Science and Engineering in Knowledge Representation and Reasoning

Lynn Andrea Stein

As a field, knowledge representation has often been accused of being off in a theoretical no-man's land, removed from, and largely unrelated to, the central issues in AI. This article argues that recent trends in KR instead demonstrate the benefits of the interplay between science and engineering, a lesson from which all AI could benefit. This article grew out of a survey talk on the Third International Conference on Knowledge Representation and Reasoning (KR '92) (Nebel, Rich, and Swartout 1992) that I presented at the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI '93).

The Third International Conference on Knowledge Representation and Reasoning (KR '92) was held in Cambridge, Massachusetts, in October 1992. This article is an edited version of a talk surveying that conference, which I presented at the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI '93). Although nominally a conference overview, the article attempts to summarize the state of the conference and the field with respect to the intertwined goals of science and engineering. I point out what I hope is a growing trend within the KR community to develop science inspired by engineering and to engineer systems according to KR's science.

This article discusses some of the technical material presented at KR '92. Nonetheless, its focus is on the field as a whole, the direction I see it taking, and the implications of this direction for people both inside and outside KR. As a survey, this article is both sketchy and heavily biased.1 It touches all too briefly on only a handful of papers, mostly in support of a central argument. This theme is the relationship between recent work in KR and its supporting pillars: science and engineering.

Knowledge Representation: Disconnected Science?

Before going on, I should explain what it is I mean when I speak of science and engineering. Science, to me, represents the study of phenomena. Science asks what, why, and how. Sometimes, science is theoretical, speculating on, or formalizing hypotheses of, what might be; at other times, it is empirical, analyzing what is. However, in and of itself, science builds only theories. Engineering, its twin and partner, is concerned with the construction of artifacts. Engineering is less about questions than about answers. This is not to say that engineering is without theory. There are both theories of how to engineer and engineered theories, but engineering is fundamentally about the result, what is built, what is created.

Of course, the problem with this neat dichotomy is that it is not. First, the theories that scientists build to explain what is are themselves artifacts, engineered. Engineers can only construct their artifacts—physical or theoretical—by understanding the science of putting things together. On the whole, engineering works best when informed by science, and science is most useful when advised by engineering. To sharply separate the two is to miss the point.

In KR (and in AI and computer science more generally), there is a second problem with the attempt to distinguish science from engineering. Much of KR has traditionally focused on what we might call science, the investigation of what's there. However, as Herb Simon has so aptly noted, this science is not a science of reality but a science of the artificial reality that we create. Although AI is...
at times influenced by psychology and biology—by the reality of biological intelligence—our bias as a field is evident in our chosen name. Thus, our science is inherently a science of engineering, and our engineering is often difficult to distinguish from our science.

The KR community, in particular, has, over the last decade, acquired something of a reputation for obscurity, putatively disinterested in, and disengaged from, the reality that is supposed to underlie AI. We are dismissed as “logic hackers,” presumably in contrast to the “real hackers” who build software artifacts: scientists when we should be engineers, theorizing when we ought to build. To build on Simon’s observation, KR is accused of going beyond a science of the artificial, of having become artificial science.

This article is an attempt to convince you otherwise. Whatever the truth of this view in the past, I believe that both those within and those outside KR need to reassess and reevaluate the direction that the field is now taking. A certain amount of KR is indeed strictly science, with an exclusive focus on the artificial world that we create; this is science walled off from engineering. However, there is also a great deal of KR that goes beyond this narrow realm; the wall between science and engineering has come down. In the remainder of this article, I hope to describe examples of science and engineering intertwined. For readers who are AI engineers, concerned with the practice of AI systems rather than its theory, I hope to demonstrate that the field of KR can usefully inform system building. For the KR “scientist,” I argue that it is not enough to provide useful input for the engineer but also that the science of KR itself should be driven by engineering problems.

