxv =

dG(x,v)∑
d=1

∑
k∈Vd

Pd(k)ukv =

dG(x,v)∑
d=1

ud = hd (3)

Theorem 3. Let G = (V,E) be FH, v ∈ V , pi = pcG(v, i),
qi = rcG(v, i), and dG(v) = D. Then for all x ∈ V ,

hxv =

dG(x,v)∑
d=1

βD D−1∏
i=d

λi +

D−1∑
j=d

(
βj

j−1∏
i=d

λi

)
where for all 1 ≤ d ≤ D, λd =

qd
pd

, and βd = 1
pd

.

Proof. According to Lemma 1 and Theorem 1,

h0 = 0

hd = pdhd−1 + qdhd+1 + cdhd + 1 (0 < d < D)

hD = pDhD−1 + (1− pD)hD + 1

Let ud = hd − hd−1, then

ud = λdud+1 + βd (0 < d < D)

uD = βD

By induction on d, for d < D

ud = βD

D−1∏
i=d

λi +

D−1∑
j=d

(
βj

j−1∏
i=d

λi

)
(4)

This is trivial for d = D − 1. Assume that Equation 4 holds

60

Robot Gripper pc rc rf b
A full 1

2
1
2

1 1
A empty |A|

|A|+1
1

|A|+1
1

|A| |A|
B full 1

2
1
2

1 1
B empty 1

|B|+1
|B|
|B|+1

|B| |B|

Table 1: Random walks in One-handed Gripper. |A| and |B|
denote the number of balls in A and B.

for d+ 1. Then by Equation 3 for hxv,

ud = λd

βD D−1∏
i=d+1

λi +

D−1∑
j=d+1

(
βj

j−1∏
i=d+1

λi

)+ βd

= βD

D−1∏
i=d

λi + λd

D−1∑
j=d+1

(
βj

j−1∏
i=d+1

λi

)
+ βd

= βD

D−1∏
i=d

λi +

D−1∑
j=d+1

(
βj

j−1∏
i=d

λi

)
+ βd

d−1∏
i=d

λi

= βD

D−1∏
i=d

λi +

D−1∑
j=d

(
βj

j−1∏
i=d

λi

)

hxv =

dG(x,v)∑
d=1

βD D−1∏
i=d

λi +

D−1∑
j=d

(
βj

j−1∏
i=d

λi

)

The largest goal distance D and the regress factors λi =
qi/pi are the main determining factors for the expected run-
time of random walks in homogenous graphs.

Example domain: One-handed Gripper

Consider a one-handed gripper domain, where a robot must
move n balls from room A to B by using the actions of pick-
ing up a ball, dropping its single ball, or moving to the other
room. The highly symmetrical search space is FH. The goal
distance determines the distribution of balls in the rooms as
well as robot location and gripper status as shown in Table
1. The graph is fair since no action changes the goal dis-
tance by more than one. The expected hitting time is given
by Theorem 3.

Figure 2 plots the predictions of Theorem 3 together with
the results of a scaling experiment, varying n for both ran-
dom walks and greedy best first search. To simulate the be-
haviour of both algorithms in plateaus with a lack of heuris-
tic guidance, a blind heuristic is used which returns 0 for the
goal and 1 otherwise. Search stops at a state with a heuristic
value lower than that of the initial state. Because of the blind
heuristic, the only such state is the goal state. The prediction
matches the experimental results extremely well. Random
walks outperform greedy best first search. The regress fac-
tor rf never exceeds b, and is significantly smaller in states
with the robot atA and an empty gripper - almost one quarter
of all states.

Figure 2: The average number of generated states varying
the number of balls (x-axis) in Gripper domain.

Biased Action Selection for Random Walks
Regress factors can be changed by biasing the action selec-
tion in the random walk. It seems natural to first select an
action type uniformly randomly, then ground the chosen ac-
tion. In gripper, this means choosing among the balls in the
same room in case of the pick up action.

