
■ My collaborators and I have recently reported in
domain science journals several human-comput-
er discoveries in biology, chemistry, and physics.
One might ask what accounts for these findings,
for example, whether they share a common pat-
tern. My conclusion is that each finding involves
a new representation of the scientific task: The
problem spaces searched were unlike previous
task problem spaces. Such new representations
need not be wholly new to the history of science;
rather, they can draw on useful representational
pieces from elsewhere in natural or computer sci-
ence. This account contrasts with earlier explana-
tions of machine discovery based on the expert
system view. My analysis also suggests a broader
potential role for (AI) computer scientists in the
practice of natural science.

My collaborators and I have recently
reported several novel findings in
the domains of biology, chemistry,

and physics that represent various mixes of
human-machine effort. These results, pub-
lished in domain science journals, can fruit-
fully be analyzed as a whole by asking what
accounts for them, that is, by seeking patterns
within these results. The generality of any
patterns that are found can be tested against
other instances of human-machine discover-
ies. These patterns can also be tested against
the conventional wisdom of the contribu-
tions to natural science that can be expected
from computers and (AI) computer scientists.

This article carries out such a pattern-seek-
ing study by making use of the concepts of

problem space and representation. My con-
clusion is that each of the three novel
findings involves a new representation of the
scientific task, in the sense that the problem
spaces searched were unlike previous task
problem spaces. I contrast my explanations of
these human-computer discoveries with an
earlier explanation of machine discovery
based on the PROSPECTOR expert system. I end
with some conclusions about the potential
role of (AI) computer scientists in the practice
of natural science.

Patterns in AI
A frequent task within an empirical science is
to seek patterns within the phenomena stud-
ied by the science. In AI as empirical science
(Simon 1995), the phenomena involve AI
tasks and systems, their detailed designs, and
the processes followed by the AI scientists
who build the systems. One can seek patterns
within these phenomena, a goal that was
explicitly advocated by Simon (1979), arguing
that the data-driven character of AI discovery
systems suggests that AI research should itself
be more data driven. As an early example of
pattern finding, the system-building projects
of the early AI scientists of the 1950s led, on
detailed analysis of these systems, to the fun-
damental concept of heuristic search in prob-
lem spaces (Newell and Simon 1976).

Such data-driven theoretical work of induc-
ing patterns from systems is not widespread
in AI, but neither is it rare. I can cite two
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became generally recognized only about
fifteen years ago” and cites a 1976 article that
drew attention to the general concept. Karp
adds that by now, “randomization is an
extremely important tool for the construction
of algorithms” (p. 3). Hence, we see that a
new representation of the algorithm design
task has emerged, in the sense that algorithm
designers now have an additional mental
operator that incorporates coin flipping in
the algorithm being designed; previously,
designers would only make use of determinis-
tic approaches. The problem space for algo-
rithm design has thus been broadened.

The concept of representation that I have
borrowed is technical; thus, detecting
changes in representation amounts to the
reasonably well-structured task of deciding
whether a different problem space is
involved. I have borrowed this concept
directly from the theory of heuristic search,
implying no conflict with other accounts of
the representation concept. For example, an
earlier article in this magazine gave an
account of (knowledge) representation in
terms of the roles that it plays in reasoning,
such as serving as a surrogate for the natural
world (Davis, Shrobe, and Szolovits 1993).
There is no substantial conflict between these
roles and the current definition.

Recent Discoveries
In each of the three cases of novel findings I
present here, I proceed by giving some back-
ground on the task and the computational
approach, documenting the finding, asking
whether a new task representation is
involved, and contrasting some of the previ-
ous or alternative task representations. I give
only enough detail to appreciate the task and
the role of the new representation; further
details are available through the citations.

The three findings share the circumstance
of involving more or less human inference,
although they do not involve following the
lead of domain scientists. Hence, my conclu-
sions address the issue of what a computer
plus a (AI) computer scientist can accomplish
in science rather than what a computer by
itself can accomplish. To address the latter
issue, one needs to analyze in detail what
fractional credit should accrue to human or
machine, a task that would take us far afield.