At the KR conference and in the field of KR today, science is informing engineering, and engineering is informing science. The KR community is paying a great deal of attention to this cycle. This article is an attempt to encourage this trend within the KR community and to encourage the AI community outside KR to pay attention to these developments, to foster them in KR and elsewhere throughout AI. By reopening this dialogue, AI at large will help the KR community, and the KR community, in turn, will help all AI.

The outline of the rest of this article is as follows: First, I describe some of the science that was presented at the KR conference. Then, I turn to engineering. The last part of this article focuses on hybrids between science and engineering, papers that specifically address ways in which science and engineer-
Another example of a paper that uses science to inform engineering is “Representations for Decision-Theoretic Planning: Utility Functions for Deadline Goals” by Peter Haddawy and Steve Hanks. This work explores the problem of combining decision theory and planning, fields with both practical and abstract incarnations. Haddawy and Hanks define several relationships between decision theory and planning. This is essentially basic science, albeit science in which the KR community is tremendously interested. This paper is exemplary, however, in that it ultimately uses these relationships to describe a way of merging the two fields that results in a satisfying planning algorithm. Thus, it addresses both the scientific challenge of elucidating the relationships between decision theory and planning and the engineering problem of how to put those insights into practice to build a better planner.

There are many other papers from the KR conference that belong in this section, papers that tell you about what’s out there, what exists, and how to characterize it but that also give you insight into how you can go about building an implementation. Space considerations limit my coverage here; I recommend the conference proceedings for much enjoyable reading.

Before turning to engineering, I would like to point out two other items that belong in the science category and that have some interest for people outside KR science. One is the invited talk by Ray Reiter, entitled “Twelve Years of Nonmonotonic Reasoning Research: Where (and What) Is the Beef?” Although clearly in the dreaded category of “logic hacking,” Reiter’s talk specifically addressed ways in which the logic hacking influences our practice of KR engineering.

The second item is an invited talk by Steve Kosslyn, a cognitive psychologist, about science in the brain: How is it that our brains actually do representation and reasoning? It is my belief that he was brought to the KR conference both to remind us that logic and symbolic reasoning are not the only representations—ultimately, we must turn to biology—and to show us that representation and reasoning systems can work. Kosslyn’s talk was intended in part to help us remember that our goals are KR systems, systems that not only have abstractly desirable properties but also are engineering artifacts that we can use.

Engineering

Other papers in the KR conference addressed the problem of engineering. These papers talk about implemented systems. Unlike the familiar caricature of a KR paper, full of Greek, they contain performance profiles of programs. These are empirical, result-oriented papers. Did you know that such things were published in the KR proceedings?

One such paper is “An Empirical Analysis of Optimization Techniques for Terminological Representation Systems, or Making KRIS Get a Move On” by Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Profitlich, and Enrico Franconi. This paper addresses the actual effects of optimizations that were believed to improve the performance of terminological logic programs. Terminological logics are KL-ONE-like systems; they are the knowledge representation systems that you are perhaps most likely to use if you decide, in building another type of AI system, to use off-the-shelf knowledge representation technology. Prior to this conference, there was a well-established theory addressing the optimization of such systems.

Baader et al. examined the existing theoretical literature on the optimization of terminological systems, implemented several variants within their terminological system, and analyzed the effect of these optimizations on the performance of the system. Surprisingly, two of the most promising techniques—techniques that were expected from a theoretical standpoint to improve the performance of the programs—did not significantly improve performance. In short, this paper describes those techniques that help and those that don’t. It takes theory and brings it into the realm of practice, telling the reader what these results actually mean for the ways in which we build KR systems.

