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well as react to, the situations (Ow and Smith
1988; Smith and Ow 1985). As the dynamism
of the environment increases, it becomes
more difficult to distinguish between predic-
tive and reactive behavior, so the need for a
real-time system is felt (Burke and Prosser
1989).

The scheduling objectives typically include
meeting committed shipping dates of the
orders, reducing the lead times and work-in-
process (WIP) and finished goods inventories,
maximizing use of expensive equipment and
the throughput of the system, and minimiz-
ing the sensitivity of the schedule to random
events. These objectives sometimes conflict.
For example, the urge to meet the due dates
encourages the scheduler to start the jobs as
early as possible. However, to minimize the
WIP and finished goods inventories, the
scheduler attempts to postpone starting the
jobs as long as possible. Finally, to maximize
the throughput of the system, the scheduler
tends to ensure that the bottleneck resources
are never idle, but to make the schedule flexi-
ble, the scheduler is encouraged to distribute
small amounts of slack throughout the pro-

Scheduling problems can generally be
described as allocating resources to tasks
while satisfying a set of constraints (Baker
1974; Conway et al. 1967). More often than
not, the constraint sets are large and diverse,
the objectives conflict with each other, and
the scheduling problems quickly become NP-
hard. Moreover, there is the added complexi-
ty of the dynamics and the unpredictability
of the environment. 

Even if one could arrive at a static solution
to a problem, the solution might quickly
become obsolete (McKay, Safayeni, and Buza-
cott 1988). A typical dynamic environment is
found in factory scheduling. Machine break-
down, product quality assurance, supplier
delivery, operator availability, and continual
arrival of new orders can all be part of the
dynamics of the environment. Decision
making for scheduling can also occur on
many different levels: weekly to quarterly
capacity planning; daily to shift-level detailed
scheduling; and on-the-spot reactions to
machine breakdowns, shortage of supplies,
and so on. Therefore, it is desirable for a
scheduling system to be able to predict, as
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cess plan of every
order (Pinedo et al.
1991). These contra-
dictions make it even
more difficult to
evaluate a given
schedule. Therefore,
it is desirable to have
a scheduling system
that is capable of
observing the envi-
ronment from differ-
ent perspectives that
stem from the differ-
ent objectives. If such
observations can be
performed on a real-
time basis, the differ-
ent perspectives can
provide immediate
feedback to the
scheduler and achieve
better control of the
manufacturing envi-
ronment. A distribut-
ed architecture will
best serve the need
for providing multi-
ple perspectives on a
real-time basis.

Of course, in addition to working in real
time and providing multiple perspectives, a
scheduling system must also include the fol-
lowing capabilities:

Constraint Satisfaction: Satisfy or, at least,
attempt to satisfy various classes of con-
straints, ranging from management objectives
to tool availability and vendor tardiness. This
feature would indeed entail the ability to rep-
resent all the different classes of constraints.

Flexibility: Adjust or reconfigure the
schedule when and if a perturbation changes
the situation.

Fuzzy and Incomplete Information:
Function with incomplete or uncertain infor-
mation, take into account fuzzy information
such as “high priority,” and find or propose a
schedule in the absence of complete informa-
tion. (For example, vendor delivery dates
might be approximate.)

Fast Response Time: Find a new schedule
as quickly as possible when the situation
changes. This capability is important for sup-
porting interactive use.

Abstraction of Information: Coordinate
the knowledge extracted from expertise resid-
ing in various parts of the manufacturing
environment. Appropriate information
should be presented by the system as decision

support when and
where it is needed.

User Friendliness:
Provide a friendly
interface to both
humans and com-
puter systems.

Good Schedules:
Produce schedules
that are nearly opti-
mal according to the
objectives.

In this article, we
present a distributed
architecture for real-
time scheduling,
called REDS2 (require-
m e n t - d r i v e n
scheduling), and
describe how this
architecture evolved.
The distributed
nature of the archi-
tecture provides the
capability to attend
to multiple perspec-
tives simultaneously.
In the next section,

we summarize the
relevant approaches to scheduling in manu-
facturing. We then describe the kinds of
scheduling problem we address and the prin-
ciples used in REDS2. Next, we discuss the con-
ceptual framework and architectures. Finally,
we describe the implementation of REDS.

