
■ PROSE is a knowledge-based configurator platform
for telecommunications products. Its outstand-
ing feature is a product knowledge base written
in C-CLASSIC, a frame-based knowledge representa-
tion system in the KL-ONE family of languages. It
is one of the first successful products using a KL-
ONE–style language. Unlike previous configurator
applications, the PROSE knowledge base is in a
purely declarative form that provides developers
with the ability to add knowledge quickly and
consistently. The PROSE architecture is general
and is not tied to any specific telecommunica-
tions product. As such, it is being reused to
develop configurators for several different prod-
ucts. Finally, PROSE not only generates configura-
tions from just a few high-level parameters, but
it can also verify configurations produced manu-
ally by customers, engineers, or salespeople. The
same product knowledge, encoded in C-CLASSIC,
supports both the generation and the
verification of product configurations.

PROSE (product offerings expertise) is a
knowledge-based engineering and order-
ing platform that supports sales and

order processing at AT&T Network Systems
(AT&T-NS). The cornerstone of the PROSE

architecture is a product knowledge base writ-
ten in C-CLASSIC, a knowledge representation
system in the KL-ONE language family that was
developed at AT&T Bell Laboratories (Borgida
et al. 1989). Currently, PROSE is being used to
provide configurations for sales proposals and
to generate factory orders for manufacturing.
Some examples of products that are currently

being configured by PROSE are the cross-con-
nect systems DACS IV-2000 and DACS II CEF
as well as the remote cell sites for the AT&T
Autoplex mobile telephone system. We
expect PROSE to be deployed for highly
optioned products across all AT&T-NS busi-
ness units.

The PROSE platform is closely integrated with
the corporate infrastructure for ordering prod-
ucts, and it has communication links to the
mainframe systems that support order process-
ing and manufacturing. PROSE can produce a
detailed materials list and pricing for sales pro-
posals, it can electronically place orders and
initiate billing, it can send manufacturing
specifications to the factory, and it can pro-
duce instructions for on-site installers. Most
importantly, the PROSE architecture is general
and is not tied to any specific product. 

The motivation underlying the PROSE proj-
ect was to solve what we initially called the
data-synchronization problem. In a large
company offering complex products, ordering
information is typically distributed among a
variety of sources, both formal and informal.
The distributed, informal nature of this criti-
cal information makes it difficult to maintain
in an up-to-date, valid, and consistent way. 

The official repositories of product informa-
tion at AT&T-NS are the engineering draw-
ings. As technical documents, they cannot be
read and understood by everyone. Conse-
quently, the ordering information in the engi-
neering drawings is reworked into paper

Articles

FALL 1993    69

A Knowledge-Based 
Configurator That Supports

Sales, Engineering, 
and Manufacturing at 

AT&T Network Systems
Jon R. Wright, Elia S. Weixelbaum, Gregg T. Vesonder, Karen E. Brown,

Stephen R. Palmer, Jay I. Berman, and Harry H. Moore

Copyright © 1993, AAAI. 0738-4602-1993 / $2.00

AI Magazine Volume 14 Number 3 (1993) (© AAAI)



delivered when.
In addition, it seems to us that the term

knowledge-acquisition bottleneck is especial-
ly meaningful for configurator applications.
The R1 project, partly in response to the fact
that the Digital product knowledge was too
complex for one person to maintain, devel-
oped schemes for factoring rules into mod-
ules so that the maintainers could specialize
within the product domain (Bachant 1988).
Having access to people who understand the
product is a key element in the success of a
configurator project.

Thus, a configurator application such as
PROSE has three critical problems to address:
(1) the acquisition of product knowledge, (2)
rapid and sometimes unexpected changes in
product knowledge, and (3) the complexity
of software enhancements and maintenance.

In part, PROSE responds to these problems
by taking advantage of knowledge representa-
tion techniques originally introduced by KL-
ONE (Brachman and Schmolze 1985).
Although there has been active research on
KL-ONE–style languages since 1975, and
research prototypes have demonstrated feasi-
bility in several cases, heretofore few success-
ful production software applications have
used a KL-ONE–style representation (O’Brien,
Brice, and Hatfield 1989). However, we think
other successes are likely to follow.

The use of C–CLASSIc, whose ancestry can be
traced directly to KL-ONE, provides the PROSE

platform with several key advantages. With
some exceptions to be discussed later, prod-
uct knowledge in PROSE is isolated to a single
module—the product knowledge base. C-CLAS-
SIC encourages a reasonable organization for
the product knowledge and enforces internal
consistency. Inconsistencies in the knowledge
base are often flagged in the compilation
stage and, at other times, are caught during
testing. Both kinds of inconsistencies are
identified by C-CLASSIC’s internal integrity-
checking mechanisms.

Our experience is that within the context
of the PROSE application, consistency checking
has somewhat the feel of programming in a
strongly typed programming language, where
inconsistent and incorrect uses of data types
are caught by the compiler. C-CLASSIC’s consis-
tency checking has had a beneficial effect on
both the maintainability of the PROSE product
knowledge and the quality of the configura-
tor’s output.

Like that of its predecessors, the simplicity
of C-CLASSIC’s description language and the
tractability of its inference algorithms are
linked. C-CLASSIC provides only a few primitive

ordering guides, informal spreadsheet pro-
grams used by account executives, and vari-
ous personal computer (PC)–based configura-
tor programs. The product information
contained in these sources frequently
becomes obsolete and out of synch with the
engineering drawings. 

Inaccurate orders, when combined with
products that are so highly technical in
nature, cause delays in order processing and
manufacturing and can result in billing dis-
crepancies. PROSE seeks to centralize this infor-
mation, or product knowledge, in a single
source, and put it in a form that can be made
available to anyone who needs it. Having
every team member working off the same
page, so to speak, greatly reduces rework in
the ordering process, improves quality, and
reduces cost.