Another example of a KR engineering paper that compares theoretical expectation with empirical practice is “Total Order versus Partial Order Planning: Factors Influencing Performance” by Steven Minton, Mark Drummond, John L. Bresina, and Andrew B. Philips. This paper examines the commonly held belief that partial orders are a better working representation for plans than total orders. By analyzing the performance of implemented systems, they demonstrate that this hypothesis holds true even for some highly expressive planning languages. They further characterize the circumstances under which partial ordering is advantageous in terms of problem parameters such as solution density, solution clustering, search strategy, and use of heuristics. Like Baader et al., Minton et al. depend on empirical analysis to determine ground truth.
Perhaps half a dozen papers in the conference compared empirical behavior of systems with predictions from theoretical analysis. A somewhat different kind of empirical paper is Yoav Shoham and Moshe Tennenholz’s “Emergent Conventions in Multi-Agent Systems: Initial Experimental Results and Observations.” This paper is a somewhat preliminary but decidedly empirical investigation of the dynamics of multiagent systems. It explores the behavior of a society of agents under a set of evolving conventions. Shoham and Tennenholz demonstrate the effect of parameters such as relative attention to one’s own versus others’ behavior, or length of memory, on the time to convergence on a uniform societal convention. In this case, a set of experiments leads to the development of a nascent theory that the authors have gone on to explore further in later work.

Closing the Cycle

The previous sections talked about KR papers concerned with science and those concerned with engineering. The science papers describe what’s out there, what actually happens in the world. However, with these particular papers, as well as with many papers that are not described here, science also has something to say to engineering about fundamental facts that implemented systems can build on. Thus, although these papers spell out a science of what exists, it is also a science that has ramifications for the systems that we build. Similarly, the engineering papers demonstrate an engineering that informs the underlying science about the relevance and legitimacy of its contributions or one that points the science toward new questions to explore.

At this point, I’d like to turn to papers that address science and engineering together. To my mind, one of the best examples of this—but by no means the only example—is a paper called “Reducing CLASSIC to Practice: Knowledge Representation Theory Meets Reality” by Ronald J. Brachman. This paper addresses the CLASSIC system, again a KL-ONE-derived knowledge representation system, which was first presented in 1989 as a primarily scientific contribution. CLASSIC is a scaled-down version of the KL-ONE family of languages, cleaned up to be an elegant representation of what the KL-ONE knowledge representation family does and contributes. It was a nice piece of science.

Brachman’s KR’92 paper looks at what happened over the succeeding three years as the CLASSIC group at Bell Labs took the original system—a scientific, theoretical contribution—and transformed it from the Common Lisp prototype into a deployed product with extensive use outside its research group. “Reducing CLASSIC to Practice” describes what happened when a piece of science was taken to the point where it became engineering. Brachman describes some of the primarily engineering lessons his group learned. For example, certain aspects of the original, pure CLASSIC system were intractable, although possessed of tractable approximations. In implementing the production version of the system, the CLASSIC group was faced with the decidedly nonscientific question of whether those tractable approximations would survive the next 10 generations of CLASSIC. Although in science, it is sufficient to state that an intractable feature has a tractable heuristic approximation, engineering requires that the developers commit to backward compatibility.

Similarly, getting the abstraction right—making it possible for the user to walk in and understand the basic building blocks of the system—is critically important in a piece of engineering, although not particularly relevant to science. In addition, such things as user support—whether there is good documentation, whether there are good case examples, whether there are nontoy case studies—matter a great deal in engineering but relatively little in science.

Brachman also describes the lessons that “real” CLASSIC holds for science. These are results that were derived from the engineering experience—from the experience of making this a deployed application—but that speak not to how a system is built but to how our theories work.

Real users have real problems. If the user can’t understand it, it is wrong. It doesn’t matter whether it’s theoretically well founded. For example, Brachman’s group discovered that users commonly utilized a powerful language mechanism to implement minimum and maximum constraints—for example, age is less than 25—which were absent in the original versions of CLASSIC. Because these features often arose in CLASSIC usage, the group ultimately revised not only its implementation but also the underlying theory to handle these particular cases more cleanly. Thus, something that was learned in engineering changed the science.

