Abstract

Optimal solutions for multi-agent pathfinding problems are often too expensive to compute. For this reason, suboptimal approaches have been widely studied in the literature. Specifically, in recent years a number of efficient suboptimal algorithms that are complete for certain subclasses have been proposed at highly-rated robotics and AI conferences, all mentioning that it is an open problem which subclasses of non-optimal multi-agent pathfinding are tractable. However, it turns out that this problem has already been completely solved in another research community in the 1980s by a constructive proof that provides a polynomial algorithm that is complete for the entire class of problems. In this paper, we would like to bring this earlier related work to the attention of the robotics and AI communities.

Introduction

Multi-agent pathfinding (MAPF) is an interesting problem which is relevant for many real-life applications like warehouse management, logistics or computer games.

A MAPF problem is given by a graph where each node either contains an agent or is unoccupied. An agent can move to an adjacent node if this node is unoccupied. The goal specification defines a goal node for each agent and the aim is to move all agents to their respective goal. There are two versions for this problem that have different optimization criteria: in the “sequential” variant we want to minimize the number of agent movements, whereas in the “parallel” version we would like to minimize the number of steps, where agents can move in parallel in each step if their destination nodes are unoccupied. Since in this work we are only interested in non-optimal approaches and we are not concerned with quality guarantees relative to the optimal solution cost, we do not need to distinguish these versions but refer only to MAPF problems in general.

Work in AI and Robotics

Most suboptimal MAPF techniques are incomplete decentralized methods. However, in recent years there have been several proposals of efficient suboptimal algorithms that are complete for certain subclasses of the problem.
the (cyclic) order of the agents is identical in the initial state and goal state, and one small special graph, which can be solved with a lookup table. From the proof given by Wilson it is possible to efficiently derive a solution for every solvable MAPF problem with \(n - 1 \) agents with \(\mathcal{O}(n^5) \) moves (Kornhauser 1984).

Kornhauser, Miller, and Spirakis (1984) modify Wilson’s proof for problems with one unoccupied node to derive solutions with fewer moves and present a polynomial-time algorithm that is complete for the full class of MAPF problems, allowing instances with fewer than \(n - 1 \) agents as well as separable (non-biconnected) graphs. For solvable problems with \(n \) nodes, their method generates a solution with \(\mathcal{O}(n^3) \) moves. They also show that this is in a certain sense tight, giving a class of problems requiring \(\mathcal{O}(n^3) \) moves.

Discussion

One reason why the work by Kornhauser, Miller, and Spirakis fell a bit into oblivion could be that the only archival publication is very sketchy and often refers to a “final version” which never appeared. However, all results are described in detail in Kornhauser’s master’s thesis, which is available as a technical report (Kornhauser 1984).

The details reveal that many recent findings and concepts have already been covered in these old papers. For example, Khorshid, Holte, and Sturtevant specify three conditions which are sufficient for a tree to be solvable for any configuration of agents. These are a special case of Kornhauser’s criteria when considering only trees, but Kornhauser gives a more precise analysis, specifying sufficient and necessary conditions (also considering the actual configuration).

The approach by Peasgood, Clark, and McPhee and the Push and Swap algorithm by Luna and Bekris rely on observations that were already contained in Kornhauser’s thesis. These algorithms can possibly be interpreted as instantiations of the general algorithm by Kornhauser for the case with at least two unoccupied nodes.

This somewhat cautious statement (“possibly”) highlights another reason why the work by Kornhauser, Miller, and Spirakis is not more widely known: the approach is not described in one place, and most of its parts are not described algorithmically. Therefore, the underlying algorithm must be derived from a number of proofs in the paper. This requires significant effort, and to the best of our knowledge the results of Kornhauser, Miller, and Spirakis have never been fully implemented, although there is an implementation for biconnected graphs by Surynek (2009b), who already pointed out the strong connection between multi-agent path planning and the work on pebble motion three years ago (Surynek 2009a). However, the description of the approach in terms of group-theoretic proofs also has advantages: it provides a deeper understanding of the problem and is rather generic, leaving many choices open. The stated guarantees hold no matter how these choice points are resolved, but we expect that the choices still have a significant impact on the solution quality, leaving room for interesting optimizations.

Since in practice one is interested in finding solutions with quality close to optimal in low polynomial time, we don’t claim that there is no further work needed in this field and that the recent work did not improve the state of the art. We only want to bring more attention to this earlier work because we believe that a deeper analysis of the relationship between the recent results and the results on pebble motion could provide a deeper understanding of the problem.

For this reason, we are currently deriving an algorithmic description of the approach and are working on a full implementation. The aim of this future work is on the one hand a proper comparison to the recent algorithms – experimentally as well as in terms of a clear theoretical demarcation. On the other hand, we would like to make the approach more easily accessible to the community.

References