The earliest and best-known configurator
application that used techniques pioneered in
the AI community was developed at Digital
Equipment Corporation in conjunction with
Carnegie Mellon’s John McDermott (McDer-
mott 1982; McDermott and Bachant 1984;
Barker and O’Connor 1989). The research ver-
sion was called R1 and later become known as
XCON in its production version. R1 used pro-
duction rules to represent knowledge about
configuring Digital’s computer systems. 

Although production rules had advantages
over the conventional development
approaches that had been tried at Digital pri-
or to R1, some drawbacks surfaced after the
deployment of R1 in 1981. The most serious
was the effort needed to maintain an up to
date, consistent, and valid collection of pro-
duction rules. Digital estimated that 40 to 50
percent of the R1 product knowledge changes
each year (Bachant 1988). By some estimates,
there have been as many as 6000 R1 produc-
tion rules. The rate of change, coupled with
the sheer number of rules needed to ade-
quately represent R1’s product knowledge,
made R1 software maintenance an expensive
process. Subsequently, special techniques had
to be developed to make software mainte-
nance easier and more cost effective (Bachant
1988).

For a configurator application, product-
ordering conventions serve as software
requirements. Responding quickly to changes
in requirements is especially important in
this application domain because the inability
to order new product features through a con-
figurator dramatically affects utility. Develop-
ment schedules for a configurator tend to be
driven by the pace of change in the product,
not by the developer’s sense of what can be

Our 
experience is
that within

the context of
the PROSE

application,
consistency

checking has
somewhat the

feel of 
programming

in a 
strongly 

typed 
programming

language,
where 

inconsistent
and incorrect
uses of data

types are
caught by the

compiler.

Articles

70 AI MAGAZINE



operators with which knowledge can be
described. These operators were chosen at
least in part to avoid intractability in the
underlying subsumption algorithm (Levesque
and Brachman 1987). In particular, the
description language lacks true disjunction
and has no way to express negation. Never-
theless, we have not encountered major prob-
lems when we encoded the product knowl-
edge for our AT&T Network Systems products.

To the contrary, we feel that C-CLASSIC has
encouraged the encoding of product knowl-
edge in a natural way. Subject-matter experts
with a variety of engineering and business
backgrounds, when provided with a small
amount of assistance from someone who
understands C-CLASSIC, have been able to easi-
ly relate to and understand the product
knowledge encoded in C-CLASSIC.

In this context, standard software-engineer-
ing techniques such as code inspections take
on a special meaning. Essentially, these ses-
sions perform double duty as verification
exercises. Typically, a product expert partici-
pates and often clarifies misunderstandings in
the ordering knowledge for a product. In
most cases, the C-CLASSIC expressions are close
to the expert’s intuitive understanding of the
product, providing an uncommonly strong
basis for communication between the devel-
oper and the product expert.

C-CLASSIC’s contribution to the PROSE project
is unmistakable. Maintenance and customiza-
tion of a product configurator for specific user
communities can be accomplished in a clean
and straightforward way. Reuse of the descrip-
tive product knowledge is one of PROSE’s most
interesting features, and it has some genuine
benefits. In particular, the sticky problems
associated with updating, synchronizing, and
distributing product knowledge to the appro-
priate people are much easier to control in
the PROSE environment.

The PROSE Application
The PROSE platform is geared toward configur-
ing telephone switching and transmission
equipment. By their nature, these products
are complex and have many optional fea-
tures. Although there is a trend toward scal-
ing down the number of available options for
individual products, customers like the ability
to customize products to their specific needs.
To provide a concrete example of the capabili-
ties of the platform, we briefly describe the
DACS IV-2000 cross-connect, which was the
first product to be made available within the
PROSE platform.

DACS IV-2000 is a digital cross-connect sys-
tem that processes digitized signals at a DS1
or DS3 rate.1 A complete lineup consists of
nine 7-foot frames (called bays when they are
equipped and working) connected by cabling.
The positions in the lineup are significant and
are numbered from left to right. Each bay
contains as many as four shelves or modules
of electronic gear. A 6-bay DACS IV-2000 con-
figuration is shown in figure 1.

There are 13 types of DACS IV-2000 bay, 3
of which appear in figure 1. The modules
within a bay can be equipped with different
kinds of circuit packs depending on what
capabilities are desired. In addition, compati-
ble cabling and software must be ordered.
Although we have not tried to produce an
exact calculation, the number of possible con-
figurations is large, perhaps exceeding
100,000 or more. The cost of a complete nine-
bay lineup, including spare circuit packs, can
easily extend into seven figures.

The time needed to process orders prior to
manufacturing is called the up-front order
interval. The rework and delay associated with
the processing of invalid configurations dur-
ing the order interval is a significant contribu-
tor to the cost of providing a new DACS IV-
2000. Significant benefits are associated with
reducing the length of the order interval, not
the least of which is increased customer satis-
faction. For DACS IV-2000 prior to PROSE, the
time period for getting manually produced
equipment specifications to the factory was
generally 7 to 14 days. PROSE is capable of
delivering valid orders to the factory at the
push of a button.

Central to the PROSE application, no matter
what aspect is being discussed, is the materials
list, which is a description of the materials
needed to assemble and install a configura-
tion. It is used for producing a bill of materi-
als for the shop floor, billing and shipping to
customers, generating instructions to
installers, and communicating with cus-
tomers about the product. In essence, the
materials list serves as a manufacturing speci-
fication, telling the factory what to assemble.

For a nine-bay lineup, there would be sepa-
rate materials lists for each of the bays plus
separate lists for DACS IV-2000 software and
cabling. A completed order also includes
installation instructions (where to locate and
how to wire each bay). PROSE generates all the
information that is associated with manufac-
turing and installing the equipment it
configures.

PROSE has three interfaces that support dif-
ferent aspects of sales, engineering, and man-

… the sticky
problems
associated
with 
updating, 
synchroniz-
ing, and 
distributing
product
knowledge 
to the 
appropriate
people are
much easier
to control in
the PROSE

environment.

Articles

FALL 1993   71



of keying in capacity parameters and feature
choices, or they can specify the quantity and
the type of circuit pack for each bay. Like FPQ,
SPEC output is in the form of an order that can
be sent directly to the factory’s ordering and
billing systems.

