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Using Anytime Algorithms
in Intelligent Systems

Shlomo Zilberstein

m Anytime algorithms give intelligent systems the
capability to trade deliberation time for quality of
results. This capability is essential for successful
operation in domains such as signal interpreta-
tion, real-time diagnosis and repair, and mobile
robot control. What characterizes these domains
is that it is not feasible (computationally) or de-
sirable (economically) to compute the optimal
answer. This article surveys the main control
problems that arise when a system is composed
of several anytime algorithms. These problems re-
late to optimal management of uncertainty and
precision. After a brief introduction to anytime
computation, I outline a wide range of existing
solutions to the metalevel control problem and
describe current work that is aimed at increasing
the applicability of anytime computation.

nytime algorithms! are algorithms whose
Aquality of results improves gradually as

computation time increases. The term
anytime algorithm was coined by Dean and
Boddy in the mid-1980s in the context of
their work on time-dependent planning
(Dean and Boddy 1988; Dean 1987). Dean
and Boddy introduced several deliberation
scheduling techniques that make use of per-
formance profiles (PPs) to make time-alloca-
tion decisions. A similar technique, termed
flexible computation, was introduced by
Horvitz (1990, 1987) to solve time-critical de-
cision problems. This line of work is also
closely related to the notion of limited ratio-
nality in automated reasoning and search
(Russell and Wefald 1991, 1989; Doyle 1990;
D’Ambrosio 1989). Within the systems com-
munity, a similar idea termed imprecise com-
putation was developed by Jane Liu and others
(1991). What is common to these research ef-
forts is the recognition that the computation
time needed to compute precise or optimal
solutions will typically reduce the overall util-

ity of the system. In addition, the appropriate
level of deliberation can be situation depen-
dent. Therefore, it is beneficial to build sys-
tems that can trade the quality of results
against the cost of computation.

A rapid growth in the development of any-
time algorithms in recent years has led to a
number of successful applications in such ar-
eas as the evaluation of Bayesian networks
(Wellman and Liu 1994; Horvitz, Suermondt,
and Cooper 1989), model-based diagnosis
(Pos 1993), relational database query process-
ing (Vrbsky, Liu, and Smith 1990), constraint-
satisfaction problems (Wallace and Freuder
1995), and sensor interpretation and path
planning (Zilberstein 1996; Zilberstein and
Russell 1993). This article describes the con-
struction, composition, and control of such
algorithms.

Anytime Algorithms

Anytime computation extends the traditional
notion of a computational procedure by al-
lowing it to return many possible approxi-
mate answers to any given input. The notion
of approximate processing (Lesser, Pavlin, and
Durfee 1988) and the use of satisficing tech-
niques (Simon 1982) have proved useful in Al
applications. What is special about anytime
algorithms is the use of well-defined quality
measures to monitor the progress in problem
solving and allocate computational resources
effectively. The binary notion of correctness is
replaced with a multivalued quality measure
associated with each answer. Various metrics
have been used to measure the quality of the
results produced by anytime algorithms. From
a pragmatic point of view, it might seem use-
ful to define a single type of quality measure
to be applied to all anytime algorithms. Such
a unifying approach can simplify the meta-
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level control problem. However, in practice,
different types of anytime algorithms tend to
approach the exact result in completely dif-
ferent ways. The following three metrics have
proved useful in anytime algorithm construc-
tion:

First is certainty, a measure of the degree of
certainty that the result is correct. The degree
of certainty can be expressed using probabili-
ties, fuzzy set membership, or any other ap-
proach.

Second is accuracy, a measure of the degree
of accuracy, or how close the approximate re-
sult is to the exact answer. Typically, with
such algorithms, high quality guarantees that
the error is below a certain upper bound.

Third is specificity, a metric of the level of
detail of the result. In this case, the anytime
algorithm always produces correct results, but
the level of detail is increased over time.