With this biased selection, the search space becomes fair
homogenous with q = p = 1

2
. The experimental results and

theoretical prediction for such walks are included in Figure
2. The hitting time grows only linearly with n. It is interest-
ing that this natural way of biasing random walks is able to
exploit the symmetry inherent in the gripper domain.

Extension to Bounds for Other Graphs
While many planning problems cannot be exactly modelled
as FH graphs, these models can still be used to obtain up-
per bounds on the hitting time in any fair graph G which
models a plateau. Consider a corresponding FH graph G′

with progress and regress chances at each goal distance d re-
spectively set to the minimum and maximum progress and
regress chances over all nodes at goal distance d in G. Then
the hitting times forG′ will be an upper bound for the hitting
times in G. In G′, progressing towards the goal is at most as
probable as in G.

Theorem 4. Let G = (V,E) be a directed graph, s, v ∈ V ,
R = RRW (G, s, r), and D = dG(v). Let pmin(d) and
qmax(d) be the minimum progress and maximum regress
chance among all nodes at distance d of v. Let G′ =
(V ′, E′) be an FH graph, v′, s′ ∈ V ′, dG′(v′) = D, R′ =
RRW (G′, s′, r), pcG′(v′, d) = pmin(d), rcG′(d) = qmax(d),
and scG′(d) = 1 − pmin(d) − qmax(d). Then the hitting time
of R′, hs′v′ , is a lower bound for the hitting time of R, hsv,
i.e., hsv ≤ h′s′v′ if dG(s, v) = dG′(s

′, v′).

Proof. Again, for space reasons only the case r = 0 is
shown. Let Vd = {x|x ∈ V ∧ dG(x, v) = d}, and assume
for all x ∈ Vd, uxv ≤ u′d where u′d is the unit progress time at

61

distance d of v′. According to Theorem 2,

hsv =

dG(s,v)∑
d=1

∑
k∈Vd

Pd(x)ukv ≤
dG′ (s

′,v′)∑
d=1

u′d ≤ h′d

To prove uxv ≤ u′d by induction, assume for all x′ ∈ Vd+1,
ux′v ≤ u′d+1. Then uxv ≤ qx(ud+1+uIv)+(1−px−qx)uJv+1,
where I and J are random variables defined over Vd, and px
and qx denote the progress and regress chances of x. Let
m = argmaxi∈Vd

(uiv). Then,

umv ≤ qm(u′d+1 + umv) + (1− pm − qm)umv + 1

umv ≤ qm
pm

u′d+1 +
1

pm
≤ qmax(d)

pmin(d)
ud+1 +

1

pmin(d)
≤ u′d

Analogously, for the base case d = D, for all x ∈ VD

umv ≤ 1

pm
≤ 1

pmin(d)
≤ u′d

Fair Strongly Homogeneous Graphs
A fair strongly homogenous (FSH) graph G is a FH graph in
which pc and rc are constant for all nodes. FSH graphs are
simpler to study and suffice to explain the main properties
of FH graphs. Therefore, this model is used to discuss key
issues such as dependency of the hitting time on largest goal
distance D and the regress factors.
Definition 11 (Strongly Homogeneous Graph). Given v ∈
V , G is strongly v-homogeneous iff there exist two real func-
tions pcG(x) and rcG(x) with domain V and range [0, 1] such
that for any vertex u ∈ V the following two conditions hold:

1. If u 6= v then pc(u, v) = pcG(v).
2. If d(u, v) < dG(v) then rc(u, v) = rcG(v).
G is strongly homogeneous iff it is strongly v-homogeneous
for all v ∈ V . The functions pcG(x) and rcG(x) are respec-
tively called the progress and the regress chance of G re-
garding x. The regress factor of G regarding x is defined by
rfG(x) = rcG(x)/pcG(x).
Theorem 5. For u, v ∈ V , let p = pcG(v) 6= 0, q = rcG(v),
c = 1− p− q, D = dG(v), and d = dG(u, v). Then the hitting
time huv is:

huv =

β0
(
λD − λD−d

)
+ β1d if q 6= p

α0(d− d2) + α1Dd if q = p
(5)

where λ = q
p

, β0 = q

(p−q)2
, β1 = 1

p−q
, α0 = 1

2p
, α1 = 1

p
.