The TCE (telephone company engi-
neered), or customer-service, interface:
Customers sometimes configure products on
their own without going through either FPQ

or SPEC. In such cases, the customer submits
what is essentially a proposed materials list.
Because invalid configurations cannot be
assembled, it is essential to know if the list
represents a valid configuration. The TCE

interface allows a customer service clerk to
key in the materials one item at a time. PROSE

validates the configuration and formats it so
that it can be entered in the appropriate
order-processing systems.

In addition to serving a diverse community
of users, PROSE must deal with products that
constantly change in response to the market-
place. Although we have observed variations,
the rate of change for certain products
approaches that reported by R1-XCON (40 to
50 percent a year). 

For knowledge engineers, however, the real
problem is that the scheduling and timing of
changes is not within their control. The
inability to produce valid orders for new

ufacturing. Distinct user communities are
served by the three interfaces, but all three
draw on the same product knowledge base.
Having a single-product knowledge base
allows PROSE to avoid problems associated
with synchronizing knowledge and data or
resolving conflicts in several software applica-
tions.

The FPQ (firm price quote), or pricing,
interface: Because accurate price quotes are
not possible without knowing all the equip-
ment needed by an application, sales teams
have technical consultants with the responsi-
bility of producing price quotes with itemized
lists of equipment and prices. From a few
high-level parameters, FPQ can produce a price
quote for a complete nine-bay DACS IV-2000
lineup, including compatible software releas-
es and cabling, in a few minutes. FPQ output
is such that it could be turned into a valid
order and sent directly to the factory.2 Fre-
quently, technical consultants use FPQ to
explore what-if scenarios to help the cus-
tomer find the right configuration.

The SPEC (specification), or engineering,
interface: SPEC is intended for AT&T engi-
neers who might be working either on inter-
nal AT&T applications or as consultants to
outside customers. SPEC requires more input
from the user than the FPQ interface, but it is
also more flexible. Engineers have the choice

Articles

72 AI MAGAZINE

Fuse and Alarm
Panel

Switching
Power

Module
Auxiliary Power

Module

Memory
Controller
Module

Switching
Module

Fan Assembly

DS1
Interface
Module

DS1
Interface
Module

DS1
Interface
Module

DS1-P
Interface
Module

DS1
Interface
Module

DS1
Interface
Module

DS1
Interface
Module

DS1-P
Interface
Module

Blank
Panel

DS3
Interface-32

Module

DS3
Interface-32

Module

Blank
Panel

DS1
Interface
Module

DS1-P
Interface
Module

DS3
Interface-

32
Module

DS3
Interface-16

Module

Blank
Panel

DS3
Interface-32

Module

DS3
Interface-32

Module

Blank
Panel

Bay 
Position 5

Bay
Position 6

Bay 
Position 7

Bay
Position 4

Bay
Position 3

Bay
Position 2

Figure 1. A 6-Bay dacs iv-2000 Configuration.



products and enhancements to existing prod-
ucts is problematic for any manufacturing
entity. To really be useful, configurators must
change in lockstep with new product offer-
ings. Although the solutions to these prob-
lems are partly methodological (for example,
early notification of changes from the design
community), the use of C-CLASSIC has played
an important role in our ability to respond
rapidly with quality results.

C-CLASSIC

C-CLASSIC (Weixelbaum 1991) is a frame-based
knowledge representation system derived
from the KL-ONE family of languages (Brach-
man and Schmolze 1985; Brachman, Fikes,
and Levesque 1983; Patel-Schneider 1984;
Woods and Schmolze 1993). It is a direct
descendant of CLASSIC (Borgida et al. 1989),
which was written in Common Lisp and had
the benefit of years of research on semantic
nets and frame systems.3 Because of the
declarative nature of the information encod-
ed in a C-CLASSIC knowledge base, it and other
similar languages are sometimes referred to as
description logics.

C-CLASSIC inherits its two most salient fea-
tures from CLASSIC: a simple description lan-
guage and tractable inference algorithms
(Borgida et al. 1989). C-CLASSIC is an interpret-
ed language written in C and portable to any
UNIX system. C-CLASSIC provides three basic
types of objects: (1) concepts (or frames),
which are assertions or descriptions about the
state of the world; (2) individuals, which are
particular instantiations of concepts; and (3)
roles, which provide a way to relate individu-
als.

C-CLASSIC provides a simple rule-firing
mechanism. A rule consists of a left-hand side
and a right-hand side. The left-hand side is a
concept, and the right-hand side can either
be a concept or a function that returns a con-
cept when called on an individual. Whenever
an individual is classified under a concept, all
rules that have this concept as the left-hand
side fire on the individual, adding the right-
hand side concept or the result of the func-
tion call onto the individual’s descriptor.

Concepts are built up through composition
of components that primarily include previ-
ously defined concepts and various types of
role restrictions. In addition, a controlled
escape mechanism to the C language is pro-
vided through test functions and computed
rules. Test functions are used to test if an indi-
vidual satisfies criteria that are otherwise
inexpressible in C-CLASSIC. Computed rules are

used to compute the right-hand side of rules
that are otherwise inexpressible in C-CLASSIC.
Figure 2 shows C-CLASSIC’s description-lan-
guage syntax, and figure 3 shows how to
define C-CLASSIC objects.

C-CLASSIC provides the following types of
inference: (1) automatic classification of new
concepts and individuals into an existing
knowledge base; (2) completion or propaga-
tion of logical consequences, including but
not limited to inheritance; (3) contradiction
detection; (4) simple forward-chaining rules
(or triggers); and (5) dependency mainte-
nance (for retraction and error recovery).