Desired Properties of
Anytime Algorithms

Many existing programming techniques pro-
duce useful anytime algorithms. Examples in-
clude iterative deepening search, variable pre-
cision logic, and randomized techniques such
as Monte Carlo algorithms and fingerprinting
algorithms. For a survey of such program-
ming techniques and examples, see Zilber-
stein (1993). Obviously, not every algorithm
that can produce a series of approximate an-
swers is a well-behaved anytime algorithm.
Desired properties of anytime algorithms
(from the standpoint of metalevel control) in-
clude the following features:

First is measurable quality: The quality of an
approximate result can be determined pre-
cisely. For example, when the quality reflects
the distance between the approximate result
and the correct result, it is measurable as long
as the correct result can be determined.

Second is recognizable quality: The quality
of an approximate result can easily be deter-
mined at run time (that is, within a constant
time). For example, when solving a combina-
torial optimization problem (such as path
planning), the quality of a result depends on
how close it is to the optimal answer. In such
a case, quality can be measurable but not rec-
ognizable.

Third is monotonicity: The quality of the re-
sult is a nondecreasing function of time and
input quality. Note that when quality is rec-
ognizable, the anytime algorithm can guaran-
tee monotonicity by simply returning the
best result generated so far rather than the
last generated result.

Fourth is consistency: The quality of the re-

sult is correlated with computation time and
input quality. In general, algorithms do not
guarantee a deterministic output quality for a
given amount of time, but it is important to
have a narrow variance so that quality predic-
tion can be performed.

Fifth is diminishing returns: The improve-
ment in solution quality is larger at the early
stages of the computation, and it diminishes
over time.

Sixth is interruptibility: The algorithm can
be stopped at any time and provide some an-
swer. Originally, this was the primary charac-
teristic of anytime algorithms, but I show lat-
er that noninterruptible anytime algorithms,
termed contract algorithms, are also useful.

Seventh is preemptability: The algorithm
can be suspended and resumed with minimal
overhead.

The different properties of the elementary
anytime algorithms have a major effect on
the complexity of composition and monitor-
ing. These properties are typically summa-
rized by the PP of the algorithm.

Example: The traveling salesman prob-
lem (TSP) is a widely known combinato-
rial optimization problem where the ap-
plication of anytime algorithms is useful.
The problem involves a salesman that
must visit n cities. If the problem is mod-
eled as a complete graph with n vertexes,
the solution becomes a tour, or Hamilto-
nian cycle, visiting each city exactly
once, starting and finishing at the same
city. The cost function, Cost(i, j), defines
the cost of traveling directly from city i
to city j. The problem is to find an opti-
mal tour, that is, a tour with minimal to-
tal cost. The TSP is known to be NP com-
plete; hence, it is hard to find an optimal
tour when the problem includes a large
number of cities. Iterative improvement
algorithms can find a good approxima-
tion to an optimal solution and natural-
ly yield an interruptible anytime algo-
rithm.

Randomized tour improvement is an algo-
rithm that repeatedly tries to make small
changes in the current tour to reduce the over-
all cost (Lawler et al. 1987). In the general case
of tour-improvement procedures, r edges in a
feasible tour are exchanged for r edges not in
the solution as long as the result remains a
tour, and the cost of the tour is less than the
cost of the previous tour. Figure 1 demon-
strates one step of tour improvement. An ex-
isting tour, shown in figure la, visits the ver-
texes in the following order: g, b, ¢, d, ¢, and f.
The algorithm selects two random edges of the
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Figure 1. An Example of Tour Improvement.

graph—(c, d) and (f, a)—in this example and
checks whether the following condition holds:

Costl(c, f) + Cost(d, a) < Cost(c, d) + Cost(f, a) . (1)

If this condition holds, the existing tour is
replaced by the new tour, shown in figure 1b:
a, b, ¢, f, ¢, and d. The improvement condi-
tion guarantees that the new path has a lower
cost. The algorithm starts with a random tour
that is generated by simply taking a random
ordering of the cities. Then, the algorithm
tries to reduce the cost by a sequence of ran-
dom improvements.

Performance Profiles

To allow for efficient metalevel control of
anytime algorithms, their performance im-
provement over time must be summarized
quantitatively. Boddy and Dean (1989) used
PPs to characterize the output quality of an
anytime path planner. Horvitz (1987) used a
similar construct to describe the object-relat-
ed value of flexible computation. These PPs
generally describe the expected output quali-
ty as a function of run time.