The proof follows directly from Theorem 3 above. When
q > p, the main determining factors in the hitting time are
the regress factors λ = q/p and D; the hitting time grows
exponentially with D and polynomially, with degree D, with
λ. As long as λ and D are fixed, changing other structural
parameters such as the branching factor b can only increase
the hitting time linearly. Note that also for q > p, it does not
matter how close the start state is to the goal. The hitting
time mainly depends on D, the largest goal distance in the
graph.

Analysis of the Transport Example
Theorem 5 helps explain the experimental results in Figure
1. In this example, the plateau consists of all the states en-
countered before loading the package onto one of the trucks.
Once the package is loaded, hFF can guide the search di-
rectly towards the goal. Therefore, the exit points of the
plateau are the states in which the package is loaded onto a
truck. Let m < n be the location of a most advanced truck in
the chain. For all non-exit states of the search space, q ≤ p
holds: there is always at least one action which progresses
towards a closest exit point - move a truck from cm to cm+1.
There is at most one action that regresses, in case m > 1
and there is only a single truck at cm which moves to cm−1,
thereby reducing m.

According to Theorem 4, setting q = p for all states yields
an upper bound on the hitting time, since increasing the
regress factor can only increase the hitting time. By Theo-
rem 5, −x2

2p
+(2D+1

2p
)x is an upper bound for the hitting time.

If the number of trucks is multiplied by a factor M , then p
will be divided by at most M , therefore the upper bound is
also multiplied by at mostM . The worst case runtime bound
grows only linearly with the number of trucks. In contrast,
systematic search methods suffer greatly from increasing the
number of vehicles, since this increases the effective branch-
ing factor b. The runtime of systematic search methods such
as greedy best first search, A* and IDA* typically grows as
bd when the heuristic is ineffective.

This effect can be observed in all planning problems
where increasing the number of objects of a specific type
does not change the regress factor. Examples are the ve-
hicles in transportation domains such as Rovers, Logistics,
Transport, and Zeno Travel, or agents which share similar
functionality but do not appear in the goal, such as the satel-
lites in the satellite domain. All of these domains contain
symmetries similar to the example above, where any one of
several vehicles or agents can be chosen to achieve the goal.
Other examples are “decoy” objects which can not be used
to reach the goal. Actions that affect only the state of such
objects do not change the goal distance, so increasing the
number of such objects has no effect on rf but can increase
b. Techniques such as plan space planning, backward chain-
ing planning, preferred operators, or explicitly detecting and
dealing with symmetries can often prune such actions.

Theorem 5 suggests that if q > p and the current state is
close to an exit point in the plateau, then systematic search is
more effective, since random walks move away from the exit
with high probability. This problematic behavior of RW can
be fixed to some degree by using restarting random walks.

Analysis of Restarting Random Walks
Theorem 6. Let G = (V,E) be a FSH graph, v ∈ V ,
p = pcG(v) and q = rcG(v). Let R = RRW (G, s, r) with
0 < r < 1. The hitting time hsv ∈ O

(
βλd−1

)
, where

λ =
(

q
p
+ r

p(1−r)
+ 1
)

, β = q+r
pr

and d = dG(s, v).

