
Paradigms of Artificial Intelligence Pro-
gramming: Case Studies in Common
Lisp, Peter Norvig, Morgan Kaufmann
Publishers, San Mateo, California,
1992, 946 pp., $49.95, ISBN 1-
55860191-0.

Norvig’s Paradigms of Artificial
Intelligence Programming is a
splendid work that skillfully

weaves together three threads: (1) AI,
(2) programming skills in general,
and (3) programming skills in Com-
mon Lisp in particular. It is written
with great intelligence and insight
and can benefit a wide audience from
advanced undergraduates to seasoned
researchers. It is a book that should
be in the permanent collection of
every AI aficionado because it is such
a rich source of ideas and examples.
It is not a full-blown AI text; it does
not depend on the reader having any
previous knowledge of AI but does
assume some basic knowledge of
Lisp. I have used this book with great
success as a supplement in an intro-
ductory graduate AI course, the text
in a graduate AI course focusing on
techniques, and a resource in my
research group.

The sheer amount of material is
impressive, including symbolic math-
ematics, logic programming, natural
language, expert systems, games, and
more. Perhaps even more important,
however, are the numerous para-
digms introduced, in keeping with
the book’s title. These paradigms
include data-driven programming,

search and heuristics, pattern match-
ing, rule-based translation, efficiency-
related caching and compiling, the
creation of object-based facilities,
compilation to an abstract machine,
and troubleshooting and trouble-
avoidance strategies. The most
notable omission from the book is
any discussion of machine learning, a
topic of growing importance in all
areas of AI.

The book is nearly 1,000 pages
long with a historical end note in
each chapter, extensive references,
and a thorough index. The 10,000
lines of source code discussed in
detail in the book are available
online. Each of the 25 chapters
includes approximately 10 exercises
of widely varying difficulty or time to
complete. Each major section of each
chapter includes a glossary, a table
that lists the macros, top-level func-
tions, special variables, data types,
functions, selected Common Lisp
functions, and previously defined
functions that are discussed and used
in the section. The book includes
pointers to other major AI software
sources, although these pointers are
mostly superseded by the large collec-
tion in /pub/ai at ftp.cs.cmu.edu (also
available on CD-ROM). The frequent-
ly asked questions (FAQs) in the
comp.lang.lisp newsgroup are anoth-
er useful adjunct to the text.

The book starts with a refresher on
Lisp. Norvig states that one of the
best ways to learn how to program
well is to read lots of good code. The

code in this book is well written and
edifying and pleasurable to read,
although it is sometimes rather chal-
lenging. Later chapters deal with
advanced features of Lisp and trou-
bleshooting. He argues cogently for
the use of Lisp because it is open end-
ed and has uniform data structures
and the ability to manipulate and
generate code through macros and
other mechanisms. CLOS is not used
in the book, but a limited form of
object-oriented programming is
developed using closures. Modern
Lisps can also be efficient, and the
book is replete with examples of
strategies to produce fast code.

The second chapter, “A Simple Lisp
Program,” illustrates the author’s
strategy of successive refinement. The
example is a program to generate
English sentences, starting with a set
of nested function calls. This pro-
gram has obvious problems, so a sec-
ond, more modular, data-driven solu-
tion is developed that separates the
grammar from the interpreter. Then,
a tree printer is integrated into the
generator. These themes of successive
refinement and data-driven program-
ming are pursued with great success
throughout the book.

Much of the first part of the book
is devoted to exploring early AI
paradigms by recreating historically
important systems. The first is Newell
and Simon’s GENERAL PROBLEM SOLVER

(GPS). The treatment of GPS is good,
presenting many useful ideas and
pedagogical strategies in the clear and
interesting style that pervades the
book. A systematic strategy is intro-
duced for system development, going
from description to specification to
implementation to testing and, final-
ly, to debugging and analysis. Norvig
discusses five problems encountered
with the simple STRIPS-based GPS

implementation, followed by the
implementation of a version with a
somewhat different architecture that
solves the problems raised. Instead of
generating a new set of data to satisfy

WINTER 1994 75

Book Reviews

Book Reviews
Paradigms of Artificial

Intelligence Programming:
Case Studies in Common Lisp

Robert P. Futrelle

AI Magazine Volume 15 Number 4 (1994) (© AAAI)

the newly required format, he writes
a function that converts the old data
format to the new. Elegant and sensi-
ble touches such as this one occur
throughout the book. The enhanced
GPS is applied to mazes, monkey and
bananas, and the blocks world. The
blocks world application points out
the fundamental limitations of the
GPS paradigm, and the chapter ends
with some sobering reflections on
why GPS cannot handle a wide range
of important problems or at least can-
not do so without unacceptable com-
putational costs.

ELIZA is treated briefly in a similar
vein. Tools for pattern matching are
developed. A general-purpose rule-
based translator, mapping from user
input to action, is constructed using
the pattern matcher and is applied to
ELIZA and GPS. The book takes pains to
point out just how brittle the ELIZA

paradigm is.

get the unknown values. This task
seems daunting, but it’s all accom-
plished in 16 pages of lucid code and
text. The book points out that some
of the approaches used in the STUDENT

system have not survived, especially
its handling of natural language. It
further points out that symbolic inte-
gration was once an outstanding AI
problem but is now accomplished by
deterministic algorithms and is avail-
able in packages for PCs. There are
chapters later in the book that deal
with natural language and symbolic
mathematics in a more sophisticated
and up-to-date manner and include
case studies in performance enhance-
ment. The most advanced chapters
on symbolic mathematics deal with
rather complicated material and will
not be easy for some readers.