Catalytic Chemistry
For the last six years (Valdes-Perez 1994a,
1995b), I have worked to automate a task that
has occupied the energies of experimental

examples from recent work: Valdes-Perez,
Zytkow, and Simon (1993) analyzed six sepa-
rately developed discovery systems and
observed that all the discovery tasks shared
an implicit representation named search in
matrix spaces. Elsewhere, I proposed the con-
cept of generic task of scientific discovery as a
generalization of a broad array of work on
computing in science (Valdes-Perez 1995a).

Representations
In a recent psychological article, Kaplan and
Simon (1990) define a representation simply as
a problem space and a change of representation
as a change in problem space (also see Newell
and Simon [1972]). The invention of a new
representation for a scientific task is, then,
the invention of a new problem space in
which to accomplish the task.

Let us recall that a problem space is defined
as a start state, a collection of operators that
generate new states by recursive application,
and a test of whether a goal state has been
reached. The decision about when to apply
each operator is guided by heuristics. In real-
life tasks, problem spaces are often too large
to be searched unselectively; the selectivity is
provided by the heuristics.

Simon (1992) argued that a usual task of
the scientist is not to invent completely
unprecedented representations because these
are historically scarce; a possible example is
the invention of infinitesimals and their cal-
culus, although even this representation
might have some roots in antiquity in the
paradoxes of Zeno and others (Moore 1995).
Rather, the usual challenge for the creative
scientist who finds new representations for
scientific problems is to adapt and mix ele-
ments of known representations that are our
common scientific heritage and to develop
the operators and heuristics that are applica-
ble in the new situation. In what follows, I
adopt this concept of representation and ask
to what extent each of the discoveries ana-
lyzed here was enabled by a new task repre-
sentation. That is, I ask whether there are
new operators or new types of state.

One can illustrate this notion of represen-
tation in science with a familiar example
from theoretical computer science: the design
of randomized algorithms, that is, algorithms
that make random choices using a stream of
random bits. Karp (1990, p. 2) states that
“isolated examples of randomized algorithms
can be traced back to the very early days of
computer science, but the central importance
of the concept of a randomized algorithm
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chemists since the beginning of this century,
after it was first realized that many chemical
reactions take place as a series of steps rather
than as a single elementary act. A recurrent
chemical research problem has been to
explain (elucidate) the multistep character, or
pathway, of a particular chemical reaction.
Typically, this problem is one for the experi-
mentalist because chemistry still lacks a prac-
tical theory to predict what steps will occur
based on first principles. To obtain insight
that complements background theory on
what steps tend to occur, one carries out
experiments with the reaction: measures the
overall stoichiometry, detects reaction inter-
mediates, infers precursor relations among
the products, plots concentrations over time,
and so on. Much reasoning particular to
chemistry is involved;1 hence, this task is
much more theory driven than many of the
recent tasks addressed by data-driven–discov-
ery research (Langley and Zytkow 1989).

The approach to automating this discovery
task began with a common AI question: What
is the space of hypotheses, and how can one
generate the elements (reaction pathways) of
this space sensibly and systematically? There
have been obstacles to overcome, involving
the usual problems of combinatorial explo-
sion and also some difficult algorithm
designs; the solutions are described in the arti-
cles cited in this subsection. For the present, I
focus on one of these obstacles, as follows:

A key problem in this and other scientific
model-building tasks is that unseen entities
have to be conjectured to formulate acceptable
models. For example, in a chemical reaction,
typically some intermediates remain undetect-
ed because of the practical limitations of
experimental technique. If a large base of
chemical knowledge were needed to make
such conjectures competently, then automat-
ing this task would be problematic, except per-
haps on a narrow class of chemical problems.