Previous Approaches to 
Scheduling in Manufacturing

Both operations and AI researchers have sug-
gested numerous approaches for solving fac-
tory scheduling problems. For decades, most
of the scheduling literature presented analytic
approaches. These approaches, aiming at opti-
mal solutions, proved to apply to only a small
subset of scheduling problems, those with
highly idealized conditions and a small
number of jobs and machines (Grant 1986;
Graves 1981). Typical assumptions that were
made include (1) the tasks to be performed
are well defined and completely known; (2)
resources and facilities are entirely specified;
(3) sequences for tasks are well defined; (4)
each machine is continuously available; (5)
there is no rework; (6) each operation can be
performed by only one machine on the shop
floor; (7) there is no preemption; (8) the pro-
cessing times of successive operations of a
particular job might not overlap; and (9) each

…It is 
desirable for 
a scheduling
system to be
able to predict,
as well as
react to the
situations…
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Production planning and scheduling has been
one of the most difficult and challenging tasks
for manufacturing management. Despite the
advances in scheduling theory, many actual
scheduling problems are still too complex to
yield analytic solutions. Much of the difficulty
stems from having to deal with a large set of
diverse constraints and multiple objectives that
are often conflicting and ill defined. Moreover,
the dynamic and stochastic nature of the envi-
ronment further contributes to the complexity of
the task. In recent years, the AI community has
investigated factory scheduling in depth, and
various paradigms have been presented. Howev-
er, most of this research focuses its efforts on
heuristics and constraint satisfaction; little
attention has been paid to the need for a real-
time, distributed scheduling system. In this arti-
cle, we discuss the importance of such needs and
present a recursive architecture for real-time dis-
tributed scheduling. The new architecture, com-
posed of planning agents, has a number of
advantages over the conventional hierarchical,
distributed, and subsumption architectures.
Finally, we present the design and implementa-
tion of a system, called REDS (requirement-driven
scheduling), and discuss how this design
evolved. The application of REDS to a wafer fab-
rication factory is also discussed.
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machine can handle, at most, one job at a
time.

Although some of the assumptions might
be reasonable in a given situation (for exam-
ple, 1, 2, 3, and 7), the remaining assump-
tions might not. Most often, schedules
generated with these idealized assumptions
are inadequate in reality. In addition, prob-
lems dealt with in the analytic literature are
often restricted to a small number of jobs and
machines. In the real world, the numbers are
significantly larger, and standard techniques
such as enumeration, integer programming,
or branch and bound quickly become compu-
tationally impractical. However, the theoreti-
cal aspects of this type of research can still
contribute substantially to the design of a
scheduling system. This contribution
includes determining the computational
complexity of the problems and developing
efficient algorithms.

Some techniques derived from empirical
research, such as the apparent tardiness cost
(ATC) heuristic (Vepsalainen and Morton
1987) and the shifting bottleneck heuristic,
also influenced later work by AI researchers in
manufacturing scheduling (Adams, Balas, and
Zawack 1988). In recent AI research, heuris-
tics and rich domain knowledge have been
used to find satisficing solutions to schedul-
ing problems whose size and complexity are
more realistic (Kanet and Adelsberger 1987;
Hadavi, Shahraray, and Voigt 1990; Hsu et al.
1990; Mer et al. 1986).

Constraint satisfaction has been a domi-
nant issue among these methods. Systems
such as ISIS view scheduling from a single,
order-based perspective (Fox, Allen, and
Strohm, 1982; Fox 1983; Fox and Smith
1984) and use knowledge-intensive search
techniques along with a rich constraint repre-
sentation. OPIS addresses the weakness identi-
fied within ISIS by providing multiple
perspectives with the ability to dynamically
shift between perspectives. OPIS outperformed
schedulers that relied on a single perspective
(Ow and Smith 1988). However, by schedul-
ing all the operations of a critical order or a
critical resource, OPIS assumes that all these
operations are critical. Rarely does one entire
job or resource remain critical indefinitely

(Burke and Prosser 1989). Some resources
only become critical over certain time inter-
vals. Job criticality often occurs only over a
subset of the operations of the orders (Pinedo
et al. 1991; Burke and Prosser 1989). Further-
more, at any given moment, OPIS only consid-
ers a single perspective.