Proof. Let d = dG(s, v). According to Theorem 1 and

62

Lemma 1,

h0 = 0

hx = (1− r) (qhx+1 + phx−1 + chx + 1) + rhd

hD = (1− r) (phD−1 + (1− p)hD + 1) + rhd

(6)

Let ux = hx − hx−1, then for x < d,

ux = (1− r)(qux+1 + pux−1 + cux)

=
(1− r)q
1− c+ cr

ux+1 +
(1− r)p
1− c+ cr

ux−1

Since (1−r)q
1−c+cr

ux+1 ≥ 0 and c = 1− p− q,

ux ≤ (1− r)p
q(1− r) + p(1− r) + r

ux−1 ≤ λ−1ux−1

ux ≤ λd−xud

hx ≤
x∑

i=1

ui ≤ ud

x∑
i=1

λd−i ≤ λd−x(
λx − 1

λ− 1
)ud

The value ud is the progress time from the goal distance d.
Therefore,

ud = (1− r) (cud + q(1 + ud+1 + ud) + 1) + rud

Since R restarts from s with probability r, ud+1 ≤ 1
r
.

ud ≤ (r + (1− r)(1− p))ud + (
q

r
+ 1)(1− r)

≤ q + r

rp
≤ β

Furthermore,

hd = ud + hd−1 ≤ β + βλ(
λd−1 − 1

λ− 1
)

hd ∈ O
(
βλd−1

)
(7)

Therefore, by decreasing r, while λ decreases, β in-
creases. Since the upper bound increases polynomially (the
degree depends on d(s, v)) by λ and only linearly by β, to
keep the upper bound low a small value should be chosen
for r, especially when d(s, v) is large. The r-value which
minimizes the upper bound can be computed from Equation
7.

Comparing the values of λ in the hitting time of RW and
RRW, Equations 7 and 5, the base of the exponential term for
RRW exceeds the regress factor, the base of the exponential
term for RW, by r

p(1−r)
+ 1. For small r, this is close to 1.

The main advantage of RRW over simple random walks is
for small d(s, v), since the exponent of the exponential term
is reduced from D to d(s, v)− 1. Restarting is a bit wasteful
when d(s, v) is close to D.

A Grid Example
Figure 3 shows the results of RRW with restart rate r ∈
{0, 0.1, 0.01, 0.001} in a variant of the Grid domain with an
n × n grid and a robot that needs to pick up a key at loca-
tion (n, n), to unlock a door at (0, 0). The robot can only

Figure 3: The Average number of generated states varying
the goal distance of the starting state (x-axis) and the restart
rate in the Grid domain.

move left, up or down, except for the top row, where it is
also allowed to move right, but not up.

In this domain, all states before the robot picks up the key
share the same hFF value. Figure 3 shows the average num-
ber of states generated until this subgoal is reached, with the
robot starting from different goal distances plotted on the
x-axis. Since the regress factors are not uniform in this do-
main, Theorem 6 does not apply directly. Still, comparing
the results of RRW for different r > 0 with simple random
walks where r = 0, the experiment confirms the high-level
predictions of Theorem 6: RRW generates slightly more
states than simple random walks when the initial goal dis-
tance is large, d ≥ 14, and r is small enough. RRW is much
more efficient when d is small; for example it generates three
orders of magnitude fewer states for d = 2, r = 0.01.

Related Work
Random walks have been extensively studied in many dif-
ferent scientific fields including physics, finance and com-
puter networking (Gkantsidis, Mihail, and Saberi 2006;
Fama 1965; Qian, Nassif, and Sapatnekar 2003). Lin-
ear algebra approaches to discrete and continuous random
walks are well studied (Norris 1998; Aldous and Fill 2002;
Yin and Zhang 2005; Pardoux 2009). The current paper
mainly uses methods for finding the hitting time of sim-
ple chains such as birth–death, and gambler chains (Norris
1998). Such solutions can be expressed easily as functions
of chain features.

Properties of random walks on finite graphs have been
studied extensively (Lovász 1993). One of the most rele-
vant results is the O(n3) hitting time of a random walk in
an undirected graph with n nodes (Brightwell and Winkler
1990). However, this result does not explain the strong per-
formance of random walks in planning search spaces which
grow exponentially with the number of objects. Despite the
rich existing literature on random walks, the application to
the analysis of random walk planning seems to be novel.