The obstacle of conjecturing unseen entities
is overcome in MECHEM with a simple and
seemingly naive method: Conjecture wild
cards such as X, Y, and Z; use these wild cards,
together with the seen entities, to formulate
hypotheses; and then use the domain laws of a
science to constrain these variables sufficiently
(within the context of a specific hypothesis) to
entail a small set of possible identities for the
variables. For example, using the conservation
constraint of reaction balance, the unknown X
in the single-step hypothesis

CH3 + MCH2OOH → X + CH3OH

is inferred to consist of one M, one carbon,
two hydrogens, and one oxygen atom; that

is, its chemical formula is MCH2O. In more
complex cases involving multiple steps and
unknowns and possibly more than one
unknown to a step, a generalized linear equa-
tion solver is used to infer the chemical for-
mulas of the wild cards. The introduction of
wild cards is guided by simplicity: N wild
cards are introduced when N – 1 wild cards
prove insufficient to account for the con-
straints, that is, when no adequate reaction
pathway can be built. The program begins
with N equal to zero.

However, modern chemists reason at the
level of molecular structures (that is, graph-
like connectivity between atoms), not just
chemical formulas. However, it is also possi-
ble to infer the molecular structure of any
wild cards given their already-inferred formu-
las and the overall multistep context in
which they appear. For example, figure 1
shows a nine-step pathway in which the six
wild cards U, V, W, X, Y, and Z appear (M and
M2 are not wild cards but catalyst reaction
sites). Figure 2 shows the same pathway but
with the wild cards replaced by the molecular
structures that MECHEM inferred for them.
MECHEM found this pathway, which I (Valdes-
Perez 1994b) then proposed as an alternative
explanation for the catalytic reaction ethane +
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1. H2 + M2 → 2U.
2. M2 + ethane → U + V.
3. M2 + V → CH2M–CH2M + U.
4. M + CH2M–CH2M → U + W.
5. 2W → CH2M–CH2M + CHM–CHM.
6. CHM–CHM → 2X.
7. U + X → M + Y.
8. 2Y → X + Z.
9. U + Z → M2 + methane.

1.  H2 + M2 → 2(HM).
2.  M2 + ethane → HM +  CH3–CH2M.
3.  M2 +  CH3–CH2M → CH2M–CH2M +  HM.
4.  M + CH2M–CH2M → HM +  CH2M–CHM.
5.  2(CH2M–CHM) → CH2M–CH2M + CHM–CHM.
6.  CHM–CHM → 2(CHM). 
7.  HM + CHM → M +  CH2M.
8.  2(CH2M) → CHM +  CH3M.
9. HM  +  CH3M → M2 + methane.

Figure 1. A Reaction Pathway Containing Six Conjectured Wild Cards.

Figure 2. MECHEM’s Reaction Pathway for Ethane + H2 → 2 (methane).



bility, these persistent absences are surprising
and require an explanation. One form of
explanation that has occurred is to invent
new quantum numbers and assign them to
the known particles such that the absent
reactions fail to conserve the quantum num-
bers, but all the observed reactions successful-
ly conserve the quantity. Devising such
explanations for observational data (or phe-
nomena) is what goes on in particle physics
phenomenology; for example, the baryon
and strangeness quantum numbers historical-
ly were postulated in such a data-driven way
(Ne’eman and Kirsh 1986).

To illustrate the discovery task more con-
cretely, let us consider the following simple
problem that involves a single observed and a
single never-observed reaction:

observed: πw + p → π0 + n 
unobserved: p →/   π + π 0 .

To exclude the unobserved reaction while the
observed one is admitted, it suffices to postu-
late a new conserved quantum number hav-
ing the value of unity for p and n and zero for
the other particles. This quantum number is
conserved by the observed reaction and not
conserved by the unobserved one.

Kocabas (1991) followed up on the obser-
vation by Langley et al. and wrote a Prolog
program, BR-3, capable of postulating quan-
tum numbers by a generate-and-test method
that proposed specific numbers for each parti-
cle and backtracked when necessary. BR-3 was
used on historical data to rediscover some
accepted quantum numbers. In some cases,
the program would find two new conserved
properties to account for the observations, as
has been the historical case.

In turn, I followed up on BR-3 after realiz-
ing that the logic of this discovery task could
be formulated systematically, with guarantees
about the simplicity of the resulting conser-
vation laws. This realization was based partly
on a representation that had been used in
MECHEM and that is familiar to mathematical
chemists: A reaction subject to conservation
conditions can be represented as an algebraic
equation. For example, the reaction A + B →
C, in which A, B, and C are substances, parti-
cles, or whatever, implies the equation a + b =
c over a numeric domain, such as the number
of hydrogens present in the respective sub-
stances; the equality = expresses the conserva-
tion condition.