Even though the concept of a shifting bot-
tleneck (Adams, Balas, and Zawack 1988) was
discussed in Smith et al. (1986), it was never
addressed in OPIS. In the Cortex project
(Sadeh and Fox 1989a), the activity-based
approach was proposed. This approach uses
multiple perspectives and considers shifting
bottlenecks by lookahead techniques. However,
this approach has never been implemented in
a real system.

DAS (Burke and Prosser 1989) is a planning
and scheduling system formulated as a lay-
ered and distributed asynchronous system. It
decomposes the scheduling problems across a
hierarchy of communicating agents. DAS does
not differentiate between prediction and
reaction because one might consider schedul-
ing a task that requires continuous reaction.
Much of the problem-solving effort focuses
on conflict resolution. Meeting due dates is
the primary scheduling objective and is treat-
ed as a preference constraint. Even though
various dispatching strategies are included in
DAS, the scheduling process does not pay
much attention to other objectives, such as
machine use, inventories, and cycle times.

Finally, neither the AI community nor the
operations research community has paid
much attention to order release control
(Glassey and Redsende 1988). In most of the
literature, no distinction is made between
job arrival and job release, even though it has
been proven that job release control plays a
significant role in producing good schedules
(Glassey and Redsende 1988). With good job
release control, it is possible to reduce job
waiting times and WIP and finished goods
inventory levels. Good job release control
also helps to shorten cycle times but still
allows due dates to be met (Hadavi and
Shahraray 1989).

In REDS, both predictive and reactive
scheduling are incorporated along with a
release control strategy called FORCE (factory
order release control and evaluation) (Hadavi
and Shahraray 1989). REDS also provides an
order perspective and a resource perspective
in real time. In the next section, we present
the principles used by REDS2 and discuss how
the architecture of REDS2 has evolved from
requirement-driven scheduling to real-time
distributed scheduling.

In REDS, both predictive and reactive 
scheduling are incorporated…



The Scheduling Problem
REDS is designed to work in a variety of differ-
ent environments, such as batch manufactur-
ing and job shops. REDS has been used in
factories such as a very large-scale integrated
development line and a job shop mask manu-
facturing plant. Prototype REDS systems have
also been implemented for a printed circuit
board (PCB) assembly factory and a plastic
molding shop. The scheduling tasks that REDS

deals with include capacity planning, finite
capacity scheduling, and sequencing for each
machine. In addition to the multiple objec-
tives and the diverse set of constraints men-
tioned earlier, REDS also needs to deal with
other dynamics, such as process plan
changes, rework, and dynamic test lots. 

The Principles
The primary goal of REDS is to perform the
scheduling task robustly but still meet the
management objectives. Robustness implies
that the schedules generated are feasible and
that the scheduler can react to changes on
the shop floor by minimally revising existing
schedules. The management objectives are
meeting due dates, reducing WIP and finished
goods inventories, reducing product cycle
times, and maximizing machine use. REDS

integrates both AI and operations research
techniques in its design. The major design
principles used in REDS are discussed in the fol-
lowing paragraphs.

Abstraction of Constraints and Time: The
fundamental structure used for representing
constraints and schedules is a temporal tree
structure, as shown in figure 1. Each node
corresponds to an interval of time, and its
children nodes correspond to subintervals of
this interval. The intervals corresponding to
the children of a node form a partition of the
interval corresponding to the node. Each type
of resource has its own temporal constraint
tree. The schedule is also represented as a
temporal schedule tree.

In a temporal constraint tree, each node i
has an associated constraint pool CP(i). For
every descendant j of i, a mapping, aji, exists
from CP(j) to CP(i). This mapping is referred
to as an abstraction function. Constraint pools
at different levels of the tree reflect different
levels of abstraction. To plan activities farther
in the future, REDS checks the constraints at
higher levels of abstraction, but to make
schedules for the near future, REDS goes down
to the detailed constraint pools and makes
sure the schedule is feasible (Hadavi,
Shahraray, and Voigt 1990).