Definition 1: A PP of an anytime algo-
rithm, Q(t), denotes the expected output
quality with execution time t.

PPs are typically constructed empirically by
collecting statistics on the performance of an
algorithm over many input instances. The
raw data that are collected specify the partic-
ular quality of results generated at a particular

point of time. These data form the quality
map of the algorithm.

Figure 2 shows the quality map of the ran-
domized tour-improvement algorithm. It
summarizes the results of many activations of
the algorithm with randomly generated input
instances (including 50 cities). Each point (¢,
q) represents an instance for which quality g
was achieved with run-time t. The quality of
results in this experiment measures the per-
centage of tour-length reduction with respect
to the initial tour. These statistics form the
basis for the construction of the PP of the al-
gorithm. The resulting expected PP is shown
in figure 3.

The basic notion of a PP has been extended
in two ways using conditional performance
profiles (CPPs) (Zilberstein and Russell 1996;
Zilberstein 1993). First, a CPP describes the
dependence of output quality on run time as
well as on input quality. Second, a CPP
specifies the probability distribution of out-
put quality rather than the expected value.
Thus, CPPs provide a more informative per-
formance description that facilitates better al-
gorithm composition and monitoring.

Definition 2: A CPP of an anytime al-
gorithm, Pr(q,.| q;,, t), denotes the proba-
bility of getting a solution of quality
when the algorithm is activated with in-
put of quality q,,, and execution time t.

Intermediate representations of perfor-
mance information have also been used in
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Figure 2. The Quality Map of the Randomized Tour-Improvement Algorithm.

The widespread use of anytime computation depends not only on
the computational benefits of such techniques but also on the ca-
pability to construct general-purpose, reusable anytime algorithms.
A programming environment to support anytime computation must
include tools for automatic construction of PPs as well as tools for
composition, activation, and monitoring.
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applications. For example, Pos (1993) used a
construct called a statistical performance profile
that records both upper and lower bounds
and expected output quality for any time al-
location. More recently, the notion of a dy-
namic PP has been developed (Hansen and
Zilberstein 1996). It follows the observation
that quality improvement can better be pre-
dicted at run time when the quality of the
currently available result is taken into ac-
count. The behavior of the anytime algo-
rithm is modeled as a Markov process in
which discrete states are associated with a
particular output quality. The quality at time
t + 1 depends on the quality at time ¢ as well
as on the current time. As with CPPs, the
probability distribution can be constructed
empirically.

Definition 3: A dynamic performance
profile (DPP) of an anytime algorithm,
Pr(gjlq;, At), denotes the probability of
getting a solution of quality g; by resum-
ing the algorithm for time interval At
when the currently available solution
has quality g;.

PPs are typically monotone functions of
time, and they can be approximated using a
certain family of functions. Once the quality
map is known, the performance information
can be derived by various curve-fitting tech-
niques. For example, Boddy and Dean (1989)
used the function Q(f) = 1 - e-* to model the
expected performance of their anytime plan-
ner. CPPs can be approximated with a similar
method by using a certain family of distribu-
tions. Another approach is to represent a CPP
by a table representing a discrete probability
distribution. The size of the table is a system
parameter that controls the accuracy of per-
formance information.

Interruptible and Contract Algorithms

A useful distinction has been made between
two types of anytime algorithm, namely, in-
terruptible and contract algorithms (Russell and
Zilberstein 1991). An interruptible algorithm
can be interrupted at any time to produce re-
sults whose quality is described by its PP. A
contract algorithm offers a similar trade-off
between computation time and quality of re-
sults, but the total allocation must be known
in advance. If interrupted at any point before
the termination of the contract time, it might
not yield any useful results. Interruptible algo-
rithms are in many cases more appropriate for
the application, but they are also more com-
plicated to construct. It has been shown that a
simple, general construction can produce an
interruptible version for any given contract al-
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Figure 3. The Expected Performance Profile of the Algorithm.

gorithm with only a small, constant penalty
(Russell and Zilberstein 1991). This theorem
allows one to concentrate on the construction
of contract algorithms for complex decision-
making tasks and then convert them into in-
terruptible algorithms using a standard trans-
formation. It is also important to note that for
many applications (that are characterized
more precisely in Run-Time Monitoring), con-
tract algorithms are the desired end product.