For the particle physics task, I formulated
the relevant constraints explicitly and alge-
braically and then implemented the PAULI

program, which is a search–linear-program-
ming hybrid based on an algebraic formula-

H2 → 2 (methane), which has been studied for
over 20 years and whose pathway was consid-
ered largely solved. This discussion docu-
ments the first example of a novel finding: a
simple, plausible alternative reaction pathway
for a long-studied reaction.

I now consider the nature of the problem
space that MECHEM searches.2 Figure 1 shows a
state in the problem space that is reached by
applying operators that propose underdeter-
mined chemical steps involving wild cards, or
variables; each additional step that uses a
variable places more constraint on the vari-
able, resulting eventually in a completely
determined step. This type of operator has
not been used to date in computer applica-
tions to chemistry,3 which instead generally
employ operators that result immediately in
specific chemical steps (that is, not including
variables); further elaborations of the reaction
pathway do not constrain the steps further.
Wipke, Ouchi, and Krishnan (1978) described
these typical operators for an AI audience,
although in the context of chemical synthe-
sis, not elucidation, but the principle is the
same. Ugi and Wochner (1988) described an
alternative, more mathematical representa-
tion of chemical inference, which again dif-
fers from MECHEM’s representation.

MECHEM’s problem space involves new types
of state and new operators and, therefore,
implies that MECHEM uses a new representa-
tion of the chemical task of elucidating reac-
tion pathways. Of course, the notion of using
variables and solving for their identities by
inference rules is hardly unprecedented, even
though the application to molecular structure
here involves complex inference. However, as
Simon (1992) argued, the ordinary task of the
scientist who proposes new task representa-
tions (even the scientist who carries out Kuh-
nian revolutionary science rather than “nor-
mal” science) is to stitch together the
representation from familiar elements; the
key issue is whether the resulting cloth is new
to its particular dress.

Particle Physics
Previously, Langley et al. (1987) pointed out
resemblances between the task addressed by
their DALTON program and the following task
from particle physics: Given observational
data on reactions among elementary parti-
cles, one notices the absence of certain reac-
tions that do not violate any known conser-
vation laws, such as conservation of electric
charge or baryon number. Because it is
expected that any reaction that violates no
conservation law will occur with some proba-
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tion of constraints (Valdes-Perez 1994c). PAULI

is guaranteed to find the simplest assignment
of quantum numbers, first in terms of the
number of new conserved quantum proper-
ties (fewer is simpler) and second in terms of
the magnitudes of the quantum numbers
(smaller is better).

PAULI was applied to historical data that led
to the independent discoveries of strangeness
by Gell-Mann and Nishijima (Ne’eman and
Kirsh 1986), and the program verified their
solution, which consists of the strangeness
quantum numbers. However, further experi-
ments with PAULI (consisting of trying various
input) led to an invariant pattern: PAULI

always found that one new quantum proper-
ty or conservation law was enough even
when BR-3 (and physicists) found several. This
pattern led to my conjecture and a proof (by
M. Erdmann) of the theorem that on any
input data consisting of observed and nonob-
served reactions among elementary particles,
at most, one conservation law suffices to
explain the observations, if they can be
explained at all in terms of conserved quan-
tum numbers. Erdmann and I reported this
theorem, together with a description of PAULI,
to the physics community (Valdes-Perez and
Erdmann 1994). This theorem constitutes the
second example of a novel finding; this case
involved more human inference than the first
case because (simple) human reasoning was
involved in the conjecture of the theorem but
was prompted by the invariant behavior of
the discovery program.