Abstraction of Orders: After an order
enters the system and before the order is
ready to be released, REDS performs a prepro-
cessing step on the order. This step sets up an
interval of possible starting times for the
order and creates an essence function for the
order. The essence function of an order is
defined by the critical resources required to
complete the order and the time intervals
required for the critical resources to meet the
desired due date. For example, time needed at
bottleneck work centers, inventories, and spe-
cial jigs and fixtures that are needed can con-
tribute to the essence function of an order
(Hadavi, Shahraray, and Voigt 1990). This
essence function is an abstraction of the
order.

Release Control Strategy: REDS incorpo-
rates FORCE, its release control strategy, into its
scheduling process. FORCE tries not to release a
job to the shop floor until it is certain that
the job will be worked on. The primary pur-
pose is to reduce the cycle times as much as
possible. The concept of continuity index, or ci,
a function of the processing time of every
step allocated in the shop and the expected
completion time for an order, is introduced in
FORCE. Each order has a set of continuity
indexes associated with it throughout its life
cycle. These indexes change over time accord-
ing to the dynamics of the manufacturing
environment. FORCE also changes its releasing
strategy accordingly, by observing the aggre-
gated continuity indexes profile. In essence, this
profile is an index of aggregated manufactur-
ing parameters. We performed an extensive
study to find the optimal release strategy. A
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Figure 1. A Temporal Constraint Tree.

more detailed plans

level of abstraction

Constraint  pools

of different levels

of abstraction



For detail on this topic, the reader is referred
to Hadavi, Shahraray, and Voigt (1990). There
are two modes of REDS operation: predictive
and reactive. First, we explain how the four
subtasks work under the predictive mode and
then how the reactive mode operates.

Predictive Operations
At the time of order entry, REDS tries to fit the
new order into the existing schedule by
maintaining the stability of the schedule as
much as possible. A schedule is more stable if
it requires fewer changes to insert a new
order.

The PPR module performs a backward
scheduling of this order by coordinating all
the sublots and the merge points. It also
checks for some important constraint viola-
tions. PPR acts as an online editor to make
sure that none of the requirements posed by
the order is unrealistic.

After preprocessing, the FA module con-
structs the essence of the order. The order’s
essence is an abstraction of all its critical
resource requirements, including bottleneck
work centers, inventory items that are expen-
sive and hard to get, and tooling. During the
FA phase, if used interactively, the system
maintains a dialogue with the user to find
ways to meet the order requirements. This
task is done by relaxing certain constraints,
such as setting due dates, adding shifts,
changing the quantities, and so on. If the
system is not used interactively, REDS itself
makes a reasonable decision based on some
cost procedure that seeks the lowest cost. 

The FORCE control release strategy is embed-
ded in the FA module. FORCE is an algorithm
that tries to find near-optimal release dates
for the incoming orders. It attempts to maxi-
mize machine use as well as the percentage of
the orders completed on time (Hadavi and
Shahraray 1990).

In summary, FA can produce one of the fol-
lowing results: (1) No serious problems are
detected. (2) Some problems are detected;
relaxing some constraints will solve the prob-
lems. The required relaxation is recommend-
ed. (3) Problems detected are so serious that it
would be unwise to fulfill this order.

After FA, DS works with the recommenda-
tion given by FA and produces a more
detailed schedule by checking all the lower
constraint levels that FA overlooked. By this
point, FA should have removed all the critical
problems.

This more detailed schedule is constructed
by DS at lower levels of the time horizon. For
example, if FA builds a schedule at the month-
ly level, DS will define a portion of the sched-

more detailed description of FORCE can be
found in Hadavi and Shahraray (1989).

Constraint-Directed Reasoning with
Multiple Perspectives: The temporal con-
straint tree of each resource provides a single
resource profile, and the aggregated temporal
constraint tree provides an aggregated
resource profile for each type of resource. This
information provides a resource perspective
for the scheduling system. Using this perspec-
tive, we implemented the capacity watcher in
the distributed version of REDS, namely REDS2.
A capacity watcher continuously observes the
capacity of all the resources and sends warn-
ing messages when certain resource overload-
ing is detected. The scheduler then can take
either preventive or reactive measures,
depending on when the overloading occurs.
For example, when a machine overload is
predicted, the load-leveling strategy is taken,
and such an overload is avoided (Hadavi and
Lehnnert 1987). By examining all the
required critical resources in the essence func-
tion, an order perspective is provided to the
scheduler. The scheduler then determines the
earliest feasible schedule for an incoming
order.