Similarly, engineering the application forced the identification and closure of gaps in the science on which pure CLASSIC was based. For example, pure CLASSIC contained a close operator over predicates; the implementation revealed that close in fact makes sense...
This paper is really about a system. It is a scientifically interesting research was generated this science, a great deal of truly scientific engineering informs science.

If you're an engineer, don't just build your system. Analyze it, or have someone else analyze it.

Boddy, and Jim Carciofini go the other way.

p. 257).

The kind of ambiguity that Schrag, Boddy, and Carciofini address is the disjunction that arises when the constraints given to the system leave open multiple possibilities. For example, if I arrive at a meeting at 11:00 AM, it might be either before or after the coffee break, which occurred at some time between 10:00 AM and noon. The system that Schrag, Boddy, and Carciofini built to reason with such constraints is computationally tractable, but it is also theoretically well founded and well characterized. Here are people who are building an engineering system but were informed by, and informed, science.

Their solution largely involves limiting the expressive power of the system and substituting a weak approximation to the disjunction. Weak approximation is a well-known technique, and engineers use it all the time, but it is something that theory is skittish of. Schrag and his colleagues point out that in fact, weak representation—approximating the disjunction by an easier-to-manage, if not, strictly speaking, complete, representation—actually turns out to be a good pragmatic solution. They further close the cycle by demonstrating that their system preserves soundness. Thus, engineering, well founded on theory, with strong ties to a theoretical underpinning, again ties together the cycle of engineering and science.

Another example of the interactions of science and engineering is “An Approach to Planning with Incomplete Information” by Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Leash, and Mike Williamson. This is more of a science paper—it does not have an implemented system directly tied to it—but it grows out of a problem encountered in constructing a particular implemented system. The paper addresses what seems like a purely theoretical problem: Say that I want to find the blue door. Formally, my goal is to achieve “the blue door.” Etzioni and his colleagues point out that this goal leaves two possibilities: One is that I want some particular door to be (come) blue. The other is that, for example, someone has told me that my jacket is behind the blue door. Thus, there are two different kinds of actions that I can perform, both of which will result in my binding “blue door”: One is painting the door blue, and the other is looking at the door to see what color it is. In the first case, where I really want this door to be
blue, painting it might be appropriate. However, in the case where I want to find the blue door, painting this door is actually going to interfere with my ability to find the blue door behind which my jacket is hidden. Previous planning languages did not distinguish these two forms of the blue-door goal.

Etzioni and his coauthors describe a representation language that captures the distinction between these different types of goal: information goals, such as “go out and look and see if the door is blue,” versus goals of achievement, such as “paint the door blue.” Their paper presents the theory behind this, as science, describing the phenomenological differences between information goals and achievement goals. It culminates in a language within which it is possible to describe conditional plans, an incomplete world model, and the representation of an action on changing worlds and changing knowledge. However, outside the paper is the implementation that drove the need to discover, or to create, this language. The conclusions of the paper are science, but its central question was informed by engineering needs, and having done this science, Etzioni and his colleagues now have a better idea of how to implement their engineering system.

The last paper that I’d like to describe is “Towards the Systematic Development of Description Logic Reasoners: CLASP Reconstructed” by Alex Borgida. This paper describes a reimplementation of CLASP, a terminological logic system originally designed and built by Prem Devanbu and Diane Litman. Borgida’s interest was in using PROTO-DL, his description language for terminological logics, to implement Devanbu and Litman’s already-existing language in a way that used more advanced software-engineering techniques. In the process of reimplementing it to meet some software-engineering—pragmatic—constraints, he discovered some difficulties in the CLASP language. The theory of PROTO-DL told Borgida how to implement a better system. His new system has software-engineering properties that are advantages over the properties of the original CLASP system. However, the reimplementation, according to these theoretical principles, also informs the way in which CLASP behaves, so that Borgida was able to identify some shortcomings in the terminological logic theory underlying CLASP. Science and software engineering inform the practice of reimplementing the system, which, in turn, informs science on how the system should work in the first place, and the cycle goes on.

