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The goal location g is assumed to be
from the set {g1,g2,…,gm}. The cost cri-
terion c is assumed to be from the set
{c1,c2,…,cn}. Research in the field of
intelligent planning assists in the
synthesis of candidate cost criteria;
for example, the methods of Donald
and Xavier (1988), Kanayama and
DeHaan (1988), Lee and Preparata
(1984), Mitchell (1986, 1988), Sharir
and Schorr (1986), and Suh and Shin
(1988) investigate path planning
with the cost criteria of distance,
safety, visibility, and time. A candi-
date mission objective (g,c) describes a
transit mission decision-making strat-
egy. In intelligent path prediction,
one seeks the particular candidate
mission objective that best explains
the observed motion. After establish-
ing the predicted mission objective,
the future path leading to the goal lo-
cation is predicted.

An optimal path from any point in
the environment to a particular goal
location g can be obtained by propa-
gating a reverse search based on a
cost criterion c from the goal location
g; Dijkstra’s algorithm is applicable
(Dijkstra 1959; Hart, Nilsson, and
Raphael 1968; Mitchell 1986, 1988;
Nilsson 1980). The search pointers
indicate the optimal solution paths
from any location within the search
frontier to the goal location g. Re-
verse-search results maintained in a
gradient field representation have
utility in path-planning applications
for mobile robots (Payton 1990); in
this dissertation, reverse-search re-
sults provide useful information for
the purpose of path prediction.

A gradient field representation of a
route plan provides, for each location
in the map, the best direction to trav-

The problem of predicting the
motion of a vehicle has been
investigated by several re-

searchers. Many have used Kalman
filter techniques based on the equa-
tions of vehicle motion; these tech-
niques most accurately predict short-
term motion. In contrast, my disser-
tation (Krozel 1992)1 presents a
methodology for intelligent path pre-
diction, where predicting the motion
of an observed vehicle is performed
by reasoning about the decision-mak-
ing strategy of the vehicle’s operator.
With intelligent path prediction, the
long-term mission objective of the
vehicle is being predicted in addition
to the short-term motion. Thus,
when applied to predicting the mo-
tion of a car, an intelligent predictor
will attempt to predict the final desti-
nation—say, for example, the vehicle
appears to be going to the post office
or the art museum—in addition to
predicting which streets will be used.
The theory is also applicable to pre-
dicting air vehicle travel, so that for a
military application, the target (from
a set of plausible targets) and the
threat-avoidance policy (from a set of
plausible policies), in addition to the
route, can be predicted.

Predicting a Mission 
Objective

The first investigation is to develop a
method for identifying a decision-
making strategy that seemingly ex-
plains the vehicle’s motion. Assume
that the operator of the vehicle is ex-
ecuting a solution to the FindPath
problem from robotics: Find a path
from a start location s0 to a goal loca-
tion g guided by the cost criteria c.

el to reach a goal location.  For each
different candidate mission objective
(g,c), a different gradient field can be
obtained. Given a cost criterion that
defines a cost per unit length c to a
point ζ in the environment, we de-
fine the path cost to be the integral
of the cost over the path π.  For each
point ζ in the environment, there is
an optimal path to the goal location
g with the minimum cost C*(ζ).  The
scalar function C* suggests a gradient
direction that can be defined to be
the unit tangent vector in the direc-
tion of an optimal path from the
point ζ to the goal location g.

The candidate mission objective
that best explains the observed  mo-
tion is selected based on a path simi-
larity correlation measure. A local and
global measure are created.  First, the
local path correlation measure is the
dot product between the optimal di-
rection to proceed at a point and the
path tangency direction indicated by
the observed vehicle path π. The
global path correlation measure is re-
ferred to as the path similarity value.
The path-similarity value σ is the in-
tegral of the local path-similarity val-
ue, integrated over the path π and
normalized with respect to the total
path cost Cπ.  The path-similarity val-
ue σ has a range between –1 and 1.
Path similarity gives a means for cor-
relating a possible mission objective
(g,c) with the observed path π.  If the
observed path tangency information
strongly correlates with (i.e., near 1)
the reverse-search gradient informa-
tion, then the mission objective (g,c)
explains the observed motion reason-
ably well and can be a sound basis for
predicting future motion. 