Programming Tools

The widespread use of anytime computation
depends not only on the computational
benefits of such techniques but also on the
capability to construct general-purpose,
reusable anytime algorithms. A programming
environment to support anytime computa-
tion must include tools for automatic con-
struction of PPs as well as tools for composi-
tion, activation, and monitoring. One such
effort is reported in Grass and Zilberstein
(1996). An anytime library is used to keep the
metalevel information that is essential for
both composition and monitoring. The con-
struction of a standard anytime package that
comes with a library of PPs is an important
first step toward the integration of anytime
computation with standard software-engi-
neering practices.
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Composition of
Anytime Algorithms

The use of anytime algorithms as the com-
ponents of a modular system presents a spe-
cial type of deliberation scheduling prob-
lem. The question is how much time to
allocate to each component to maximize
the output quality of the complete system.
This problem is termed the anytime algo-
rithm composition problem (Zilberstein 1993).
A large part of the composition problem can
be solved offline by analyzing the PPs of the
components of the system.

Consider, for example, a speech-recogni-
tion system whose structure is shown in
figure 4. Each box represents an elementary
anytime algorithm whose conditional PP is
given. The system is composed of three main
components: First, the speaker is classified in
terms of gender and accent. Then, a recogni-
tion algorithm suggests several possible
matching utterances. Finally, the linguistic
validity of each possible utterance is deter-
mined, and the best interpretation is select-
ed. The composition problem is calculating,
for any given total allocation, how much
time to allocate to each elementary compo-
nent of the composite system to maximize
the quality of the utterance recognition.

Solving the composition problem is im-
portant for several reasons: First, it intro-
duces a new kind of modularity into intelli-
gent system development by allowing for
separation between the development of the
performance components and the optimiza-
tion of their performance. Traditional de-
sign methodologies require that the perfor-
mance components meet certain time
constraints. In complex intelligent systems,
these constraints are hard to derive at de-
sign time. The result is a hand-tuning pro-
cess that might or might not culminate with
a working system. Anytime computation of-
fers an alternative to this approach. By de-
veloping performance components that are
responsive to a wide range of time alloca-
tions, one avoids the commitment to a par-
ticular performance level that might fail the
system.

The second reason relates to the difficulty
of programming with anytime algorithms
(or approximation techniques in general).
To make a composite system optimal (or
even executable), one must control the acti-
vation and interruption of the components.
Therefore, an automated solution of the
composition problem simplifies the task of
the programmer.

Compilation

One solution to the anytime algorithm com-
position problem is based on an offline com-
pilation approach (Zilberstein and Russell
1996; Zilberstein 1993). Given a system com-
posed of anytime algorithms, the compilation
process is designed to (1) determine the opti-
mal PP of the complete system and (2) pre-
pare any additional control information that
would simplify the run-time monitoring task.
The solution to this problem and its com-
plexity depends on the following factors:

First is composite program structure: What
type of programming operators are used to
compose anytime algorithms?

Second is the type of PPs: What kind of PPs
are used to characterize elementary anytime
algorithms?

Third is the type of anytime algorithms:
What type of elementary anytime algorithms
are used as input? What type of anytime algo-
rithm should the resulting system be?

Fourth is the type of monitoring: What
type of run-time monitoring is used to acti-
vate and interrupt the execution of the ele-
mentary components?

Fifth is the quality of intermediate results:
What access does the monitoring component
have to intermediate results? Is the actual
quality recognizable?

The Complexity of Compilation

The compilation problem is generally an NP-
complete optimization problem that requires
finding a schedule of a set of components
that yields maximal output quality. To ana-
lyze the complexity of compilation of com-
posite expressions, one can consider the deci-
sion-problem variant of the problem. Given a
composite expression, the conditional PPs of
its components, and a total time allocation B,
the decision problem is whether a schedule of
the components exists that yields output
quality greater than or equal to K. The follow-
ing result is proved in Zilberstein (1993).