Keeping the Cycle Turning

I’d like to summarize the changes that I’ve seen in the KR community. Although there certainly are a lot of papers that might be classified as ivory tower science—nonmonotonic logic hacking—there are also a lot of papers that have a great deal to say about how science can inform engineering, how to build a better system, how to build a system that actually accomplishes your purposes. There are also a lot of papers that talk about systems that were actually implemented and that have something to say about where science has missed things or where science should look next. There are science papers informing engineering, and there are engineering papers informing science, and there are also papers that talk explicitly about this cycle. There are papers that say that science is best when it has something to say to engineering, and engineering is best when it has something to say to science.

If this article has a message, it is this: If you consider yourself to be a scientist, look at engineering. Look at the way that your work can influence engineering, but also look at engineering to see what it can say about your work. If you’re an engineer, don’t just build your system. Analyze it, or have someone else analyze it. When you go out to build your next system, look at what has already been said by science. See whether science has anything useful to tell you. If you’re a KR person, I ask you to do what the invited talks by Martha Pollack and Peter Szolovits describe: Look at domains, look at applications, take inspiration both about how your system should work—which the world needs—and about what kinds of problem engineering needs you to solve. If you are not a KR person, I ask you take another look at KR to see that the KR community takes this cycle extraordinarily seriously and to see whether we have solutions to some of your problems or whether you have problems that we should be solving.

Notes

1. Given the number of papers in the conference, the 60-minute talk on which this article is based would have allotted each author significantly less than Andy Warhol’s proverbial 15 minutes of fame—closer to 15 seconds, in fact!
2. In the time since Baader and his colleagues wrote this paper, this class of systems has become more widely known under the term description logics.
Still “in print’ in one form or another!

Electronic Access
Adobe Acrobat (PDF) versions of AI Magazine are available to members at AAAI’s website (www.aaai.org). For access information, please contact the membership department (membership@aaai.org). (Early issues are not yet available, but will come “online” soon!)

Hardcopy
Hardcopy of selected issues of AI Magazine are also available for purchase. A Contents list of all AI Magazine issues is available at the AAAI website. For price and availability of specific issues, contact AAAI (info@aaai.org)

Reference

Lynn Andrea Stein is an associate professor of computer science and a member of the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Her research spans the fields of cognitive robotics, commonsense reasoning, software agents, human-computer interaction and collaboration, and object-oriented programming. Her web page is available at http://www.ai.mit.edu/people/las.
Android Epistemology

Edited by Kenneth M. Ford, Clark Glymour, & Patrick J. Hayes

Epistemology has traditionally been the study of human knowledge and rational change of human belief. Android epistemology is the exploration of the space of possible machines and their capacities for knowledge, beliefs, attitudes, desires, and action in accord with their mental states. From the perspective of android epistemology, artificial intelligence and computational cognitive psychology form a unified endeavor: artificial intelligence explores any possible way of engineering machines with intelligent features, while cognitive psychology focuses on reverse engineering the most intelligent system we know, us. The editors argue that contemporary android epistemology is the fruition of a long tradition in philosophical theories of knowledge and mind.

The sixteen essays by computer scientists and philosophers collected in this volume include substantial contributions to android epistemology as well as examinations, defenses, elaborations, and challenges to the very idea.

Contributors include Kalyan Basu, Margaret Boden, Selmer Bringsjord, Ronald Chrisley, Paul Churchland, Cary deBessonet, Ken Ford, James Gips, Clark Glymour, Antoni Gomila, Pat Hayes, Umar Khan, Henry Kyburg, Marvin Minsky, Anatol Rapoport, Herbert Simon, Christian Stary, and Lynn Stein.

ISBN 0-262-06184-8 336 pp., index. $25.00 hardcover

The AAAI Press • Distributed by The MIT Press
Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
To order, call toll free: (800) 356-0343 or (617) 625-8569. MasterCard and VISA accepted.