As in my first example involving MECHEM,
this result was enabled by a new task repre-
sentation, which involves an algebraic repre-
sentation of the relevant constraints and
which leads to guarantees about the simplici-
ty of the solutions that the program will find.
These constraints were reformulated, through
various linear-programming representational
tricks, into a working program. The operators
in this new problem space add algebraic con-
straints and remove them, and the states con-
sist of sets of algebraic constraints. To illus-
trate the problem space, the following two
reactions lead to the possible state in PAULI’s
problem space that is shown in figure 3:

observed: πw + p → π0 + n 
unobserved: p →/ π + π 0 .

The use of the subscript 1 emphasizes that
these are not particles but variables over a
numeric domain.

Search within this representation, as car-
ried out by PAULI, created the phenomena
(that is, the program invariably found single
conservation-law solutions) that led to the

data-driven conjecture and Erdmann’s proof
of the theorem. As with MECHEM, this problem
space is new to computer applications in par-
ticle physics, including AI applications. The
new representation involved piecing together
known elements of other representations
with which the author was familiar, such as
representing reactions as algebraic equations.
Some technical problems had to be over-
come, but the representational pieces were,
nevertheless, not without precedent.

Cell Biology
A developmental biologist with whom I have
collaborated has studied a developmental
stage of early Drosophila embryos in which
nuclei, or cells not yet having acquired a
membrane, undergo several successive rounds
of division. These processes are illustrated in
figure 4, which superimposes the original
nucleus and the two daughter nuclei that
result from each division. Earlier analysis of
such data concluded that nuclear divisions
were disordered, or random, based on a his-
togram of division angles that appeared
roughly uniform between 0 and 180 degrees
(Minden et al. 1989).

Our analysis led to the conclusion that the
divisions displayed patterned behavior
(Valdes-Perez and Minden 1995) rather than
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Figure 3. A State in PAULI’s Problem Space. 



(Valdes-Perez and Perez 1994). This method,
which is a complex instance of a permutation
test (Good 1994), generalizes the three steps
in figure 5 as follows: Nuclear division be-
comes the process under study, division ori-
entation becomes a process parameter, and
crowding becomes an arbitrary feature or
quantity. 

PENCHANT reaches the same conclusion
about patterned divisions that Minden and I
had, which was not a trivial exercise because
the human and computer methods are simi-
lar only on close analysis. Perez and I have
since begun to apply the method to other
problems both within biology and elsewhere.
No significant machine discoveries have yet
been made, but PENCHANT has uncovered
unsuspected patterns of moderate interest to
at least one experimentalist (Valdes-Perez and
Perez 1994).

When PENCHANT makes an independent dis-
covery of significance, rather than retraces
human steps, then a stronger case for the role
of the computer could be made than is war-
ranted in this final example of a human-com-
puter finding in science. Again, the task rep-
resentation or problem space involves
familiar elements drawn from elsewhere;
nothing in figure 5 is new to the history of
science.

Discussion
I argued that new task representations or
problem spaces have been involved in the
three documented discoveries in science that
this article analyzed. It is likely that the use of
a new representation was a crucial cause of
the new findings rather than a mere coinci-
dence.

The representation-based explanation dif-
fers from some earlier accounts of machine
discovery that involved expert systems. For
example, in a report of the novel recognition
of a hidden mineral deposit by the PROSPECTOR

program, Campbell et al. (1982) state that
“expert systems…encode valuable knowledge
and judgment for the purpose of making that
expertise more broadly available than in the
past” (p. 927). They explained PROSPECTOR’s
achievement as follows: “We believe that this
result was achieved because PROSPECTOR pro-
gramming adequately reflects limited but
appropriate selections from the knowledge
and judgment of a known porphyry molyb-
denum expert” (p. 928). Thus, PROSPECTOR’s
achievement is the result of confronting a
model of a human expert (embodied in
PROSPECTOR) with new data unavailable to the

the randomness cited earlier. This conclusion
of patterning is my third and final example of
a new finding in science. Detecting the pat-
terning was followed up with hypothesizing a
model that would give rise to the observa-
tions, although this follow-up is not relevant
to the analysis of this article.