Theorem 1: The compilation of com-
posite expressions is NP-complete in the
strong sense.

The proof is based on a reduction from the
partially ordered knapsack problem. The mean-
ing of this result is that the application of the
compilation technique is limited to small pro-
grams. To address this problem, an efficient lo-
cal compilation technique was developed.

Local Compilation

Local compilation is the process of finding the
best PP of a module based on the PPs of its
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Figure 4. An Example of a Composite Module for Speech Recognition.

immediate components. If those components
are not elementary anytime algorithms, then
their PPs are determined using local compila-
tion. Local compilation replaces the global
optimization problem with a set of simpler,
local optimization problems and, thus, re-
duces the complexity of the whole problem.
Unfortunately, local compilation cannot be
applied to every composite expression. The
following two assumptions are needed for an
effective use of local compilation:

Assumption 1 (tree structured): The
input expression has no repeated subex-
pressions; thus, its directed acyclic graph
(DAG) representation is a tree.

Assumption 2 (bounded degree): The
number of input to each module is
bounded by a small constant.

The tree-structured assumption is needed
so that local compilation can be applied. The
bounded-degree assumption is needed to
guarantee the efficiency of local compilation.
Under these two assumptions and with a
compact tabular representation of PPs, local
compilation can be performed in constant
time, and the overall complexity of compila-
tion becomes linear in the size of the pro-
gram (Zilberstein 1993). Moreover, under cer-
tain conditions, the result of local
compilation is globally optimal.

Theorem 2 (optimality of local compi-
lation of deterministic CPPs): Local com-

pilation of an arbitrary composite ex-
pression with deterministic PPs is global-
ly optimal when each PP satisfies the in-
put monotonicity assumption.

The input monotonicity assumption re-
quires that the output quality of each module
increase when the quality of its input im-
proves. Intuitively, this property is desired of
every anytime algorithm. For the more gener-
al case of probabilistic PPs, the following re-
sult was proved (Zilberstein 1995).

Theorem 3 (optimality of local compi-
lation of probabilistic CPPs): Local com-
pilation of an arbitrary composite ex-
pression with probabilistic PPs is globally
optimal when each PP satisfies the input
linearity assumption.

Input linearity is a stronger (and not very
realistic) assumption. It requires that output
quality improve linearly with input quality.
However, a piecewise linear approximation of
CPPs is a reasonable approach that allows the
application of local compilation and main-
tains near-optimal results.

Approximate Compilation Techniques

The one assumption that restricts the applica-
tion of local compilation is the tree-struc-
tured assumption, which excludes the possi-
bility of repeated subexpressions. Consider,
for example, the expression F = E(D(B(A(x)),
C(A(x)))), where A, B, C, D, and E represent el-
ementary anytime algorithms. Local compila-
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tion is only possible when one can repeatedly
break a program into subprograms whose ex-
ecution intervals are disjoint, so that allocat-
ing a certain amount of time to one subpro-
gram does not affect the evaluation and
quality of the other subprograms. This prop-
erty does not hold when subprograms in-
clude identical subexpressions. In the exam-
ple here, B and C are the two components of
D whose time allocations cannot be consid-
ered independently because they both use the
same subexpression, A(x).

A number of approximate compilation
techniques have been developed to address
this problem (Zilberstein 1993). Some tech-
niques work efficiently on DAGs and produce
near-optimal schedules. Other techniques
guarantee optimality when the number of re-
peated subexpressions is small. Compilation
of additional programming constructs such as
conditional statements and loops has also
been analyzed. To summarize, a wide range of
compilation techniques have been developed
that can efficiently produce the PP of a com-
posite system based on the PPs of its compo-
nents.