All these inference mechanisms are used in
PROSE. Classification and inheritance are used
to organize the knowledge base into under-
standable pieces. In addition, an important
side-effect of C-CLASSIC’s ability to classify and
propagate logical consequences is that inter-
nal consistency is maintained within the
knowledge base. Sometimes a user can request
a combination of features that does not repre-
sent a legal configuration. Contradiction
detection is used to detect such errors. Next,
as we discuss in the subsequent section, rules
are needed to represent the product knowl-
edge adequately. Finally, users might some-
times change their minds in the middle of a
PROSE session. Dependency maintenance gives
them the opportunity to retract an action

Articles

FALL 1993   73

Figure 2. C-CLASSIC Description-Language Syntax.

<concept> ::= <concept-name> |
(at-least <integer> <role>) |
(at-most <integer> <role>) |
(between <integer> <integer> <role>) |
(exactly <integer> <role>) |
(all <role> <concept>) |
(fills <role> [<individual> ...]) |
(one-of [ <individual> ...]) |
(range <number> <number>) |
(lower-limit <number>) |
(upper-limit <number>) |
(test-c <function> [ <c-classic-object> ...]) |
(test-h <function> [ <c-classic-object> ...]) |
(and [ <concept> ...])

<rule-concept> ::= <concept> |
(computed-concept <function> [<c-classic object> . . .]) |
(computed-fillers <function> <role> [<c-classic object> ...])

<individual> ::= <host-individual> | <classic-individual>

<host-individual> ::= <integer> | <float> | <string>

<classic-individual> ::= <symbol>

<concept-name> ::= <symbol>

<role> ::= <symbol>



PROSE Knowledge Base 
Organization

Engineering documents that describe each
product, including comprehensive informa-
tion on the product’s acceptable configura-
tions, are the official source of product infor-
mation at AT&T. For example, the DACS
IV-2000 knowledge base represents a section
of the engineering drawings called Table A,
which describes all the pieces of equipment
that can be ordered for a product, the time at
which each item can be ordered, and the pro-
cedure for determining the desired quantity
of each item. Product experts often write con-
cise summaries of the information in Table A
using their own notation. The summaries
contain descriptions of simple constraints,
called compatibility rules by our experts, and
we have adopted this terminology.

Compatibility rules are generally derived
from the physical structure of the product.
However, other factors are sometimes
involved, and in general, it is not possible to
derive all compatibility rules by simply know-
ing the structure of the product. For example,
some compatibility rules represent artificial
constraints imposed by marketing, others
represent an attempt to make the product
easier to order, and still others represent con-
straints required for cost-effective manufac-
turing.

Figure 4 shows several compatibility rules
and their C-CLASSIC representations. The two
rules are associated with a type of DACS IV
shelf called a DS1 IF shelf. The description
that corresponds to a DS1 IF shelf is named
DS1_IF in the C-CLASSIC knowledge base.

For the purposes of ordering a product, a
DACS IV-2000 shelf has 6 attributes: signal
capacities for ds1 and ds3 signals (ds1_lines
and ds3_lines); the quantities of ds1 and ds3
circuit packs needed to satisfy a given signal
capacity (ds1_packs and ds3_packs); the
quantity of so-called common circuit packs (a
general term used for a bundle of power and
interfacing circuit packs); and pmgr-type (per-
formance-monitoring generator and receiver)
circuit packs, which are used to monitor the
ds1 and ds3 signals. The value restrictions
(for example, “(range 0 224)”) on DS1_IF in
figure 4 represent the legal ranges of these
attributes for a DSF IF shelf.

Because the pmgr packs and the ds1 packs
are inserted in the same slots on a DSF IF
(seven slots available in all), the rule
DS1_IF_max_ds1_packs limits the legal range
of ds1_packs with the simple formula
ds1_packs <= 7 - pmgr using a computed rule.

without losing previously asserted facts or
inferences.

At any given time, the collection of objects
that has been described to C-CLASSIC is
connected in a network called a classification
graph. When an object is defined or modified,
C-CLASSIC searches the classification graph to
find a location for inserting or relocating the
object. Changes in the graph might cause
objects already in the graph to be reclassified,
or they might cause one or more rules to be
fired.

During classification of a new object, a
contradiction between this object and the
existing classification graph might be discov-
ered, or a propagation might result in a con-
tradiction. To help the user recover from such
error conditions, C-CLASSIC has standardized
error-handling and error-reporting capabili-
ties. Error recovery is facilitated by storing
dependency information in the classification
graph. By including information that
indicates exactly how an individual attained
each portion of its structure, error recovery
can be done in a timely fashion. Using the
dependency information, C-CLASSIC also per-
mits users to retract previously asserted facts.

In addition to the C-CLASSIC interpreter, the
system includes a library of C-CLASSIC func-
tions that can be called from C. With this
library, a customized interface was developed
for PROSE. The system provides error data
through the C interface, enabling PROSE to
have its own customized error-handling pro-
cedures.

Articles

74 AI MAGAZINE

Figure 3. C-CLASSIC Object-Defining Functions.

(define-concept <concept-name> <concept> )
(define-primitive <concept-name> <concept> )
(define-disjoint-primitive <concept-name> <concept> <partition-index> )

define-concept defines an equivalence between <concept-name> and <concept>. define-
primitive and define-disjoint-primitive define <concept> as a necessary (but not sufficient)
condition for <concept-name>. <partition-index> is used for forcing disjointness among con-
cepts defined with the same defining concept.

(define-individual <classic-individual> [ <concept> ])

Host individuals (numbers and strings) are implicitly defined by the system. define-individual
defines a CLASSIC individual as an instance of <concept>, which defaults to classic-thing, the
ancestor of all CLASSIC concepts.

(define-role <role>)
(define-attribute <role>)

define-attribute implicitly forces all individuals that reference <role> to have exactly one filler.

(define-rule <rule> <named-concept> <rule-concept)



Calc is a general routine that accepts an alge-
braic expression and returns a C-CLASSIC con-
cept. In the case where pmgr is filled with the
integer 2, Calc returns the concept expression
(all ds1_packs (upper-limit 5)).

The expression (test-c fills? pmgr) is a filter
or guard that is used to determine when an
individual has enough information for com-
puted-concept Calc to be applied.

