AAAI Publications, Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence

Font Size: 
Experience Guided Mobile Manipulation Planning
Tekin Alp Mericli, Manuela Veloso, Levent Akin

Last modified: 2012-07-15


The most critical moves that determine the success of a manipulation task are performed within the close vicinities of the object prior to grasping, and the goal prior to the final placement. Memorizing these state-action sequences and reusing them can dramatically improve the task efficiency, whereas even the state-of-the-art planning algorithms may require significant amount of time and computational resources to generate a solution from scratch depending on the complexity and the constraints of the task. In this paper, we propose a hybrid approach that combines the reliability of the past experiences gained through demonstration and the flexibility of a generative motion planning algorithm, namely RRT*, to improve task execution efficiency. As a side benefit of reusing these final moves, we can dramatically reduce the number of nodes used by the generative planner, hence the planning time, by either early-terminating the planner when the generated plan reaches a "recalled state", or deliberately biasing it towards the memorized state-action sequences that are feasible at the moment. This complementary combination of the already available partial plans and the generated ones yield to fast, reliable, and repeatable solutions.


memory-based planning; mobile manipulation planning

Full Text: PDF