Run-Time Monitoring

Monitoring plays a central role in anytime
computation. The purpose of run-time moni-
toring is to reduce the effect of uncertainty
on the performance of the system. In general,
two primary sources of uncertainty affect the
operation of intelligent systems. The first
source is internal to the system. It is caused
by the unpredictable behavior of the system
itself that leads to variability in solution qual-
ity. The second source is external. It is caused
by unpredictable changes in the environment
in which the system operates. These two
sources of uncertainty are characterized by
two separate knowledge sources. Uncertainty
regarding the performance of the system is
characterized by its CPP. Uncertainty regard-
ing the future state of the environment is
characterized by the model of the environ-
ment. The appropriate type of monitoring
will typically depend on the source of uncer-
tainty and the degree of uncertainty. Previous
work on the monitoring problem (Hansen
and Zilberstein 1996; Boddy and Dean 1994,
1989; Garvey and Lesser 1994; Zilberstein
1993; Horvitz 1990; Horvitz and Breese 1990)
focused on the following questions:

First, how much time should be allocated
to each of the components of the system to
maximize its overall utility?

Second, how much variance in the perfor-

mance of the system justifies using run-time
monitoring rather than determining a fixed
running time when the system is activated?

Third, how should the variance in the
performance of the algorithm and the cost
of monitoring affect the frequency of moni-
toring?

Fourth, when solution quality is hard to
calculate, what degree of approximation
should be used by the monitor? How does ap-
proximation of solution quality degrade the
effectiveness of monitoring?

Fifth, is it better to monitor periodically or
to monitor more frequently toward the algo-
rithm's expected stopping time?

Work on these problems has produced
three general strategies for solving the moni-
toring problem. The remaining three subsec-
tions describe these monitoring strategies.

The Fixed-Contract Approach

The fixed-contract approach to monitoring is
based on calculating the best resource alloca-
tion to the system prior to its activation. This
approach can be used when the complete sys-
tem is compiled into a contract algorithm
and when the level of variance in the algo-
rithm performance is small.

Definition 4: A domain is said to have
predictable utility if the utility of a result
can be determined for any future time
once the current state of the domain is
known.

Predictable utility is a property of the do-
main that gives monitoring the capability to
determine the exact value of results of a par-
ticular quality at any future time. In princi-
ple, the state of the domain can change (pos-
sibly in an unpredictable manner), but utility
can still be predictable. The analysis of such
domains (Zilberstein 1993) demonstrates the-
orem 4.

Theorem 4 (optimality of monitoring
of contract algorithms): The fixed-con-
tract monitoring strategy is optimal
when the domain has predictable utility,
and the system has a deterministic PP.

Because contract algorithms are easier to
construct and monitor, it is useful to use
them in domains that have near predictable
utility. Two modifications of the fixed-con-
tract approach have been developed to ad-
dress the uncertainty in such domains (Zil-
berstein 1993). The first modification
involves reallocation of residual time among
the remaining anytime algorithms. Suppose
that a system, composed of several elemen-
tary contract algorithms, is compiled into a



contract algorithm. Because the results of the
elementary contract algorithms are not avail-
able during their execution, the only point of
time where monitoring can take place is be-
tween activations of the elementary compo-
nents. Based on the structure of the system,
an execution order can be defined for the ele-
mentary components. The execution of any
elementary component can be viewed as a
transformation of a node in the graph repre-
senting the program from a computational
node to an external input of a certain quality.
The quality of the new input is only known
when the corresponding elementary compo-
nent terminates. Based on the actual quality,
the remaining time (with respect to the glob-
al contract) can be reallocated among the re-
maining computational components to yield
a performance improvement.

The second modification of the fixed-con-
tract approach involves adjustments to the
original contract time. As before, once an ele-
mentary component terminates, the monitor
can consider its output as an input to a small-
er residual system composed of the remaining
anytime algorithms. By recalculating a new
contract time for the residual system, a better
contract time can be determined that takes
into account the actual quality of the inter-
mediate results generated so far. A similar line
of work, design-to-time scheduling, is described
in Garvey and Lesser (1993).