The set-descriptor function immediately
below DS1_IF_max_ds1_packs simply attaches
a string to the rule that elaborates what the
rule means. We anticipate that description
strings will eventually be used to enhance
error-handling capabilities or the ability of
PROSE to explain what it is doing in the con-
text of the application (the Common Lisp
version of CLASSIC already has a rudimentary
way to explain what it is doing). For now, the
explanations are simple English elaborations
of what the rules mean.

The rule DS1_IF_eq_ds1_packs describes
how to obtain a value for ds1_packs when the
ds1 capacity of a DS1 IF shelf is known. 

For a new configuration, information about
the user’s selection of features is passed to the
knowledge base by filling roles or adding val-
ue or number restrictions to individuals. As
information is added, these individuals are
classified under the DACS IV-2000 concepts,
triggering computed rules and causing the
appropriate integrity checks to be performed.
The rules sometimes cause propagations and
chaining such that additional integrity checks
are performed, and additional rules are
applied.

It is possible for a configuration to be over-
constrained. From the user’s point of view, a
configuration becomes overconstrained when
an incompatible set of features is selected.
Perhaps the user wants to have both feature x
and feature y, but feature x and y, when com-
bined, exceed some capacity limitation of the
equipment. In such cases, PROSE provides cus-
tomized error messages based on the C-CLASSIC

error-handling features. These messages
describe the problem adequately, but PROSE

lets the user decide what feature (or con-
straint) to change or withdraw.

The compatibility rule idea is rather deeply
imbedded in the existing process and the
thinking of the product experts. For example,
paper documents describe the compatibility
rules for each product. These documents are
used to support manual validation procedures
for incoming orders at the factory. 

Consequently, product experts are most
comfortable thinking in terms of compatibili-
ty rules. Although more satisfying representa-

tions might exist, we are convinced that rep-
resenting compatibility rules directly in C-
CLASSIC is currently the only realistic choice. C-
CLASSIC makes it possible to represent these
rules in a rather straightforward way so that
any time a rule must be changed, only a local-
ized piece of code is affected. We find the
expressiveness of the C-CLASSIC description
language, when enhanced with a few hand-
coded test functions, to be completely ade-
quate for our purposes.

Each product knowledge base in the PROSE

platform is not simply an undifferentiated
collection of compatibility rules. Rather, there
is a standard way in which such rules are
organized within a product knowledge base
for all products. We refer to the C-CLASSIC

structure that describes such an organization
as the order template.

The order template describes the items and
the logic for assembling a valid order. It is the
organizing principle lying behind each
knowledge base. Although it differs in certain
details from product to product, the general
outline of the order template is the same for
all products.

C-CLASSIC provides an important benefit that
we have not yet discussed. Because all objects

Articles

FALL 1993   75

(define-primitive DS1_IF
  (and
     shelf
     (all ds1_lines (range 0 224))
     (all ds1_packs (range 0 7))
     (all common_packs (range 0 1))
     (all pmgr (range 0 7))
     (all ds3_lines (range 0 0))
     (all ds3_packs (range 0 0))
     ) 
)

(define-rule DS1_IF_max_ds1_packs 
  (and
       DS1_IF
       (test-c fills? pmgr)
   )
   (computed-concept Calc  (ds1_packs <= 7 - pmgr))
 )

(set-descriptor DS1IF_max_ds1_packs 
  "There are seven slots in a DS1IF shelf for both pmgrs and DS1 packs")

(define-rule DS1IF_eq_ds1_packs 
  (and
     DS1_IF
     (test-c fills? ds1_lines common_packs) 
   )            
  (computed-concept  Calc (ds1_packs = (ds1_lines / 28) - common_packs))
)

(set-descriptor DS1IF_eq_ds1_packs
  "Formula for computing ds1_packs from ds1_capacity and common_packs")

Figure 4. DACS IV-2000 Knowledge for a DSF IF Shelf.



A high-level view of the PROSE software
architecture is shown in figure 5. The top of
the picture shows PROSE’s three user commu-
nities. The three user interfaces contain
menus and forms, pick-and-choose options,
and pop-up windows that make the applica-
tion user friendly.

Feature selections and choices are passed to
the PROSE knowledge base through an applica-
tion driver and a data manager. Report data
such as installer’s notes, equipment codes,
and a few other items are stored in flat files.
Orders and quotes are also saved in flat files
so that users can do some of the work on an
order, interrupt it, and then return later to
complete the same order.

Intelligent programs tend to be factored
into control, operations, and data at a high
level. The application drivers, the data man-
agers, and the knowledge base can be
thought of as the control, operations, and
data for PROSE. The following example illus-
trates this arrangement.

In the case of DACS IV-2000, the applica-
tion driver for FPQ (the pricing module) is
basically a simple search program over the
space of DACS IV-2000 configurations. An FPQ

user enters the desired DS1 and DS3 signal
capacity that defines the goal state for the
search program. For efficiency, the minimum
and maximum capacities of each bay type are
precompiled into the knowledge base and not
calculated dynamically.

Users are mostly interested in solutions
with the minimum number of bays because
the number of bays is the major determinant
of cost. The FPQ application driver searches
first for the one-bay solutions. If no one-bay
solution is found, it searches for two-bay
solutions, and so on. If solutions are found at
any level, the program continues to search
the level exhaustively and returns all solu-
tions to the user. Programs at the data man-
ager level support the search by supplying
successor nodes and data for testing.
Although the search algorithm is customized
for the application, it appears to be related to
iterative deepening (Korf 1985).

AT&T’s corporate systems are used to either
price the quote or send the order to the
appropriate AT&T factory. From the PROSE

side, these functions are performed by soft-
ware called the access management interface
and access manager. These modules provide
an application-to-application protocol
between PROSE and the mainframe applica-
tions.