In contrast, FORCE uses continuity indexes
to ensure an order is not released too early.
With this order perspective, the order watch-
er was implemented in the distributed ver-
sion of REDS. The order watcher continually
observes and updates the order’s status.
When an event occurs, a reactive action is
triggered at the most relevant level, and the
effect of the event is either propagated or
accommodated. Such an event can be a new
order entry, a machine breakdown, inventory
shortages, or a machine overload.

For example, in the event of a machine
breakdown, the capacity watcher signals the
event handler to pay attention to the affected
orders; the order watcher updates the order’s
status. If the status of the order changes sig-
nificantly, the effect is propagated, and some
orders with lower priority might have to be
delayed or suspended. Conversely, when a
critical resource is underused, some new
orders might be released. 

Conceptual Framework of REDS

The basic conceptual framework of REDS

divides the scheduling task into four sub-
tasks, each performed by a separate module:
(1) preprocessor (PPR), (2) feasibility analysis
(FA), (3) detailed scheduler (DS), and (4)
sequencer (SEQ). To make the concepts more
concrete, we illustrate here what actually
happens when a new order enters the system.

The event
handler is the

center of the
system.
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ule at the daily or the shift level. DS operates
based on the principle of least commitment
planning: In the immediate future (for exam-
ple, the next few hours), the schedule is pro-
duced at the shift level, whereas in the farther
future (for example, the next few weeks), only
a weekly schedule is maintained. Hence, only
a limited part of the schedule is committed. 

This strategy makes it easy to change the
schedule and reduces the probability of back-
tracking when unexpected but inevitable
events occur that require revising the sched-
ule. It also prevents too much effort from
being spent on preparing detailed schedules
that might soon become obsolete because of
situation changes on the shop floor.

Finally, the order, blended with all the
other orders in the detailed schedule, is
passed to SEQ. This detailed schedule is a set
of bindings of operations, resources, and a
time period. Consequently, given a time
period and a resource, a list of assigned opera-
tions exists. SEQ’s task is to determine which
of the operations listed for the current time
period should be dispatched next.

SEQ contains a lot of domain-specific infor-
mation regarding lot combination, setup
times, choices of machines to use, and ways
to avoid problems (for example, rerouting).
The objectives of SEQ are to optimize the
throughput, maximize machine use, and
minimize flow time and WIP. A dynamic
sequencing rule (DSR) was developed to deter-
mine an effective priority rule for sequencing.
By applying DSR, sequencing decisions are
made in real time to respond to constantly
changing conditions within manufacturing
environments. (See Shahraray [1987] for a
more detailed description of DSR.) The sched-
ule produced by SEQ contains minute-by-
minute operations on the shop floor. The
output of SEQ goes directly to the operators
on the shop floor. 

In summary, REDS forms the abstraction of
orders and resources during the preprocessing
phase. Meeting due dates is the major objec-
tive in this phase. FA provides release control
in the hope of meeting other management
objectives, such as reducing cycle times and
WIP and finished goods inventories yet meet-
ing due dates. FA also pays attention to the
most critical constraints and leaves the rest of
the constraints for DS to check. DS assures the
validity of the schedule. SEQ receives the dis-
patch list in real time and makes locally opti-
mal decisions with regard to overall
management objectives.

Reactive Operations
In the reactive mode, all four modules listen

to the disturbances coming from the shop
floor. Each one behaves in its own way
depending on.. the complexity of the event
and its horizon of impact. Their reaction
times are all real time in the sense that from
the user’s point of view, no noticeable delay is
observed. Needless to say, the actions taken
by the higher-level modules respond to
longer-term impacts. For example, in case of a
machine breakdown, SEQ immediately tries
to reroute lots and change the priority values
of the affected lots. In the mean time, the
planning module, DS, wakes up and starts
checking on the impact of the breakdown. If
necessary, the schedule is reconfigured by DS.
FORCE also tries to see how much of a problem
this breakdown causes as far as future orders
are concerned. If necessary, it limits the entry
of new incoming orders until the problem is
solved.