Two chapters are devoted to effi-
ciency issues and include material
that is hard to find elsewhere. Most

is refreshingly different from the
many standard AI textbook treat-
ments. The limitations of the predi-
cate calculus and Prolog are discussed,
and partial workarounds for them are
developed by altering the Prolog sys-
tem. The problems treated in this way
include efficiency of indexing and
completeness. The expressiveness
problem is dealt with by building
some facilities for higher-order predi-
cations, frames, possible worlds, and
negation and disjunction.

Many AI students are eager to learn
about expert systems. The book
rewards them with a fine chapter
devoted to a reconstruction of
EMYCIN, with medical rules added to
build MYCIN. The development is
entirely within Lisp, but the relations
to Prolog are carefully explained as
consisting of Prolog plus uncertainty,
explanations, and other features.

Constraint satisfaction is discussed
by implementing the Waltz line-
labeling algorithm. Unfortunately,
the treatment is not related to the
current literature on constraint satis-
faction; nor is any of the terminology
of the field used; nor, in the chapters
on Prolog, is the related field of con-
straint logic programming men-
tioned. (Perhaps the latter develop-
ment is just too recent.) In spite of
some ingenious ideas and code, the
general nature of constraints in prob-
lem solving is not explored deeply
enough in this chapter. To pursue the
topic further, the reader is advised to
start with a 1992 special issue of the
AI Journal, 58(1–3), or the book by E.
Tsang, Foundations of Constraint Satis-
faction (Academic Press, 1993).

Games are always of great interest
to students of AI. Norvig devotes a
satisfying chapter to search and the
game of OTHELLO. He develops search
heuristics and systematically
improves them, culminating in a sys-
tem of tournament-level quality that
uses techniques from the high-end
programs IAGO and BILL.

One of this book’s many strengths
is its treatment of natural language
processing. The topic is introduced
with an exhilarating tour of the
basics of natural language parsing by
building a simple parser for a phrase-
structure grammar, then generating

76 AI MAGAZINE

Book Reviews

This book can lead to a deep appreciation of the
unique strengths of Lisp and help the reader
understand why Lisp is still in active use nearly
40 years after it was first developed

Search is introduced, and in only
20 pages, an integrated set of search
tools is built and demonstrated. All
the standard methods of search are
covered, including A* and iterative
deepening. GPS is reformulated as a
search problem, so that even the
Sussman anomaly can be solved.
This point is well taken: The solution
of many AI problems involves some
form of search; so, search is a foun-
dational topic. A minor point:
Although the handling of tail recur-
sion is discussed later in the book, no
mention is made that the tree-search
routines here should be compiled by
a compiler that handles tail recursion
(to avoid blowing the stack on large
searches).

A treatment of Bobrow’s 1964 STU-
DENT system introduces a number of
new ideas, including analyzing
English input, using a rule-based
translator to generate symbolic equa-
tions, and solving the equations to

notably, memoization is implemented,
a transparent method of caching
results to avoid reevaluation. There is
also a discussion of compiling one
language into another, turning inter-
preters into compiled code. All these
ideas are applied to a symbolic math-
ematics program, getting a speedup
of 130. The techniques are used later
in extensive studies of Prolog and
SCHEME.

A significant portion of the book
discusses Prolog, develops it in Lisp
and then uses it, primarily for natural
language analysis. An interpreted ver-
sion of Prolog is built first, then
refined with destructive unification
and compiled into Lisp so that it runs
20 to 200 times faster. Some readers
might find the chapter on compiling
Prolog a bit daunting because various
features are added, such as call, bagof,
and cut.

Issues of knowledge representation
are discussed with an approach that

multiple parses for ambiguous sen-
tences, dealing with unknown words,
integrating compositional semantics,
and integrating preference-based
parsing using the same strategy. A
speedup of 10 to 20 is obtained by
memoizing the parser. Elsewhere,
Norvig has shown that careful memo-
ization of a simple parser can match
the performance of the more com-
plex chart parsers (1991, Techniques
for Automatic Memoization with
Applications to Context-Free Parsing,
Computational Linguistics 17(1):
91–98).

Unification grammars for natural
language, a thoroughly modern
approach, are discussed at length.
Norvig uses Prolog in this discussion,
which might seem an odd choice for
a book built around Lisp; however,
the fact that in Prolog, the grammar
is the code, as it were, gives the entire
presentation great clarity. To go
beyond this simple initial treatment,
definite clause grammars (DCGs) are
introduced. The economy of his
treatment leaves room for a discus-
sion of interesting issues, such as
quantifiers and their scope, ambigui-
ty, and long-distance dependencies.
An additional chapter is taken up
entirely with presenting an extensive
DCG grammar of English, making
this textbook possibly the only one
that includes both a working parser
and an extensive grammar. Studying
such a large grammar is informative,
but the reader should have been
warned that such large grammars,
applied to real English (with 40+
word long sentences such as this
one), have to deal with serious prob-
lems of performance that are mostly
driven by lexical and structural ambi-
guity problems.

This book can lead to a deep appre-
ciation of the unique strengths of
Lisp and help the reader understand
why Lisp is still in active use nearly
40 years after it was first developed.
The ideas underlying Lisp are power-
ful and pervasive, so they will be
with us for a long time (even if the
language is reborn as DYLAN or as
some future language yet unknown).
The paradigms of AI programming so
artfully presented in this book will
remain valuable well into the future.

WINTER 1994 77

Book Reviews