PROSE also contains a suite of operations,
administration, and maintenance tools.

are classified in the C-CLASSIC system, the
description of each object must, in a sense, be
consistent with all other object descriptions.
Inconsistent descriptions are detected at com-
pilation time, that is, when the knowledge
base is loaded into C-CLASSIC. In the context of
the PROSE platform, the inconsistencies repre-
sent either incorrect knowledge or incorrectly
encoded knowledge, and they must be inves-
tigated and corrected. The detection of incon-
sistencies by C-CLASSIC has been an important
debugging tool within the PROSE platform.

PROSE Architecture
Three PROSE installations are currently up and
working. All are based on the SUN 490 plat-
form. The first, which processes orders for
transmission products, is located at AT&T’s
Merrimack Valley Works Data Center in Mas-
sachusetts. The second, used for Autoplex, is
at AT&T Bell Laboratories in Whippany, New
Jersey, and the third, a microelectronics sys-
tem, is at AT&T’s Dallas Works Computer
Center. Each PROSE installation allows access
to more than one product configurator.

PROSE users access the PROSE computer
through AT&T’s DATAKIT corporatewide area
network. The PROSE computers are also on the
corporate XNA network so that PROSE can
access AT&T’s mainframe computers.

Articles

76 AI MAGAZINE

FPQ
Interface

TCE
Interface

SPEC
Interface

Application Drivers and Report Generators

Data Manager

Report
Data

Orders 
and

Quote
s

Access
Mgr

DACS IV
2000
KB

Operations,
Administration,

and Maintenance
Tools

Factory
Systems

Customer
Service
Systems

Contracts
and

Prices

PROSE SYSTEM     

Figure 5. PROSE Software Architecture.



These tools assist in system administration,
including adding and removing users, doing
backups, and installing new software. Also
included here are tools to update the knowl-
edge base and other data files.

Although PROSE uses AI technology, the
majority of PROSE’s software is written using
conventional techniques. In fact, for the
DACS IV-2000 configurator, only 15 percent
of all PROSE code for the DACS IV-2000 makes
up the knowledge base. Thus, although the
knowledge base is a significant part of PROSE,
procedural programming is still necessary to
produce a useful, production-quality product.
This reinforces our previous experience with
AI applications (Wright, Zielinski, and Horton
1988; Ackroff et al. 1990). 

Most of the non-CLASSIC code is reusable
and does not need to be rewritten for new
product configurators. Currently, to produce a
new configurator, the major pieces that have
to be rewritten are the user interface and the
knowledge base. Although these modules will
always be product specific, and new ones
must be provided for each configurator, we
are moving toward the development of
standard methodologies that will greatly
improve our productivity for product-specific
modules.

PROSE Deployment
The PROSE platform was designed and devel-
oped by a team of seven system engineers and
developers. The first release of PROSE, release
1.0, had a production interval from concep-
tion to delivery of 8 months. 

Use
Table 1 shows the PROSE 1.0 schedule from ini-
tial contact with the customer to the released
product and includes knowledge base and
application design, development, system test,
and documentation.

Table 1 does not cover the development of
C-CLASSIC. C-CLASSIC was available before PROSE

1.0 development began. Table 1 should not be
construed as representing the effort needed to
develop and deploy a new product configura-
tor under the PROSE platform. Development
schedules for new products today are a frac-
tion of what they were for the first product
configurator in 1990.

Currently, PROSE is used in all AT&T-NS sales
regions. PROSE users include regional engi-
neers, technical consultants, account execu-
tives, members of the design community, and
product management. We expect that new
configurators for additional products will be

developed under the PROSE platform in the
coming year.

Benefits from Use
Assuming the continued deployment and use
of PROSE in the field, the following benefits are
expected in AT&T’s order-processing environ-
ment: (1) a reduction in operating costs
because of the elimination of errors on orders
detected by AT&T clerks and the order rework
that is carried out to clear these errors; (2) a
reduction in operating costs with the consoli-
dation of databases and positions; (3) a
decrease in the interval for updating product
design changes in the order process infras-
tructure by eliminating manual interpretation
and transcription of drawing information; (4)
support for key organizational changes and
business practices within AT&T-NS; (5) a
decrease in the order process interval by
allowing a user to configure, edit, and send
the order to the AT&T factory interactively.
Existing order process intervals range between
5 percent and 20 percent of what they were
before PROSE was introduced.

Future Plans
We have plans for platform enhancements
and growth in four areas: (1) knowledge base
development and maintenance tools, (2)
generic application programs, (3) reusability
of the product knowledge, and (4) support of
new products.

Knowledge Base Development and Mainte-
nance Tools We would like a product ex-
pert to update the knowledge base. The
product expert is usually not a programmer
and has little or no experience using C-CLASSIC.
To make it easy for the product expert to
update the knowledge base, we would like to
supply tools to update the product informa-
tion easily. We are currently exploring ways of
integrating PROSE with the existing design cap-
ture tools being used within AT&T-NS.

Articles

FALL 1993   77

January 1, 1990 Initial contact made with customers.

April 1, 1990 DACS IV-2000 is selected as first product offering. PROSE

knowledge base development begins.

June 1, 1990 PROSE 1.0 platform development begins.

August 30, 1990 PROSE 1.0 is available. First DACS IV-2000 order is processed.

Table 1. PROSE Development and Release Schedule.



From our
point of

view… we
feel that

the use of 
C-CLASSIC
and the 

architec-
ture it

encourages
has 

contributed
something
important 

to the 
PROSE

project

er-level configurators. For example, the
equipment currently available through PROSE

is used by engineers to piece together ele-
ments of a working telecommunications net-
work.

SLC series 5 carrier equipment and DDM-
2000 shelves, which are two kinds of trans-
mission equipment available through the
PROSE platform, can be combined to make
something called an access node. There is no
reason why a higher-level template couldn’t
be put together that describes how to assem-
ble an access node. In theory, one could con-
tinue adding more structure above the exist-
ing product knowledge to provide the
customer with higher and higher–level solu-
tions without changing or replicating the
product knowledge at the lower levels.