It should be noted that all these actions are
going on independently and autonomously
to ensure that both short-term and long-term
impacts of the problem are addressed. The
average rate of events arriving from the shop
floor is on the order of 50 to 100 events each
minute. However, at certain periods during
the day, the rate can be as low as 10 to 20
events each minute. The distribution is far
from uniform and is closer to a hyperexpo-
nential distribution. These events include
machine loading, unloading, breakdown,
maintenance rework, scrap, and new orders.
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bottleneck work center or (2) alerting man-
agement about certain quality problems. For
example, a machine that is down for more
than 60 percent of the time is reported. (For a
more detailed description of REDS, see Hadavi,
Shahraray, and Voight [1990]).

Although this architecture was effective for
its applications, multiple perspectives of the
shop floor could not be maintained simulta-
neously. At any given moment, REDS can pay
attention only to a single perspective. We felt
that the dynamics of the environment could
not be reflected in a timely fashion. There-
fore, a real-time distributed architecture was
designed for REDS2 using the same conceptual
framework. 

REDS2: Requirement-Driven Scheduling
and Real-Time Distributed Scheduling
With REDS2, we introduced the concept of
using a planning agent (PA) as a generic struc-
ture for designing each module. Each agent
has its own clearly defined task. With a con-
sistent structure for each module, we pro-
posed a recursive structure for the overall
design. Because it is often difficult to catego-
rize a system into a single class of architec-
ture, we describe REDS2 as a distributed system
with an implicit hierarchy. 

Most systems are really hybrid, exhibiting
different architectures when different aspects
are examined. The subsumption architecture
(Brooks 1986) is a typical example. It appears
to be hierarchical when used for control, but
each layer can function as an independent
autonomous agent when necessary. In some
situations, one layer might exercise control
over the others by inhibiting communica-
tions. The major difficulty with this architec-
ture is that each layer needs to have perfect
information about the responsibility and the
authority of the other layers to take control
without causing chaos. 

With REDS2, each PA consists of a scheduling
gene and a number of input and output. A
scheduling gene has two components: a pre-
dictive element and a reactive element. The
predictive element performs its routine task,
and the reactive element reacts to irregular
incoming events.

Each PA is an independent and autonomous
process. Its task is assigned by agents from
the module on the next-higher level. Input
for each PA include signals from the shop
floor, other agents, or humans. Each PA also
receives input from the statistician module.
Finally, the output of PA is sent to the imme-
diate lower-level module. The output is
observed by the immediate higher-level
module and the statistician module without

The Architecture
In this section, we discuss the two versions of
REDS: REDS, the first version of the system, and
REDS2, the current distributed system.

First Generation of REDS

Two versions of REDS have been implemented
using the same conceptual framework. Archi-
tectures used in both versions can be viewed
as shock absorbers in the sense that distur-
bances at lower levels of the temporal
resource abstraction tree are dampened at low
levels of the hierarchy and do not often prop-
agate to the higher levels. The architecture of
the first version is shown in figure 2.

The REDS architecture is roughly hierarchi-
cal; each module corresponds to the schedul-
ing task described in the conceptual
framework. However, it is not a strict hierar-
chy because information feeds back directly
to different levels of the hierarchy without
traversing the intermediate nodes. The lowest
decision-making level reacts to events first
and remedies the situation if possible.
Because higher decision-making levels deal
with higher levels of abstraction, the higher
decision-making levels intervene when the
original abstraction is disturbed beyond
remedy by incoming events. The intent of
the statistician module is to monitor, analyze,
and correct long-term shop floor problems.
The implementation of the first REDS ties the
statistician to the sequencer only.

Problem corrections can be proposed by
the statistician in two ways: (1) signaling dif-
ferent modules of REDS about a newly found

Articles

52 AI MAGAZINE

Input from

Supporting Agent

Task

Assignment

Other Inputs

from Agents


or Human

O

Real-Time

Data Input

a

b

c

e

d

P

R

Figure 3. A Planning Agent.



the awareness of PA. Figure 3 depicts the PA
structure. 