In the dissertation, other path-
similarity correlation measures are al-
so defined. A moving data window
establishes a path-similarity value us-
ing a limited amount of data, disre-
garding path information outside the
moving window. If either the goal lo-
cation or the cost criterion used for
travel changes while the vehicle is
being observed, then the path-simi-
larity measure might be biased by old
data, data that might deceive the pre-
dictor from correlating the path with
the new goal location or new cost cri-
terion. A moving-window predictor
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will forget data that are outside a
window, thus considering only the
latest path information in making a
prediction. Additionally, the data
within the moving window can be
weighted. For example, in a fading-
memory predictor, the most recent
data are weighted highest. Moving-
window predictors have utility when
the vehicle does not have a constant
mission objective.

The solution approach proposed
for intelligent path prediction initial-
ly establishes a collection of results
from several reverse searches. For
each possible candidate mission ob-
jective (g,c) with g ∈ {g1,g2,…,gm} and
c ∈ {c1,c2,…,cn}, a search is performed
from the goal location g back to the
start location s0 governed by the cost
criterion c. These searches establish
the gradient direction information
for each candidate mission objective
(g,c). Because computing these
searches is the most computationally
expensive task in the prediction pro-
cess, this gradient direction informa-
tion is computed offline (before pro-
cessing any data describing the vehi-
cle’s motion) and is stored so that the
path-similarity values can quickly be
computed (linearly with respect to
the path data) as observed path data
become available. As the history of
the observed path evolves, a predict-
ed mission objective (g,c) is selected
based on maximizing the path-simi-
larity value over all candidate mis-
sion objectives. The process repeats
recursively for all incoming data, so
that at any time, the best prediction
is provided based on the latest avail-
able information. Finally, after a pre-
dicted mission objective (g,c) is select-
ed, the predicted future path is estab-
lished by following the gradient
direction information from the cur-
rent vehicle location to the predicted
goal location g.

Proposing a 
Goal Location

The second investigation is to develop
a method for automatically proposing
a candidate goal location for the ob-
served vehicle. For intelligent predic-
tion, if candidate goal locations are
not readily available, then a prudent

selection of a candidate goal location
might be necessary. Given a particular
cost criterion c, a region of plausible
goal locations is proposed, and these
locations are ranked based on some
heuristic merit.

The definition of a region of plau-
sible goal locations is developed
based on forward-search results.
Based on the optimal-path map, a
generalization of the shortest-path
map (Lee and Preparata 1984;
Mitchell 1986), a region of plausible
goal locations is defined for a given
cost criterion. A critical assumption
is that the vehicle arrives at its cur-
rent location using an optimal path
and will maintain an optimal path in
the future. Alternatively, if the ob-
served path is suboptimal, then the
region of plausible goal locations can
be defined, assuming that the future
motion might also be suboptimal. To
this end, an additional technique for
defining the region of plausible goal
locations is developed based on ε-op-
timal paths. A suboptimal path is a
path that is within some tolerance ε
of optimal with respect to cost crite-
rion c. An ε-optimal path is a path
that is no more than (1 + ε) times the
optimal cost for traveling between
two given points. Using the toler-
ance ε observed in the past motion, a
region of plausible goal locations is
defined to account for suboptimal
motion in the future. 

Heuristic methods for specifying a
particular goal location from the re-
gion of plausible goal locations are de-
scribed next. Two criterion for ranking
plausible goal locations are given: One
integrates the results from the region
of plausible goal locations for some or
all of the history of the path data; if
desired, weighting data can be per-
formed. An alternative heuristic
method is to rank a point based on
how many of the predicted future
paths lead through the point. The
point in the environment that has the
highest heuristic value is then pro-
posed as the candidate goal location.

Note
1. A copy of this dissertation can be
obtained by writing the author at the
Hughes AI Center, RL 96, 3011 Mal-
ibu Canyon Road, Malibu, CA 90265.

A copy of this dissertation can also
be obtained from University Micro-
films International.
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