The Marginal Value of Computation

We turn now to the problem of monitoring
interruptible anytime computation. The use
of interruptible algorithms is necessary in do-
mains whose utility function is not pre-
dictable. Such domains are characterized by
nondeterministic rapid change. Medical diag-
nosis in an intensive care unit, stock market
trading, and vehicle control on a highway are
examples of such domains. Many possible
events can change the state of such domains,
and the timing of their occurrence is essen-
tially unpredictable. Consequently, accurate
projection into the far future is limited, and
the previous contract approach fails.

One solution to this problem is based on
calculating the marginal value of computa-
tion, which is the expected utility gain as a
result of an additional computation step. This
approach has been developed by Russell and
Wefald (1989) for decision-theoretic control
of search. In our case, the monitor must cal-
culate the difference between the expected
utility after one time increment (taking into
account the improvement in solution quality
as well as the change in the state of the envi-

ronment) and the current expected utility
(based on the current solution quality and
the current state of the environment). Delib-
eration is interrupted once this value be-
comes negative. This myopic approach leads
to an optimal stopping time under the fol-
lowing conditions (Zilberstein 1993):

Theorem 5 (optimality of monitoring
of interruptible algorithms): Monitoring
interruptible algorithms using the value
of computation criterion is optimal
when the PP is monotonically increas-
ing and concave down, and the cost of
time is monotonically increasing and
concave up.

These conditions amount to an anytime al-
gorithm whose quality improvement dimin-
ishes over time and a comprehensive utility
function for which the cost of delay in action
increases over time.

Monitoring Policies

The previous approach to monitoring based
on the value of computation does not take
monitoring time into account. This assump-
tion is justified when calculating the
marginal value of computation is simple and
fast. However, in some situations, monitoring
involves complex computation. Estimating
both the current state of the environment
and the current solution quality can be a
complex problem that the monitor must
solve. In such cases, one cannot ignore the
cost of monitoring.

One approach that takes the cost of moni-
toring into account is based on modeling the
progress of an interruptible anytime algo-
rithm as a Markov process (Hansen and Zil-
berstein 1996). States of the process are iden-
tified with particular solution qualities, and
transitions between states correspond to im-
provement in solution quality as a result of a
small increment in computation time. The
dynamic PP of the algorithm defines the tran-
sition probabilities. This approach to moni-
toring anytime algorithms allows one to cal-
culate an offline monitoring policy that
determines an optimal action for each solu-
tion quality. Possible actions are (1) resume
the execution of the algorithm for a certain
time interval and then monitor again, (2) re-
sume the execution of the algorithm for a
certain time interval and then stop, or (3)
stop the execution of the algorithm. A simple
example of such a monitoring policy is
shown in table 1. The table specifies, for any
given time step and solution quality, the
amount of additional time to be allocated to
the algorithm. The letter M indicates whether
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Table 1. Optimal Monitoring Policy Based on Actual Solution Quality.

The table specifies, for any time step and solution quality, how much time to be allocated to the algorithm
and whether monitoring should be performed afterward.

time-step
quality | start ... S 6 7 8 9 10 11
) 0 0 0 0 0 0 0
4 1M 1M 1M 1M 1M 1 0
3 1M 1M 1M 1M 1M 1 0
2 3M 3M 3M 3M 2 1 0
1 4M 5 4 3 2 1 0
0 M 6 5 4 3 2 1 0

monitoring should be performed after the
time allocation. When solution quality can-
not be determined at run time, a similar poli-
cy can be developed based on estimated solu-
tion quality (Hansen and Zilberstein 1996).

Conclusion

The study of anytime computation is a
promising and growing field in AI and real-
time systems. This article presented several
solutions to the metalevel control problems
that arise in anytime computation. The deci-
sion-theoretic techniques for composition
and monitoring of anytime algorithms offer
several important advantages: They simplify
the design and implementation of complex
intelligent systems by separating the design
of the performance components from the op-
timization of performance, they mechanize
and optimize composition and monitoring,
and they facilitate the construction of ma-
chine-independent intelligent systems that
can automatically adjust resource allocation
to yield optimal performance. Current re-
search efforts in this field are aimed at ex-
tending the scope of compilation by studying
additional programming structures, produc-
ing a large library of reusable anytime algo-
rithms, and developing additional applica-
tions that demonstrate the benefits of
anytime computation.
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