In figure 4, a recursive structure of PAs is
embedded in the REDS conceptual framework.
Each module (PPR, FA, DS, and SEQ) is an
instance of PA, operates autonomously, and
corresponds to a distinct independent soft-
ware process. An implicit hierarchy exists
among PAs. Although similar to the subsump-
tion architecture in a hybrid system, our
architecture works better because every
module has a well-defined responsibility,
reacts to incoming signals independently, and
communicates with the others through a
broadcast channel. Each module is unaware
of the existence of the other modules. Coordi-
nation is much more efficient when no agent
takes control over the others.

Based on the concepts of PAs and require-
ment-driven scheduling, we implemented a
real-time distributed scheduling system. In
the next section, we describe the scheduling
system REDS2 and its functions.

The System: REDS2

REDS2 is implemented as an open system. It
communicates with its external environment
through a commercial database. It interacts
with users and allows interactive scheduling.
REDS2 can also change its behavior at the
request of a system manager during run time.

REDS2 Kernel
In this subsection, we describe the REDS2

system kernel and its external environmental
interface.

The system kernel includes six system-level
servers: three scheduling servers and three
communication servers. The scheduling
servers are the order watcher, the capacity
watcher, and the event handler. The communi-
cation servers are the data collector, the shop
floor controller, and the order-entry handler.
Interfaces with the external environment
include three user-level interfaces and the
interface with the WIP tracker. COMETS, a
commercial software product, is used as the
WIP tracker. Figure 5 shows the functional
diagram of REDS2.

REDS2 Operation. A new order arrives in the
system through order entry and is sent to the
order handler. The order handler performs
the preprocessing tasks on this order. The
output is then sent to the event handler.
Some of the information (for example, pro-
cess plan, routing) is also sent to the WIP
tracker. The event handler takes the order
with preprocessed information and stores it
in a job pool. When lot move in or move out
occurs, the event handler triggers the order
watcher. The sequencer is a part of the event
handler. It generates the dispatch list in
detail for every machine. 

Both the sequencer and the capacity
watcher can request a job release by signaling
the order watcher. The order watcher then
attempts to release a job from the job pool by
considering resource capacities provided by
the capacity watcher. When the release con-
ditions are satisfied, the order watcher releas-
es a job to the sequencer; otherwise, it waits
until the conditions are satisfied. 

The Scheduling Servers. The order watch-
er and the capacity watcher perform the most
important tasks for planning and scheduling.
The order watcher tracks all orders and their
continuity indexes. It determines when to
release a job as well as which order to revoke
when necessary. It consists of two modules:
the planning server and the scheduling
server. The planning server deals with higher
levels of the temporal schedule tree, and the
scheduling server deals with lower levels of
the tree. Detailed constraints such as lot pro-
cess route are considered by the scheduling
server. 

The capacity watcher updates the remain-
ing capacity of every work center. Whenever
a capacity overload or underload is detected
by the capacity watcher, it sends a request for
load balancing to the planning module of
the order watcher. Together, the capacity
watcher and the order watcher provide the
profiles for resources and orders. REDS2 allows
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Figure 4. The Recursive Structure.
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be put into a script so that various scheduling
strategies can be tried depending on the con-
ditions of the shop floor. 

Second, the interpreter has an if-then rule
structure that is used in the following two cir-
cumstances: (1) describing the incoming floor
events (one can associate the semantics of an
event with a script, allowing flexible reaction
to shop floor dynamics) and (2) scheduling
real-time operations (this script is similar to
the UNIX CRON table). When an if part is a
time pattern, the associated script is executed
at the time specified. REDS uses this rule to
schedule housework, such as database
archives and periodic lot evaluation.

The Communication Servers.  The data
collector, the shop floor controller, and the
order-entry handler are the communication
processes.

The data collector is one gateway to REDS

from the external environment. The WIP
tracker sends data to the data collector. It
then formats the data for REDS. The shop floor
controller controls the shop floor activities,
such as dispatch or shop floor status query.
The order-entry handler takes care of the
interface between the user, the shop floor,
and the REDS kernel. It confirms and prepro-
cesses order information to be sent to the
shop floor and the REDS kernel. It also guaran-
tees data consistency between REDS and the
shop floor.