Support of New Products    PROSE currently
handles configuring and order processing for
the AT&T-NS DACS IV-2000, the DACS II CEF

cross-connect, the SLC series 5 carrier system,
the E2 power system, the DDM-2000 multi-
plexer, and Autoplex remote cell sites.
Although we expect to spend some of our
time on knowledge base maintenance and
user interface enhancement, new product
configurators are planned for the PROSE plat-
form in the coming year.

Discussion
In this final section, we focus on whether we
have selected a good software architecture for
the PROSE configurator. From our point of
view as software developers, we feel that the
use of C-CLASSIC and the architecture it
encourages has contributed something
important to the PROSE project.

Change and modification is an integral
part of the process of developing a configura-
tor, and telecommunications products
change continuously in response to the mar-
ketplace. Further, although having well-
designed products helps, change is inevitable
for reasons having nothing to do with prod-
uct design. As the business needs of our cus-
tomers change, they desire new capabilities
in the products they buy, and AT&T responds
accordingly. The key point is that the pace
and nature of the changes are out of the
hands of the software developer. Products
change in response to marketplace forces,
and the configurators must be ready when
the new products are ready.

Planning for sometimes arbitrary but nec-
essary change and using an architecture that
is responsive are essential if PROSE is to be a
successful product. It should be no surprise to

In addition, we feel that it is possible to
develop an application-specific methodology
for developing a new product knowledge
base. The methodology would exploit the
capabilities of C-CLASSIC to identify redundan-
cies, contradictions, and incompleteness in
the product knowledge.

Interestingly enough, we think there are
common organizing principles present in all
the existing product knowledge bases. These
commonalities can serve as the guidelines for
a standardized knowledge engineering
methodology that could be replicated and
improved for the development of all new
PROSE knowledge bases.

We are currently at work developing this
methodology. The first step in our strategy is
to describe all the kinds of knowledge that
have to be collected to develop a new product
knowledge base as well as a standard format
for recording this knowledge. Step two will be
to write a translator that can turn the product
knowledge into a C-CLASSIC knowledge base. A
working prototype of such a translator cur-
rently exists and is adequate for handling all
the products currently available through
PROSE.

Generic Application Programs    Currently,
a new user interface, as well as certain other
application programs (such as error-handling
routines), have to be written to reflect the
structure of a new product. Because all the
information about the product is or could be
located in the knowledge base, it would save
time if PROSE relied on general application
programs that queried for data encoded in
the knowledge base. Thus, to develop a new
configurator, one would collect all the prod-
uct-specific information, put it in the stan-
dard format, and run the translator.

Because the benefits are so significant, we
are beginning to think about the architecture
of a generic collection of application pro-
grams that could be used with any product
knowledge base. For example, the user inter-
face could query the knowledge base, follow-
ing accepted conventions, to determine what
information to present to the user. Because
the correspondence between the knowledge
base and the menu structure in PROSE’s user
interface is fairly straightforward, we feel that
this area is worth pursuing.

Reusability of the Product Knowledge
Earlier we discussed one form of reuse—that
which occurs when several application pro-
grams access the same product knowledge.
However, it seems to us that we can take
advantage of the modularity provided by C-
CLASSIC’s object-centered nature to build high-

Articles

78 AI MAGAZINE



the AI community that factoring the product
into control, operations, and data modules at
a high level has proved to be a key element in
the ability of PROSE to deal with change.

A few examples might help us make our
point. Not long after PROSE 1.0 was intro-
duced, some rather sweeping changes in the
DACS IV-2000 product, collectively called
DACS-IV Generic 2, were introduced. These
changes were implemented in the PROSE

knowledge base without affecting PROSE at
either the data manager or the application
manager level. Further, simply by modifying
the knowledge base, these changes were made
available to the FPQ, SPEC, and TCE applications
simultaneously.

Similarly, as PROSE was introduced to new
customers, we found that some customers
were only interested in seeing certain classes
of configurations in the output of the DACS
IV-2000 FPQ. These changes were implement-
ed through localized changes in the FPQ

search algorithm, essentially by allowing the
customer additional control over the
definition of a goal state through the user
interface.

C-CLASSIC itself plays a key role in the man-
agement of change. Although this system is
moderately sized, without some form of
mechanical assistance, the knowledge engi-
neer has a difficult job maintaining consisten-
cy while frequently updating the descriptions
with new product knowledge.

We find that the consistency checking pro-
vided by C-CLASSIC feels somewhat like pro-
gramming in a strongly typed language:
Many errors are detected in the compilation
stage. The bottom line is that the knowledge
engineer can feel confident about attacking
changes in the product structure, making it
feasible to keep pace with new product
knowledge.

Acknowledgments
No AI application like PROSE becomes success-
ful without contributions from many diverse
sources. The number of people who have con-
tributed at different times during the project
makes it impossible to list everyone by name.
Briefly though, the research department at
AT&T Bell Laboratories headed by Ron Brach-
man helped us in ways too many to describe.
Clearly, the developers and system engineers
in Harry Moore’s and Jay Berman’s organiza-
tions and their respective managements were
essential. They turned a good idea into reality,
which is probably the toughest job of all.
Many forward-looking people at AT&T-NS
provided support at the right times. In partic-

ular, we would like to thank John Ehasz and
Dennis Dibert, who believed in what we were
doing and were willing to try something new.

Notes
1. DS1 (1.5 megabytes [MB] a second or the equiva-
lent of 24 circuits) and DS3 (45 MB a second or the
equivalent of 672 circuits) are standard digital
transmission rates in the United States.

2. In some cases, a small amount of additional
information, such as the desired location of certain
circuit packs, might be required.

3. A prototype of the PROSE system was developed
using Common Lisp CLASSIC.

References
Ackroff, J.; Surko, P.; Vesonder, G.; and Wright, J.
1990. SARTS AutoTest-2. In Practical Experience in
Building Expert Systems, ed. M. Bramer, 209–226.
New York: John Wiley & Sons.

Bachant, J. 1988. RIME: Preliminary Work toward a
Knowledge-Acquisition Tool. In Automating Knowl-
edge Acquisition for Expert Systems, ed. S. Marcus,
201–224. Norwell, Mass.: Kluwer Academic Publish-
ers.

