Intelligent Path Prediction for Vehicular Travel

Jimmy Krozel

The problem of predicting the motion of a vehicle has been investigated by several researchers. Many have used Kalman filter techniques based on the equations of vehicle motion; these techniques most accurately predict short-term motion. In contrast, my dissertation (Krozel 1992) presents a methodology for intelligent path prediction, where predicting the motion of an observed vehicle is performed by reasoning about the decision-making strategy of the vehicle’s operator. With intelligent path prediction, the long-term mission objective of the vehicle is being predicted in addition to the short-term motion. Thus, when applied to predicting the motion of a car, an intelligent predictor will attempt to predict the final destination—say, for example, the vehicle appears to be going to the post office or the art museum—in addition to predicting which streets will be used. The theory is also applicable to predicting air vehicle travel, so that for a military application, the target (from a set of plausible targets) and the threat-avoidance policy (from a set of plausible policies), in addition to the route, can be predicted.

Predicting a Mission Objective

The first investigation is to develop a method for identifying a decision-making strategy that seemingly explains the vehicle’s motion. Assume that the operator of the vehicle is executing a solution to the FindPath problem from robotics: Find a path from a start location s to a goal location g guided by the cost criteria c. The goal location g is assumed to be from the set $[g_1, g_2, \ldots, g_m]$. The cost criterion c is assumed to be from the set $[c_1, c_2, \ldots, c_n]$. Research in the field of intelligent planning assists in the synthesis of candidate cost criteria; for example, the methods of Donald and Xavier (1988), Kanayama and DeHaan (1988), Lee and Preparata (1984), Mitchell (1986, 1988), Sharir and Schorr (1986), and Suh and Shin (1988) investigate path planning with the cost criteria of distance, safety, visibility, and time. A candidate mission objective (g, c) describes a transit mission decision-making strategy. In intelligent path prediction, one seeks the particular candidate mission objective that best explains the observed motion. After establishing the predicted mission objective, the future path leading to the goal location is predicted.

An optimal path from any point in the environment to a particular goal location g can be obtained by propagating a reverse search based on a cost criterion c from the goal location g; Dijkstra’s algorithm is applicable (Dijkstra 1959; Hart, Nilsson, and Raphael 1968; Mitchell 1986, 1988; Nilsson 1980). The search pointers indicate the optimal solution paths from any location within the search frontier to the goal location g. Reverse-search results maintained in a gradient field representation have utility in path-planning applications for mobile robots (Payton 1990); in this dissertation, reverse-search results provide useful information for the purpose of path prediction.

A gradient field representation of a route plan provides, for each location in the map, the best direction to travel to reach a goal location. For each different candidate mission objective (g, c), a different gradient field can be obtained. Given a cost criterion that defines a cost per unit length c to a point ζ in the environment, we define the path cost to be the integral of the cost over the path π. For each point ζ in the environment, there is an optimal path to the goal location g with the minimum cost $C^*(\zeta)$. The scalar function C^* suggests a gradient direction that can be defined to be the unit tangent vector in the direction of an optimal path from the point ζ to the goal location g.

The candidate mission objective that best explains the observed motion is selected based on a path similarity correlation measure. A local and global measure are created. First, the local path correlation measure is the dot product between the optimal direction to proceed at a point and the path tangency direction indicated by the observed vehicle path π. The global path correlation measure is referred to as the path similarity value. The path-similarity value σ is the integral of the local path-similarity value, integrated over the path π and normalized with respect to the total path cost $C\pi$. The path-similarity value σ has a range between –1 and 1. Path similarity gives a means for correlating a possible mission objective (g, c) with the observed path π. If the observed path tangency information strongly correlates with (i.e., near 1) the reverse-search gradient information, then the mission objective (g, c) explains the observed motion reasonably well and can be a sound basis for predicting future motion.

In the dissertation, other path-similarity correlation measures are also defined. A moving data window establishes a path-similarity value using a limited amount of data, disregarding path information outside the moving window. If either the goal location or the cost criterion used for travel changes while the vehicle is being observed, then the path-similarity measure might be biased by old data, data that might deceive the predictor from correlating the path with the new goal location or new cost criterion. A moving-window predictor
will not readily available, then a prudent
probability that the vehicle arrives at its
current location using an optimal path
and will maintain an optimal path in
the future. Alternatively, if the ob-
served path is suboptimal, then the
region of plausible goal locations can
be defined, assuming that the future
motion might also be suboptimal. To
this end, an additional technique for
defining the region of plausible goal
locations is developed based on e-
optimal paths. A suboptimal path is a
path that is within some tolerance e
of optimal with respect to cost crite-
ron c. An e-optimal path is a path
that is no more than (1 + e) times
the optimal cost for traveling between
two given points. Using the toler-
ance e observed in the past motion,
a region of plausible goal locations
is defined to account for suboptimal
motion in the future.

Heuristic methods for specifying a
particular goal location from the
region of plausible goal locations are
described next. Two criterion for ranking
plausible goal locations are given: One
integrates the results from the region
of plausible goal locations for some or
all of the history of the path data; if
desired, weighting data can be per-
formed. An alternative heuristic
method is to rank a point based on
how many of the predicted future
paths lead through the point. The
point in the environment that has the
highest heuristic value is then pro-
posed as the candidate goal location.

Note
1. A copy of this dissertation can be
obtained by writing the author at the
Hughes AI Center, RL 96, 3011 Mal-
ibu Canyon Road, Malibu, CA 90265.

A copy of this dissertation can also
be obtained from University Micro-
films International.

References
Dijkstra, E. 1959. A Note on Two Prob-
lems in Connexion with Graphs. Nu-
Donald, B., and Xavier, P. 1988. A Prov-
ably Good Approximation Algorithm for
Optimal-Time Trajectory Planning, Tech-
nical Report, TR88-947, Dept. of Computer
Science, Cornell Univ.
Hart, P.; Nilsson, N.; and Raphael, B.
1968. A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths. IEEE
Transactions on Systems, Science, and Cy-
Kanayama, Y., and DeHaan, G. 1988. A
Mathematical Theory of Safe Path Plan-
of Computer Science, Univ. of California
at Santa Barbara.
for Vehicular Travel, Ph.D. diss., School of
Aeronautics and Astronautics, Purdue Univ.
Shortest Paths in the Presence of Rectilin-
proach to Some Problems in Terrain Navi-
gation. Artificial Intelligence 37(1–3):
171–201.
Ph.D. diss., Dept. of Operations Research,
Stanford Univ.
Nilsson, N. 1980. Principles of Artificial In-
telligence. San Mateo, Calif.: Morgan Kauf-
mann.
Payton, D. 1990. Internalized Plans: A
Representation for Action Resources.
Robotics and Autonomous Systems 6(1–2):
89–103.
Sharir, M., and Schorr, A. 1986. On Short-
est Paths in Polyhedral Spaces. Society for
Industrial and Applied Mathematics Journal
Dynamic Programming Approach to
Robot-Path Planning with a Distance-Safe-
ty Criterion. IEEE Journal of Robotics and

Jimmy Krozel is a member of the techni-
cal staff in the Autonomous Systems De-
partment of the AI Center at Hughes Re-
search Laboratories in Malibu, California.
His research interests include computa-
tional geometry, search techniques, mis-
sion planning, navigation, guidance, con-
trol, and prediction.