User-Level Interface Programs.   There are
three types of user interface programs: system
utilities–user programs , the floor activity
monitor, and order entry. System utilities and
user programs are used for support tasks, such
as constructing calendars for scheduling.
Another user program allows the user to
manually schedule the orders. The floor activ-
ity monitor is used for system administration.
It consists of a communication interface and
a logging facility. The user can monitor the
REDS2 software processes and can communi-
cate with these processes by sending messages
to them. The floor activity monitor was origi-
nally designed for debugging purposes only.
However, it was expanded to cover more user
requests, such as changing a server’s behavior.
The order-entry user interface is a customized
design to help the user create orders.

Coordination
Coordination is one of the most important
tasks in any distributed system. In REDS2, coor-
dination is achieved by information sharing
and message passing. Currently, a central
database is shared by all the processes in
REDS2.

multiple planning servers and capacity
watchers to operate in parallel. This approach
gives sufficiently good performance to allow
scheduling to be performed in real time.

The event handler is the center of the
system. It communicates with other servers
and the shop floor. It handles lot tracking;
sequencing; shop floor exception handling;
and housekeeping, tracking all the shop floor
information and updating the database.
When an exception such as a routing change
occurs, it relays the exception information to
the appropriate server. The sequencer, embed-
ded in the event handler, generates a lot dis-
patch list on request and sends it to the shop
floor through the shop floor controller. The
sequencer uses DSR in dispatching.

The event handler has an interpreter that
any user can employ to describe process oper-
ation requirements. This interpreter takes a
functional script as input and interprets it
using a preloaded user library or other exter-
nal programs (a script is a group of function
calls in a Lisplike language. This approach
enhances system adaptability and maintain-
ability for the following reasons: First, each
function represents a knowledge chunk. This
chunk can be an operational strategy, a set of
heuristics, or routine data. Therefore, the fac-
tory-specific control knowledge can be cap-
tured in a script that is separate from the REDS

kernel. This knowledge can be modified by
changing the script while REDS2 is running.
Furthermore, metascheduling strategies can
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Push and Pull
The push and pull behavior of REDS2 is similar
to that of a just-in-time system. Job orders are
pushed onto the shop floor whenever they’re
ready to be processed. REDS2 pulls orders from
the job pool when the shop floor can effi-
ciently support the processing of more jobs.
At the planning level, the event handler
issues job release requests regularly, in a way
similar to a push. When the capacity watcher
detects that resources are underused, it issues
a request to pull out an order to process. At
the scheduling level, when an order is unable
to meet its due dates, its priority rises so that
the order is pushed and preempts other
orders. Conversely, when an order is expected
to finish earlier than scheduled, its priority
drops, and it might be pulled so that critical
resources can be allocated to other orders
with higher priority.

Implementation
Even though REDS was initially designed for
small job shops, it is currently being used for
VLSI pilot lines and a mask manufacturing
facility; a prototype of it was also built for
PCB assembly lines. In all these applications,
the major difference is the SEQ module. All
the other modules are functionally the same
but include some minor adjustments to satis-
fy local user demands.

Of all these applications, the VLSI line is
probably one of the most difficult areas for
producing and maintaining good schedules.
In such environments, the process plans and
processing times are vaguely defined;
machine breakdowns are frequent; rework, lot
splitting, dynamic test injection, and limited
block times are common; and the products
are sensitive to machines so that choices of
which machines to use change dynamically.
Moreover, many bottleneck machines exist in
VLSI lines, the bottlenecks shift from time to
time, and the processes are reentrant. 

Conclusion
In this article, we described the conceptual
framework for REDS and its two implementa-
tions. The major contribution of the frame-

work is that it covers all scheduling activities
from planning to finite scheduling. Moreover,
REDS includes a release control strategy. These
planning and scheduling activities use several
levels of abstraction to achieve the desired
goals. In this way, avoiding resource conflicts
is not the sole concern at all times. At the
planning level, some minor conflicts can be
allowed, but at the sequencing level, all con-
flicts need to be resolved. The hybrid architec-
ture, along with the real-time system design,
supports our multiple perspectives for
scheduling. Both implementations have been
operational in a variety of factories and have
proven to be successful. 
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