Barker, V., and O’Connor, D. 1989. Expert Systems
for Configuration at Digital: XCON and Beyond.
Communications of the ACM 32(3): 298–318.

Borgida, A.; Brachman, R.; McGuinness, D.; and
Alperin-Resnick, L. 1989. CLASSIC: A Structural Data
Model for Objects. In Proceedings of the 1989 ACM
SIGMOD International Conference of Data, 59–67.
New York: Association of Computing Machinery.

Brachman, R., and Schmolze, J. 1985. An Overview
of the KL-ONE Knowledge Representation System.
Cognitive Science 9(2): 171–216.

Brachman, R.; Fikes, R.; and Levesque, H. 1983.
KRYPTON: A Functional Approach to Knowledge Rep-
resentation. IEEE Computer (Special Issue on Knowl-
edge Representation) 16(10): 67–73.

Korf, R. 1985. Depth-First Iterative Deepening: An
Optimal Admissible Tree Search. Artificial Intelli-
gence 27:97–109.

Levesque, H., and Brachman, R. 1987. Expressive-
ness and Tractability in Knowledge Representation
and Reasoning. Computational Intelligence (3)2:
78–93.

McDermott, J. 1982. R1: A Rule-Based Configurer of
Computer Systems. Artificial Intelligence 19(1):
39–88.

McDermott, J., and Bachant, J. 1984. R1 Revisited:
Four Years in the Trenches. AI Magazine 5(3): 21–32.

O’Brien, J.; Brice, H.; and Hatfield, S. 1989. The
Ford Motor Company Direct Labor Management
System. In Innovative Applications in Artificial Intelli-
gence, eds. H. Schorr and A. Rappaport, 81–87. Men-
lo Park, Calif.: AAAI Press.

Patel-Schneider, P. 1984. Small Can Be Beautiful in
Knowledge Representation, AI Technical Report
Number 37, Schlumberger Palo Alto Research, Palo
Alto, California.

Weixelbaum, E. 1991. C-CLASSIC Reference Manual,

Articles

FALL 1993   79



who joined Bell Labs in 1983, has a B.S. in mathe-
matics from Brooklyn College and an M.S. and a
Ph.D. in computer science in the area of formal
languages from the Courant Institute at New York
University.

Gregg Vesonder is technical manager
of the Object-Oriented and Artificial
Intelligence Technology Group at
AT&T Bell Laboratories, responsible
for transferring object-oriented and
AI technology to the AT&T business
units. Vesonder received a B.A. in

psychology from the University of Notre Dame and
an M.S. and a Ph.D. in cognitive psychology from
the University of Pittsburgh. He was named a Bell
Labs fellow for his work on AI.

Jay Berman is a technical manager
in the AT&T Bell Laboratories QUEST
organization. He is responsible for
working with the AT&T business
units to reengineer the product- and
service-provisioning processes.
Berman is also the product manager

for the PROSE product offering, which includes
defining the future architectural direction of the
product to meet the needs of AT&T and its cus-
tomers. He received his B.S. in electrical engineer-
ing in 1978 from The Cooper Union and his M.S.E.
in electrical engineering and computer science in
1979 from Princeton University. Berman is also a
member of the Institute of Electrical and Electron-
ics Engineers.

Release 1.0, Technical Memorandum 59620-
910731-017M, AT&T Bell Laboratories, Murray Hill,
New Jersey.

Woods, W., and Schmolze, J. 1993. The KL-ONE Fam-
ily: Computer and Mathematics with Applications.
Artificial Intelligence (Special Issue on Semantic Net-
works). Forthcoming.

Wright, J.; Zielinski, J.; Horton, E. 1988. Expert Sys-
tems Development: The ACE System. In Expert Sys-
tems Applications to Telecommunications, ed. J.
Liebowitz, 45–72. New York: John Wiley & Sons.

Jon Wright is a distinguished mem-
ber of the technical staff in the Soft-
ware Technology Center at AT&T Bell
Laboratories, Murray Hill, New Jersey.
PROSE is one of several AI applications
in the telecommunications domain
that he has helped successfully bring

into the world. He received a Ph.D. in cognitive
psychology from Rice University in 1978.

Karen Brown is currently a member
of the technical staff in the Software
Technology Center at AT&T Bell Lab-
oratories, Murray Hill, New Jersey. In
addition to her work with PROSE , she
has been both a system engineer and
a software developer on several

telecommunications and business operations pro-
jects at AT&T. She originated the concept of an AI-
based configurator platform that led to the PROSE

project. She received an M.S.E. in computer and
information science from the University of Penn-
sylvania in 1983.

Stephen Palmer is a member of the
technical staff in the PROSE Develop-
ment Group at AT&T Bell Laborato-
ries, Holmdel, New Jersey. He is the
lead developer on PROSE and has
worked on both hardware and soft-
ware projects at Bell Labs. He holds

an M.S. in electrical engineering from Monmouth
College.

Harry Moore is a technical manager
in the QUEST Partnership at AT&T
Bell Laboratories, Holmdel, New Jer-
sey. He has managed the develop-
ment of many successful information
systems, including PROSE. He received
an M.S. in electrical engineering from

Columbia University in 1979.

Elia Weixelbaum is a member of the
technical staff in the Software Tech-
nology Center at AT&T Bell Laborato-
ries, Murray Hill, New Jersey. He is
responsible for the development of
the C-CLASSIC knowledge representa-
tion language as well as several

telecommunications expert systems. Weixelbaum,

Articles

80 AI MAGAZINE

Important Deadlines:
AAAI–94 Paper Submissions: 

January 24, 1994

IAAI–6 Paper Submissions: 
January 17, 1994

AAAI and IAAI Tutorial Proposals: 
1 November 1993

AAAI–94 Videotape Presentation 
Submissions: January 31, 1994

AAAI-94 Workshop Proposals:
October 15, 1993

1994 Spring Symposium Series 
Submissions: October 15, 1993