63

Discussion and Future Work
Important open questions about the current work are how
well it models real planning problems such as IPC bench-
marks, and real planning algorithms.
Relation to full planning benchmarks: Can they be de-
scribed within these models in terms of bounds on their
regress factor? Can the models be extended to represent
the core difficulties involved in solving more planning do-
mains? What is the structure of plateaus within their state
spaces, and how do plateaus relate to the overall difficulty of
solving those instances? Instances with small state spaces
could be completely enumerated and such properties mea-
sured. For larger state spaces, can measurements of true
goal distances be approximated by heuristic evaluation, by
heuristics combined with local search, or by sampling?
Effect of search enhancements: To move from abstract,
idealized algorithms towards more realistic planning algo-
rithms, it would be interesting to study the whole spectrum
starting with the basic methods studied in this paper up to
state of the art planners, switching on improvements one by
one and studying their effects under both RW and systematic
search scenarios. For example, the RW enhancements MHA
and MDA (Nakhost and Müller 2009) should be studied.
Extension to non-fair graphs: Generalize Theorem 6 to
non-fair graphs, where an action can increase the goal dis-
tance by more than one. Such graphs can be used to model
planning problems with dead ends.
Hybrid methods: Develop theoretical models for methods
that combine random walks with using memory and system-
atic search such as (Lu et al. 2011; Xie, Nakhost, and Müller
2012).

References
Aldous, D., and Fill, J. 2002. Reversible Markov Chains
and Random Walks on Graphs. University of California,
Berkeley, Department of Statistics.
Brightwell, G., and Winkler, P. 1990. Maximum hitting time
for random walks on graphs. Random Struct. Algorithms
1:263–276.
Cazenave, T. 2009. Nested Monte-Carlo search. In IJCAI,
456–461.
Coles, A.; Fox, M.; and Smith, A. 2007. A new local-
search algorithm for forward-chaining planning. In Proc.
ICAPS’07, 89–96.
Fama, E. F. 1965. Random walks in stock-market prices.
Financial Analysts Journal 21:55–59.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to General Game Playing. In AAAI, 259–264.
Garcı́a-Olaya, A.; Jiménez, S.; and Linares López, C., eds.
2011. The 2011 International Planning Competition. Uni-
versidad Carlos III de Madrid.
Gelly, S., and Silver, D. 2008. Achieving master level play
in 9 x 9 computer Go. In AAAI, 1537–1540.
Gkantsidis, C.; Mihail, M.; and Saberi, A. 2006. Random
walks in peer-to-peer networks: algorithms and evaluation.
Perform. Eval. 63:241–263.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Hoos, H., and Stützle, T. 2004. Stochastic Local Search:
Foundations & Applications. Morgan Kaufmann.
Lovász, L. 1993. Random walks on graphs: A survey. Com-
binatorics, Paul Erdős is Eighty 2(1):1–46.
Lu, Q.; Xu, Y.; Huang, R.; and Chen, Y. 2011. The Roamer
planner random-walk assisted best-first search. In Garcı́a-
Olaya et al. (2011), 73–76.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In IJCAI, 1766–1771.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. Accepted for ICAPS.
Norris, J. R. 1998. Markov chains. Cambridge University
Press.
Pardoux, É. 2009. Markov processes and applications: al-
gorithms, networks, genome and finance. Wiley/Dunod.
Pham, D. N.; Thornton, J.; Gretton, C.; and Sattar, A. 2008.
Combining adaptive and dynamic local search for satisfia-
bility. JSAT 4(2-4):149–172.
Qian, H.; Nassif, S. R.; and Sapatnekar, S. S. 2003. Random
walks in a supply network. In 40th annual Design Automa-
tion Conference, 93–98.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new
method for solving hard satisfiability problems. In AAAI,
440–446.
Valenzano, R.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. 2011. ArvandHerd: Parallel planning with a
portfolio. In Garcı́a-Olaya et al. (2011), 113–116.
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning via
random walk-driven local search. Accepted for ICAPS.
Yin, G., and Zhang, Q. 2005. Discrete-time Markov chains:
two-time-scale methods and applications. Springer.

64