Our finding of patterned behavior exclu-
sively involved human reasoning, which after
the event I was able, using retrospection, to
reconstruct, as shown in figure 5. This discov-
ery can be credited to possessing or actively
applying the heuristic rule that is the first
premise of the deduction. As mentioned pre-
viously, earlier studies considered a different
problem space in the search for patterns, for
example, constructing a histogram of division
angles, which revealed no simple pattern
because the distribution was roughly uni-
form. Our finding involved, instead, reason-
ing in a different problem space that used the
operators-inferences of Figure 5.

In contrast to the first two cases from
chemistry and physics, the current biological
example involved only human reasoning, not
machine discovery. Nevertheless, afterward,
we were able to devise a general, systematic
method (PENCHANT) for finding subtle pat-
terned behavior that is broadly applicable
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Figure 4.  Nuclear Divisions within Early Drosophila Embryos.



original expert. This expert system view
focuses on expanding the availability of
expertise through the use of expert systems
rather than expanding the expertise itself. In
contrast, my representation-change explana-
tion of the three recent discoveries focuses on
a change in task problem space, that is, a
change in expertise.

The new task representations that I claim
were, of course, humanly designed or even
searched (in the biology case) rather than
invented by machine. However, much scien-
tific work involves problem solving within a
given representation rather than the inven-
tion of a new one. Hence, the computer’s role
is not unlike the role of many an individual
scientist who makes a publishable discovery
within a given representation that served as a
starting point.

Given the research interest in automating
changes in representation (Benjamin 1990),
one can also ask how drastic were the repre-
sentation changes described here. I believe
that these changes were not minor; for exam-
ple, they do not involve simple changes to
the problem space such as deleting an opera-
tor, making an operator more specific by
instantiating one of its parameters, and so on.
Rather, the new problem spaces differ from
the previous spaces in more complex ways.
Moreover, these representation changes were
largely theory driven (rather than data driven)
in the sense that they involved analytic
insights into the special task structure that
were not obtained in any obvious way
through the use of data. This theory-driven
character makes it doubtful whether any
attempt to automate these representation-
change processes in a general way can succeed
in practice, at least for scientific applications.

Besides the expert system viewpoint dis-
cussed earlier, other common views credit the
achievements and/or potential of machine dis-
covery to the computer’s greater speed and
memory or to capabilities for doing exhaustive
searches within known representations. More
broadly, the role for computer scientists in
natural science is commonly perceived as lim-
ited to inventing or adapting faster algorithms
and more sophisticated data structures or
devising means to deal with large databases.
However, the three discoveries in this article
all involved modest computations (whether
computer or mental), straightforward data
structures, and modest amounts of input data.

These results suggest that new task repre-
sentations, developed perhaps by a systematic
analysis of the heuristic relation between data
and discovery, will constitute a significant

fraction of the machine-aided discoveries that
will occur in the short and medium term. As
illustrated previously, these new representa-
tions need not involve elements wholly new
to the history of science; rather, they can
draw on a wide array of representational
pieces that have proved useful elsewhere in
natural or computer science. I surmise that a
detailed analysis of other productive machine
discovery programs (such as META-DENDRAL

[Lindsay et al. 1993] and TETRAD [Spirtes, Gly-
mour, and Scheines 1993] can confirm the
pattern reported here.

Acknowledgments
This work was supported in part by a grant
from the National Science Foundation (NSF)
(#IRI-9421656), by the Center for Light
Microscope Imaging and Biotechnology at
CMU, and by the W. M. Keck Center for
Advanced Training in Computational Biolo-
gy. I thank Paul Rosenbloom for asking dur-
ing a seminar at the University of Southern
California Information Sciences Institute
what accounted for these recent discoveries;
this question eventually led to my writing
this article.

Notes
1. Much of the reasoning pertains to generic path-
way-elucidation tasks because pathways occur in
branches of science other than chemistry. 

2. Actually, MECHEM searches in more than one
space because, for example, the space of molecular
structures is searched to provide structural informa-
tion on the conjectured intermediates. However,
the analysis focuses on the top-level problem space
of possible pathways, that is, steps of the form reac-
tants → products. 

3. This type of operator is also absent from human
practice; for example, a recent book on writing
reaction pathways (Miller 1992) contains nothing
like this operator. 
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